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Abstract
The concept of biorthogonal partners has recently

been shown to provide a unifying link for various ap-
plications in digital signal processing. In particular,
the multiple input multiple output (MIMO) case has
been associated with several different contexts such as
multiwavelet theory and MIMO channel equalization,
especially with fractionally spaced equalizers. In most
of these applications, the construction of FIR solutions
is of high practical importance. In this paper we de-
rive the most general form of FIR MIMO biorthogo-
nal partners. These findings will be tested on a MIMO
channel equalization example.1

1 Introduction
The concept of biorthogonal partners has been in-

troduced recently by the authors in both the scalar
[5] and the vector case [7, 6]. A pair of digital filters
H(z) and F (z) are called biorthogonal partners of each
other with respect to an integer M if their cascade
H(z)F (z) obeys the Nyquist(M) property. Multiple
input multiple output (MIMO) biorthogonal partners
are defined using a similar approach [7]. They arise in
many standard applications in digital signal process-
ing. Some of them include multiwavelet theory [8],
where the prefiltering problem can be treated from the
MIMO biorthogonal partner perspective [6]. They are
also used in zero-forcing MIMO channel fractionally
spaced equalizers (FSEs) [7, 6].

In most of these applications it is of interest to con-
struct FIR MIMO biorthogonal partners. Moreover,
if such FIR solutions exist, it is desirable to param-
eterize them and thus make the search for the most
suitable solution (depending on the application) an-
alytically tractable. Some results dealing with this
problem were presented in [7] for the case of square
matrices and in [6] for the more general, rectangular
matrix case. In this paper we further these results by
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taking a systematic approach for finding the general
set of FIR MIMO biorthogonal partners for an arbi-
trary decimation ratio M . We show that the solution
for M = 2 given in [6] without any generality claims,
indeed assumes the general form and that a similar
form holds for any M . We also provide insights into
what can affect the performance of this solution.

We begin by reviewing some properties of MIMO
biorthogonal partners including the conditions for the
existence of FIR solutions. Next, we derive the gen-
eral form of FIR MIMO biorthogonal partners and
show how they can be optimized in the equalization
setting to combat the channel noise. We evaluate the
performance of the proposed FIR MIMO equalization
method in the section with experimental results.
1.1 Notations

If not stated otherwise, all notations are as in [4].
We use the symbol ↓ M in a box to denote the deci-
mation operation on vectors [turns x(n) into x(Mn)].
The expanded version of x(n){

x(n/M) for n = mul of M,
0 otherwise

is similarly obtained as a result of the expander op-
eration which is denoted by the symbol ↑ M . The
decimated and expanded versions of x(n) are denoted
by x[(n)]↓M and [x(n)]↑M . Superscripts T and † oper-
ating on vectors or matrices denote the transpose and
the transpose conjugate, respectively.

2 MIMO biothogonal partners
In the vector case the biorthogonal partner rela-

tion is not symmetric, so we distinguish between a left
biorthogonal partner (LBP) and a right biorthogonal
partner (RBP) [7]. Consider the system in Fig. 1; if
it is equal to identity, i.e. if [H(z)F(z)]↓M = I, then
H(z) is said to be a left biorthogonal partner of F(z)
with respect to an integer M . At the same time we say
that F(z) is a right biorthogonal partner of H(z) with
respect to M . Notice that F(z) and H(z) can be rect-
angular matrices. As explained in [7], all the results
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Figure 1: Definition of a biorthogonal partner relation.

that hold for LBPs hold (in a similar form) for RBPs
as well, so we consider only LBPs in the following.

Many properties of MIMO biorthogonal partners
are derived in [6]. In what follows we are mostly con-
cerned with the case when F(z) is a polynomial ma-
trix. Under these circumstances, the question is when
will there exist a polynomial matrix H(z) such that
[H(z)F(z)]↓M = I? In other words, when does there
exist an FIR LBP of an FIR matrix transfer function?
The answer to this question is also provided in [6] and
here we just briefly summarize the result.

Let F(z) be a p × r polynomial matrix with the
Type-2 polyphase form [4]

F(z) =
M−1∑
k=0

zkFk(zM ). (1)

Then, there exists a polynomial LBP of F(z) with re-
spect to M , namely a r × p matrix H(z) if and only
if the greatest right common divisor (grcd) [1] of the
polyphase components {Fk(z)}, 0 ≤ k ≤ M − 1 is a
unimodular matrix [1]. (For the purpose of this paper
we use an extended definition of grcd’s that accommo-
dates rectangular matrices [6].) More generally, it can
be shown [6] that under the above conditions, there
exist polynomial matrices {Hk(z)}, 0 ≤ k ≤ M − 1,
such that

M−1∑
k=0

Hk(z)Fk(z) = I. (2)

These polynomial matrices can then be taken as the
Type-1 polyphase components of our FIR LBP H(z).
In other words, H(z) is constructed as

H(z) =
M−1∑
k=0

z−kHk(zM ). (3)

It is insightful here to note the way matrices {Hk(z)}
were originally constructed in [6] for M = 2. From the
construction of a grcd [1] it follows that there exists a
unimodular matrix W(z) such that

r

2p−r

p p[
W00(z) W01(z)
W10(z) W11(z)

]
︸ ︷︷ ︸

W(z)

r[
F0(z)
F1(z)

]
p

p
=

r[
P(z)
0

]
r

2p−r

(4)
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Figure 2: (a)-(b) Construction of general FIR LBPs.

with indicated sizes of the building blocks. Matrix
P(z) appearing on the right hand side of (4) is a grcd
of F0(z) and F1(z). From the conditions for existence
of an FIR LBP we know that P(z) is unimodular.
The polyphase components H0(z), H1(z) of valid FIR
LBPs are then given by

Hk(z) = P−1(z)W0k(z) +Q(z)W1k(z), for k = 0, 1
(5)

where Q(z) is an arbitrary r × (2p − r) polynomial
matrix incorporating the degrees of freedom in the
construction. In the next section we take a more sys-
tematic approach leading to the general form of FIR
LBPs.

3 General form of FIR LBPs
In view of (2) we can redraw the structure from Fig.

1 as shown in Fig. 2(a). Next, we define the Mp × r
and r × Mp polynomial matrices E(z) and R(z) as

E(z)
�
= [FT

0 (z) FT
1 (z) · · · FT

M−1(z)]
T ,

R(z)
�
= [H0(z) H1(z) · · · HM−1(z)]. (6)

Then we can redraw Fig. 2(a) as shown in Fig. 2(b).
We conclude that constructing an FIR LBP is abso-
lutely equivalent to finding a left polynomial inverse
of E(z), namely R(z). This is possible as long as
Mp ≥ r and the greatest common divisor (gcd) of
all the M ×M minors of E(z) is a delay [9]. From the
previous discussion we conclude that this condition is
equivalent to grcd[F0(z),F1(z), · · · ,FM−1(z)] being a
unimodular matrix.

The Smith form [1] of E(z) is given by

E(z) = U(z)Γ(z)V(z). (7)



Here U(z) and V(z) are Mp×Mp and r×r unimodu-
lar matrices respectively and Γ(z) is a Mp×r diagonal
matrix. Under the above conditions, the elements on
its diagonal are nonzero constants or delays, but with-
out loss of generality we can assume that they are all
constants. In other words, Γ(z) = [Γ 0]T , where Γ
is a r × r constant diagonal matrix. Now from (7) we
have that the most general form of an FIR left inverse
of E(z) is given by

R(z) = V−1(z)[Γ−1 A(z)]U−1(z), (8)

where A(z) is any r× (Mp− r) polynomial matrix. It
is important to note here that although (8) represents
the general form of the solution for FIR LBPs, it still
does not provide the complete parameterization of all
valid solutions. The reason for this is the fact that
the unimodular matrices U(z) and V(z) in (7) are
not unique; moreover their complete parameterization
is still an open problem. In the section with experi-
mental results we demonstrate how changingU(z) and
V(z) can affect the performance of the FIR LBP.

Given R(z), the desired polyphase components of
an FIR LBPH(z) are easily obtained using (6). To see
how this solution compares to the previously available
solution (5), we define the polynomial matricesD0(z),
D1(z) and G(z) as

[DT
0 (z)︸ ︷︷ ︸
r

DT
1 (z)︸ ︷︷ ︸

Mp−r

]T= D(z)
�
= U−1(z), G(z)

�
= V−1(z).

(9)
Now, we can rewrite (8) as

[H0(z) H1(z) · · · HM−1(z)] =
G(z)Γ−1D0(z) +G(z)A(z)︸ ︷︷ ︸

�
=B(z)

D1(z). (10)

Comparing (10) for M = 2 to (5), we see that if
W(z) = D(z) and P(z) = ΓV(z) these two solutions
have exactly the same form, with the free parameter
matrixQ(z) being replaced byB(z) in (10). Note that
B(z) has the same dimensions as Q(z) and is also an
arbitrary polynomial matrix (this follows from the fact
that G(z) is unimodular).

Since we posed no limitations in the process of de-
riving the FIR LBP, we conclude that (10) represents
the most general form of the solution; therefore, the
solution for M = 2 proposed in [6] is of the general
form as well. However, as opposed to [6], here we see
that the same equation (10) provides the general form
for M > 2 as well. Therefore, we can use the same op-
timization procedure for finding the best matrix A(z)

regardless of M . This will next be demonstrated in
the case when FIR LBPs are used as MIMO channel
equalizers.

4 LBPs as channel equalizers
The discrete-time equivalent of a MIMO digital

communication system with symbol-spaced equalizer
(SSE) is shown in Fig. 3(a). The equalizer H2(z)
works at the symbol rate 1/T . The discrete versions
of the pulse shaping filter and the channel, G2(z)
and C2(z) are obtained by sampling the correspond-
ing continuous-time impulse responses also at the rate
1/T . An ideal equalizer (or a zero-forcing equalizer)
H2(z) is found as a left inverse of the equivalent chan-
nel F2(z).

Several problems with this method have been
pointed out in [3]. The receiver is very sensitive to
the phase shift at the sampling device; also, sampling
at the symbol rate may create some aliasing problems.
As for the MIMO transfer function F2(z), it does not
have a left inverse if it is a fat matrix and even if it
is not fat, its invertibility will depend on the rank.
Furthermore, if F2(z) is invertible, its inverse is most
probably IIR, which often amplifies the noise at the
receiver. For all these reasons, a popular alternative
is to use a so called fractionally spaced equalizer (FSE)
[3]. It is realized by sampling the received waveform
at M times the symbol rate, and feeding such over-
sampled signal to the equalizer, which now operates
at the rate M/T . In discrete-time this is modeled as
shown in Fig. 3(b). The discrete transfer functions
G(z) and C(z) are obtained after sampling the cor-
responding continuous-time impulse responses at the
rate M/T . Thus, the equivalent channel F(z) in this
case is such that F2(z) = [F(z)]↓M . The simplified
scheme is shown in Fig. 4(a). We see that the zero-
forcing FSE H(z) is nothing but an LBP of F(z) with
respect to M . Our goal is to find an FIR ZFE H(z)
that will not severely amplify the channel noise. This
will be achieved by using the flexibility in the design of
FIR LBPs as described in Sec. 3; we apply a technique
similar to that employed in [6].

From Sec. 3 we recall that Fig. 4(a) can be re-
drawn as in Fig. 4(b) when both F(z) and H(z) are
FIR. The noise vector process needs to get modified
as well. The noise from Fig. 4(a) is assorted into
polyphase components and they are distributed over
the M vector channels in Fig. 4(b). We know that
our equalizer H(z) (rather its polyphase components)
needs to be of the form (10), and to obtain the best so-
lution we consider the equivalent noise model shown in
Fig. 5(a) and try to minimize the power of the output
noise process ê(n).
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Figure 3: (a) Discrete-time equivalent of a digital communication system with SSE; the equivalent channel is
F2(z) = C2(z)G2(z). (b) Digital communication system equalized with FSE H(z).
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Figure 4: (a)-(b) MIMO FSEs and MIMO LBPs.

First, recall that the FIR matrix inverse R(z) can
be written as in (8), with U(z), V(z) and Γ defined
in (7). Thus we can redraw Fig. 5(a) as in Fig. 5(b).
Furthermore, R(z) is equivalently given by (10) and
therefore the equivalent noise model can be shown as
in Fig. 5(c). The r × (Mp − r) polynomial matrix
of free parameters A(z) is now replaced by another
r × (Mp − r) polynomial matrix of free parameters
B(z) and our goal is to find the optimal B(z) of a
given order NB−1 that will minimize the noise power.
From Fig. 5(c) we see that the optimalB(z) is nothing
but a matrix Wiener filter [2] for recovering the desired
vector signal −u(n) given the vector process v(n). Let

C(z)
�
= V−1(z)Γ−1D0(z) and let the matrices Bi, Ci

and Di represent the impulse responses of B(z), C(z)
and D1(z) respectively. Next define the r × NCMp
matrix C and the (Mp − r)NB × Mp(NB + ND − 1)
matrix D1 as

C �
= [C0 C1 · · · CNC−1],

D1
�
=



D0 . . . DND−1 0 . . . 0
0 D0 . . . DND−1 . . . 0
...

. . . . . .
0 . . . 0 D0 . . . DND−1


 .(11)

We also define the NB(Mp−r)×1 vector process V(n)

r

ê(n)

e(n)

A(z)
Mp

Mp� r

r

r r

V
�1(z)D1(z)

ê1(n)

�
�1
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Mp
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e(n)
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Figure 5: (a)-(c) Finding the optimal FIR LBP.

and the r × NB(Mp − r) matrix B as

V(n)
�
= [vT (n) vT (n − 1) · · · vT (n − NB + 1)]T ,

B �
= [B0 B1 · · · BNB−1]. (12)

By the orthogonality principle we have that
E{[BV(n) + u(n)]V†(n)} = 0 (E{·} denotes the ex-
pectation), which provides the optimal B as

B = −E{u(n)V†(n)} · R−1
VV , (13)

where RVV is the autocorrelation matrix of V(n).
Given the definitions (11) and referring to Fig. 5(c)
we see that u(n) = CENC and V(n) = D1END+NB−1,
where EN denotes the NMp×1 vector of concatenated
input noise vectors e(n − i), 0 ≤ i ≤ N − 1. Substi-
tuting in (13) we get the optimal B(z) to be given by
its impulse response matrix

B=−CRε(1 : NCL, :)D†
1

(
D1Rε(1 : ND, 1 : ND)D†

1

)−1

(14)
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Figure 6: Equalization results. Clockwise, starting
from upper left: SSE, plain FIR FSE, optimized FIR
FSE as in [6] and optimized FIR FSE as in Sec. 4.

Here Rε is a L(NB + ND − 1) × L(NB + ND − 1)
autocorrelation matrix of the input noise process, and
we use Matlab’s notation X(1 : N, :) to denote the
matrix made of the first N rows of X.

5 Experimental results
In the experiment we compare the equalization re-

sults of a 3×1 input vector sequence x(n) whose scalar
components were iid coming from a 64-QAM constel-
lation. Four different methods were used:

1. traditional IIR SSE [Fig. 3(a)],

2. plain FIR FSE obtained as an LBP with redun-
dancy set to zero [A(z) = 0 in (8)],

3. optimized FIR FSE according to [7, 6] [see (5)]
with Q(z) of order three, and

4. optimized FIR FSE as in Sec. 4 with B(z) of
order three obtained as in (14).

The corresponding scattering diagrams are shown in
Fig. 6, with the probabilities of error (clockwise in
Fig. 6) 0.24, 0.0036, 5.33 × 10−5 and 5.26 × 10−6 .
The equivalent channel F(z) in Fig. 4(a) was a 3 × 3
polynomial matrix of order three and can be found
at [10]. The oversampling ratio M = 2. The noise
was white and the SNR at the channel output was 28
dB. Matrix W(z) in (4) was obtained using the grcd
construction algorithm from [1]. As mentioned in Sec.
3, matrices U(z) and V(z) in (7) are not unique and

this is exploited in the last example. Notice that there
is a factor of 10 improvement in the probability of
error with respect to the method from [6] and this can
mostly be attributed to the choice of U(z) and V(z).
All the three unimodular matrices used [W(z), U(z)
and V(z)] can be found at [10].

6 Concluding remarks
In this paper we consider the problem of finding the

general form of FIR MIMO biorthogonal partners. We
show that the previously proposed solutions can also
be reduced to this general form. However, the form
derived here is valid for arbitrary decimation ratios
M and provides some further insights. The results
are tested on MIMO channel equalization examples
where it is shown that different choices of the Smith
form decomposition result in different performances.
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