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Abstract
The issue of signal approximation has been treated

extensively by the signal processing and mathematics
communities. The problem is usually that of mini-
mizing an appropriate metric between the given signal
and signals described by a certain model. In this pa-
per we consider the general signal model described by
multirate systems. Multiple channels with nonuniform
interpolation ratios are considered. We show that the
solution minimizing the �2 norm of the approximation
error involves filtering that is in general time-varying.
We also point out the conditions under which LTI fil-
ters can be used and consider a special uniform case
which provides further insights.1

1 Introduction
The problem in signal approximation is invariably

that of representing an arbitrary signal by the best ap-
proximation from a given, restricted class of signals.
The notion of “best” approximation is usually quanti-
tatively described in terms of some metric. An impor-
tant special case occurs when the signals are square-
summable (�2 signals) and the metric is correspond-
ingly characterized by the �2 norm. The restricted
class of signals in question is sometimes given by a
signal model, which is described as the output of a
linear system driven by an arbitrary (stable) input.

The flexibility in choosing the signal model leads to
applications in several different signal processing ar-
eas, such as denoising, sampling theory and multires-
olution theory [3]. In spline approximation theory [6],
the signal is modeled as the output of a spline interpo-
lation system. This problem was considered in a more
general biorthogonal partner setting in [8] and in the
case of vector signals the solution is presented in [9].
A closely related subject of oblique projections is ex-
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tensively treated in [1]. The signal model considered
in this paper is very general since it consists of a bank
of interpolation filters with different interpolation ra-
tios. Such structures commonly occur in wavelet the-
ory, and therefore the results presented here play an
important role in the theory of approximation in mul-
tiresolution spaces. As we shall see, the systems for
such approximation in general require the use of time-
varying filters.

We begin by describing the problem of signal ap-
proximation within nonuniform multichannel signal
models. Next, we derive the solution to this problem
and describe the conditions for the existence of an LTI
solution. Some examples are included to demonstrate
that those conditions are often not satisfied. We also
consider a special case providing further insights.
1.1 Notations

If not stated otherwise, all notations are as in [7].
We use the encircled symbol ↓ N to denote the decima-
tion operation [turns x(n) into x(Nn)]. The expanded
version of x(n){

x(n/N) for n = mul of N,
0 otherwise

is similarly obtained as a result of the expander oper-
ation which is denoted by the encircled symbol ↑ N .
The decimated and expanded versions of x(n) are de-
noted by [x(n)]↓N and [x(n)]↑N . Superscripts T and
† operating on vectors or matrices denote the trans-
pose and the transpose conjugate, respectively. The
�2 norm of x(n) is denoted by ‖x(n)‖.
2 Problem formulation and solution

Consider the model shown in Fig. 1(a). If the fil-
ter F (z) is a B-spline oversampled by M this model
corresponds to spline approximation theory. Given an
arbitrary �2 sequence x(n), a stable filter F (z) and an
integerM > 1 the question is how to find the best ap-
proximation y(n) admitting this model? This problem
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Figure 1: Signal models: (a) single channel model, (b)
multichannel, nonuniform model (see text).

has been solved in the context of biorthogonal part-
ners [8]. Notice that this model also represents the
output of a single channel in a nonuniform filter bank.

2.1 Formulation
A straightforward extension of the model from Fig.

1(a) is the L-channel model shown in Fig. 1(b). The
expanders {ni} across different channels are in general
unequal integers. The digital filters Fi(z) are given by
the impulse responses fi(n), 0 ≤ i ≤ L−1. Any signal
y(n) produced by this structure is given by

y(n) =
L−1∑
i=0

∞∑
k=−∞

ci(k)fi(n− kni). (1)

By analogy with the previous discussion, the least
squares approximation problem is as follows. Given an
arbitrary �2 sequence x(n), the goal is to find the best
approximation y(n), admitting the model (1), such
that the mean-squared error

ξ
�
= ‖y(n)− x(n)‖2 =

∞∑
n=−∞

|y(n) − x(n)|2 (2)

is minimized. This problem is evidently equivalent to
the problem of finding the optimal sequences {ci(n)},
for 0 ≤ i ≤ L− 1.

2.2 Solution
In the following we use several well-known identities

from nonuniform filter bank theory treated amply in
[5]. Consider the ith channel of the model from Fig.
1(b), redrawn in Fig. 2(a). For any integer N such
that N = kini, where ki is another integer, Fig. 2(a)
can be redrawn as in Fig. 2(b) [2]. In particular if
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Figure 2: Equivalent single-channel representations.
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Figure 3: Equivalent uniform signal model.

N = lcm(n0, n1, . . . , nL−1), and ki = N/ni (3)

this transformation will continue to hold. In the fol-
lowing we assume (3) is satisfied. Repeating the trans-
formation shown in Fig. 2 for all the L channels, we
can redraw the nonuniform L-channel synthesis bank
from Fig. 1(b) as the uniform synthesis bank shown in
Fig. 3 consisting of L groups of channels, ki channels
in each group. For notational convenience, in the fol-
lowing we often use the integerK denoting the number
of channels in Fig. 3; in other words

K
�
=

L−1∑
i=0

ki. (4)

Notice in Fig. 2(b) that the subsequences {cij(n)}
for 0 ≤ j ≤ ki − 1 are obtained by parsing the se-
quence ci(n). Therefore, the problem of finding the
optimal driving sequences {ci(n)} in Fig. 1(b) is com-
pletely equivalent to that of finding the corresponding



K inputs {cij(n)} to the uniform structure from Fig.
3. However, transforming a nonuniform problem to a
uniform one, will prove beneficial. Let us denote the
filters from Fig. 3 by Pi(z), and the corresponding
inputs by bi(n), 0 ≤ i ≤ K − 1, i.e. let

P0(z)
�= F0(z), · · · , PK−1

�=z(kL−1−1)nL−1FL−1(z);

B0(z)
�
= C00(z), · · · , BK−1

�
=C(L−1)(kL−1−1)(z). (5)

Now, we can rewrite the error (2) in the frequency
domain as follows

ξ =
∫ 2π

0

|Y (ejω) −X(ejω)|2 dω
2π

=
∫ 2π

0

|
K−1∑
k=0

Pk(ejω)Bk(ejωN )−X(ejω)|2
︸ ︷︷ ︸

E(ω)

dω

2π
.

Note that Bk(ejωN ) appearing in the integrand is pe-
riodic with period 2π/N , and therefore can be chosen
independently only in the range 0 ≤ ω ≤ 2π/N . Thus
the integrand E(ω) can be rewritten as

N−1∑
n=0

|
K−1∑
k=0

Pk[ej(ω+ 2πn
N )]Bk(ejωN ) −X [ej(ω+ 2πn

N )]|2.
(6)

For each ω in 0 ≤ ω ≤ 2π/N we can choose Bk(ejωN )
such that the nonnegative integrand E(ω) is minimized
and that would in turn minimize the projection error
(2). To solve (6) for the optimal Bk(ejωN ), 0 ≤ k ≤
K − 1, we define the following matrix

P(ω)
�
=




P0(ejω ) P1(ejω) · · · PK−1(ejω )

P0[ej(ω+ω1)] P1[ej(ω+ω1)] · · · PK−1[ej(ω+ω1)]

.

.

.

.

.

.

.

.

.

.

.

.

P0[ej(ω+ωN−1)] P1[ej(ω+ωN−1)] · · · PK−1[ej(ω+ωN−1)]




(7)
for ωn = 2πn

N . Also we define the following vectors

B(Nω)
�
=[B0(ejωN ) B1(ejωN ) · · · BK−1(ejωN )]T ,

X (ω)
�
=

[
X(ejω) X [ej(ω+ 2π

N )] X [ej(ω+ 2π(N−1)
N )]

]T

. (8)

Now, we can rewrite (6) as

E(ω) = ‖P(ω) · B(Nω)−X (ω)‖2. (9)

Our task is to minimize (9) pointwise in ω by choosing
the optimal B(Nω). We achieve this by rewriting (9)
as follows

E(ω) = [B†(Nω)−X †(ω)P(ω)S−1(ω)]S(ω) ·
·[B(Nω)− S−1(ω)P†(ω)X (ω)] + X †(ω)X (ω)
−X †(ω)P(ω)S−1(ω)P†(ω)X (ω), (10)

where S(ω)
�
= P†(ω)P(ω). Consider the right hand

side of the equality in (10). It consists of two parts;
the first part depends on the choice of B(Nω) and the
second part does not. Since the first part is always
nonnegative, we should choose B(Nω) such that it be-
comes zero. In the following we assume that

[|Pk(ejω)|2]↓N > 0, for 0 ≤ k ≤ K − 1. (11)

It follows that the matrix S(ω) = P†(ω)P(ω) is posi-
tive definite and therefore, the only way to make the
first part of the right hand side in (10) zero is to choose

B(Nω) = [P†(ω)P(ω)]−1P†(ω) · X (ω). (12)

In order to rewrite this solution in terms of the mul-
tirate building blocks, let us determine the (i, j)th el-
ement of the matrix P†(ω)P(ω) and the jth element
of the vector P†(ω) · X (ω)

[P†(ω)P(ω)]i,j =
N−1∑
n=0

P ∗
i [ej(ω+ 2πn

N )]Pj [ej(ω+ 2πn
N )]

= N · [P ∗
i (ejω)Pj(ejω)]↓N↑N ,

[P†(ω)X (ω)
]
j
=

N−1∑
n=0

P ∗
j [ej(ω+ 2πn

N )]X [ej(ω+ 2πn
N )]

= N · [P ∗
j (ejω)X (ejω)]↓N↑N . (13)

Next, define the row vector

p(ejω)
�
= [P0(ejω) P1(ejω) · · · PK−1(ejω)]. (14)

Then from (12), keeping (14) in mind, we have that
the solution for the optimal subsequences {bk(n)} is
given by

B(ω)=
[([

p†(ejω)p(ejω)
]
↓N↑N

)−1

p†(ejω) ·X(ejω)
]
↓N

(15)
Recalling the definition of the sequences {bk(n)} from
(5), we can represent the solution (15) as shown in Fig.
4(a). The K × 1 vector h(z) containing the transfer
functions of the projection prefilters Hij(z), 0 ≤ i ≤
L− 1 and 0 ≤ j ≤ ki − 1 can be determined from (15)
as2

h(z) =
(
[p̃(z) · p(z)]↓N↑N

)−1

p̃(z). (16)

As another remark, notice that the matrix[
p†(ejω) · p(ejω)

]
↓N↑N

appearing in the solution
is invertible as long as the condition (11) is satisfied.

2p̃(z) = p∗T (1/z∗).
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Figure 4: (a) The solution to the approximation prob-
lem in terms of the equivalent uniform system. (b)
Recovering {ci(n)} from subsequences.

Having obtained the optimal subsequences as in
Fig. 4(a), we can recover the optimal driving se-
quences {ci(n)} in Fig. 1(b) by blocking {cij(n)}.
This is shown in Fig. 4(b). Using simple multirate
manipulations, we can redraw this structure as in Fig.
5(a) [recall that kini = N ]. Notice that the sys-
tem shown in a dashed box in Fig. 5(a) is linear,
periodically time-varying with period N [denoted by
LPTV(N)] and ki components Hij(z), 0 ≤ j ≤ ki − 1.
This time-varying filter is denoted by Hi(z, n) in Fig.
5(b) [index n denotes the dependence on time]. Incor-
porating the simplified representation from Fig. 5(b)
into the solution structure in Fig. 4, we see that the
system for projection prefiltering (finding the opti-
mal driving sequences {ci(n)}) is as shown in Fig. 6.
Once determined, {ci(n)} should be fed into the signal
model in Fig. 1(b) to produce the optimal approxima-
tion y(n) closest (in �2 norm) to the given x(n).

From Fig. 5(a) one can conclude that in order for
Hi(z, n) to be time-invariant, the components Hij(z)
that are “active” at different time instances need to
be the same (with appropriate time shifts). More
specifically, the necessary and sufficient conditions for
Hi(z, n) to be time-invariant (LTI) are given by

Him(z) = z−nim ·Hi0(z), for 0 ≤ m ≤ ki − 1. (17)

Even though the vector p(z) appearing in the solution
(16) has a special structure in that many of its com-
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Figure 5: (a) Equivalent drawing of Fig. 4(b). (b)
Notation for the time-varying system.
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Figure 6: Solution to the approximation problem.

ponents are time-shifts of each other, this is still not
sufficient for the LTI conditions (17) to be satisfied in
general. This claim will be demonstrated by examples
in the next section.

One situation where the LTI conditions are guar-
anteed to be satisfied is when all the expanders ni are
equal: n0 = n1 = · · · = nL−1 = N . This is a spe-
cial uniform case. The signal model is then similar to
that shown in Fig. 3, only with L channels and filters
{Fi(z)}, 0 ≤ i ≤ L− 1. Going through the same steps
(5)-(15) it is not hard to see that the solution in this
case is again given by (16), only the elements of h(z)
are now projection prefilters Hi(z) and not compo-
nents of their time-varying versions as in the previous
discussion. Thus the solution is always LTI.

3 Examples of LPTV solutions
Consider the three channel filter bank shown in Fig.

7, where the filters Fi(z) and the decimators ni are
fixed. If all three channels are present and the decima-
tors are {2, 4, 4} we know [4] that there exists an LTI
analysis bank {Hi(z)} such that the whole system has
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Figure 8: The model filters F0(z) and F1(z).

perfect reconstruction (PR) property. Now, suppose
we keep only the first two channels (shown in darker
ink), with decimators n0 = 2, n1 = 4 and filters F0(z),
F1(z) shown in Fig. 8. These two synthesis channels
define a nonuniform signal model [see Fig. 1(b)]. The
solution for the optimal projection prefilters Hij(z) is
as in Fig. 4(a). In this case there are only three filters
H00(z), H01(z) and H10(z) = H1(z) in the equivalent
uniform system. The impulse responses h00(n) and
h01(n), for n ≤ 65 are shown in Fig. 9. A closer
look at Fig. 9 reveals that in this example H00(z) and
H01(z) do not satisfy (17) and thus the corresponding
filter H0(z, n) is necessarily LPTV.

As a more general example, consider again Fig. 7
with decimators {2, 3, 6}. Since these decimators vi-
olate the compatibility condition [4], for any choice
of rational {Fi(z)} there are no corresponding ratio-
nal LTI filters {Hi(z)} that make the complete system
time-invariant. In particular if F3(z) = 0 the previous
assertion implies that when n0 = 2 and n1 = 3 the
LTI conditions for the optimal projection filters (in a
two channel model with rational filters) can never be
satisfied [regardless of F0(z) and F1(z)].

4 Concluding remarks
In this paper we consider the problem of least-

squares signal approximation using the multichannel
models with nonuniform expanders. We show that the
solution for the optimal prefilters in general uses time-
varying systems. This is demonstrated by two exam-
ples. However, in the special case when the expanders
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Figure 9: Projection prefilters H00(z) and H01(z) cor-
responding to the model filters F0(z) and F1(z).

across different channels are equal, the optimal pre-
filters are indeed LTI.
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