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Abstract

Major challenges in the design of new generation wire-
less systems are the suppression of multiuser interference
(MUI) and inter-symbol interference (ISI) within a single
user resulting from frequency selective propagation. Both
of these problems were addressed successfully in the re-
cent design of A Mutually-Orthogonal Usercode-Receiver
(AMOUR) for CDMA systems. An attractive property of
AMOUR is that it guarantees user separation and the exis-
tence of simple zero-forcing equalizers (ZFE) regardless of
the channels. However, these ZFEs can amplify the noise
significantly and in this paper we propose a method aimed
at improving their performance. First, we note that over-
sampling at the receiver yields additional degrees of freedom
in the ZFE design. This redundancy is then used to con-
struct the solution that minimizes the noise power at the
detector. The method is tested in computer simulations.1

1 Introduction
Multiuser interference (MUI) and inter-symbol interfer-

ence (ISI) continue to top the list of factors limiting the
performance of multiuser systems. MUI has traditionally
been combated by the use of orthogonal spreading codes
at the transmitter [4], however this orthogonality is often
lost after the transmitted signals have passed through mul-
tipath channels. Furthermore, in the multiuser uplink sce-
nario, exact equalization is possible only under certain con-
ditions on the channel matrices. The alternative approach
is to suppress MUI statistically, however this is often less
desirable. Our approach is based on a recently developed
method for user separation, called A Mutually-Orthogonal
Usercode-Receiver (AMOUR) [1]–[2]. It aims at eliminat-
ing MUI deterministically while at the same time mitigat-
ing the undesired effects of multipath propagation for each
user separately. One clear advantage of this over the previ-
ously known methods is that MUI elimination is achieved
irrespective of the channel nulls; in addition to this, the
existence of zero-forcing equalizers (ZFEs) is guaranteed
regardless of the channels. (Both properties hold true as
long as the maximum channel order L is known.) Zero
forcing equalizers are rather attractive from the aspect of
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computational complexity, since their taps depend only on
the channel realization. However, their performance varies
significantly as the channel and the noise statistics change.
They can amplify the noise at the receiver to the point
where reliable communications become impossible.

In this work we propose an improvement of the basic
AMOUR-CDMA system described in [1], achieved by sig-
nal oversampling at the receivers. This equalizer struc-
ture developed in Sec. 3 can be considered as a frac-
tionally spaced equalizer (FSE) and thus we name the
method Fractionally-Spaced AMOUR (FSAMOUR). The
oversampling ratios are assumed to be integers, however,
the method can be extended to include rational factors as
shown in [5]. In systems with redundancy, such as this
one, ZFEs are not unique, so that we can avoid the so-
lutions which amplify the received noise. This leads to
an improved performance of FSAMOUR systems. While
the redundancy is present even in the traditional AMOUR
case, in Sec. 4 we show that the improvement is usually
much more pronounced when the method is used in combi-
nation with signal oversampling. Furthermore, we proceed
to find the optimal zero-forcing solution.

2 AMOUR-CDMA systems
The structure in Fig. 1 describes the AMOUR-CDMA

system for M users, i.e. M transmitters and M potential
receivers. The upper part of the figure shows the mth
transmitter followed by the uplink channel corresponding
to the mth user and the lower part shows the receiver
tuned to the user m. The symbol stream sm(n) is first
blocked into a vector signal sm(n) of length K. This signal
is upsampled by P > K and passed through a synthesis
filterbank of spreading codes {Cm,k(z)}K−1

k=0 ; thus each of
the transmitters introduces redundancy in the amount of
P/K. It will become clear that large values of K keep
the overall bandwidth expansion moderate. Moreover, for
large K, this ratio tends to M , i.e. the minimum value
required in a system with M users.

The channels Hm(z) are considered to be FIR of or-
der ≤ L. The mth receiver is functionally divided into
three parts: filterbank {Gm,j(z)}J−1

j=0 for MUI cancellation,

block V−1
m which is supposed to eliminate the effects of

{Cm,k(z)} and {Gm,j(z)} on the desired signal sm(n), and
the equalizer Γm aimed at reducing the ISI introduced by
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Figure 1: Discrete-time equivalent of a baseband
AMOUR system.

the multipath channel Hm(z). Filters Gm,j(z) are chosen
to be FIR and are designed jointly with {Cm,k(z)} to filter
out the signals from the undesired users µ 6= m. The choice
of {Cm,k(z)} and {Gm,j(z)} is completely independent of
the channels Hm(z) and depends only on the maximum
channel order L. Therefore, in this paper we assume that
CSI is available only at the block-equalizers Γm. If the
channels are altogether unknown, some of the well-known
blind equalization techniques can be incorporated at the
receiver [2].

In the following we design each of the transmitter and
receiver building blocks by rewriting them in a matrix
form. The banks of filters {Cm,k(z)} and {Gm,j(z)} can
be represented in terms of the corresponding P × K and
J×P polyphase matrices Ĉm and Gm respectively [3]. The
(j, i)th element of Gm is given by gm,j(i) and the (i, k)th
element of Ĉm by cm,k(i). Note that the polyphase ma-
trices Ĉm and Gm become constant once we restrict the
filters Cm,k(z) and Gm,j(z) to length P .

The system from Fig. 1 can now be redrawn as in
Fig. 2(a), where the receiver block is defined as Tm =
ΓmV−1

m Gm. The P × P block in Fig. 2(a) consisting of
the signal unblocking, filtering through the mth channel
and blocking can be equivalently described by the pseudo-
circulant matrix Ĥm = [Hm X(z)]; see Fig. 2(b). Here
we denoted by Hm the P × (P − L) full banded lower
triangular Toeplitz matrix with the first column given by
[hm(0) · · · hm(L) 0 · · · 0]T , whereas X(z) is the
P × L block that introduces the IBI. By choosing the last
L samples of the spreading codes {Cm,k(z)} to be zero,
Ĉm is of the form Ĉm = [CT

m 0T ]T with the L × K zero-
block positioned appropriately to eliminate the IBI block
X(z), namely we have ĤmĈm = HmCm. The IBI-free
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Figure 2: (a)-(c) Equivalent drawings of a symbol-
spaced AMOUR system.

equivalent scheme is shown in Fig. 2(c), with the noise
vector signal êm(n) obtained by blocking the noise from
Fig. 2(a). Next we use the fact that full banded Toeplitz
matrices can be diagonalized by Vandermonde matrices.
Namely, let us choose

Gm =
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, for ρm,j ∈ C,

(1)
denote by Θm the first P − L columns of Gm and define
the diagonal matrix

Hm(ρm)
4
= diag[Hm(ρm,0), Hm(ρm,1), · · · , Hm(ρm,J−1)],

(2)

with the argument defined as ρm

4
= [ρm,0 ρm,1 · · · ρm,J−1].

For any J ∈ N and an arbitrary set of complex numbers
{ρm,j}

J−1
j=0 the following holds

GmHm = Hm(ρm)Θm. (3)

The choice of {ρm,j}
J−1
j=0 (which are also called signature

points) is such that Gm eliminates MUI as explained next.
It will become clear that any set of distinct signature points
guarantees the channels are equalizable even if unknown.

Consider the interference from user µ 6= m. From
Fig. 2(c) it follows that the interfering signal sµ(n) passes
through the concatenation of matrices

GmHµCµ = Hµ(ρm)ΘmCµ = Hµ(ρm)Cµ(ρm), (4)

where the (j, k)th entry in the J × K matrix Cµ(ρm) is
Cµ,k(ρm,j). The first equality in (4) is a consequence of (3).
From (4) we see that in order to eliminate MUI regardless
of the channels it suffices to choose {ρm,j}

M−1,J−1
m,j=0 so that

Cµ,k(ρm,j) = 0, ∀m 6= µ, ∀k ∈ [0, K−1], ∀j ∈ [0, J −1].
(5)



In practice, the signature points ρm,j are often chosen to
be uniformly spaced on the unit circle

ρm,l = ej
2π(m+lM)

MJ , 0 ≤ l ≤ J − 1, (6)

since this leads to FFT based AMOUR implementations
having low complexity [1]. Equations (5) define (M − 1)J
zeros of the polynomials Cm,k(z). In addition to this, let
Cm,k(z) be such that

Cm,k(ρm,j) = Amρ−k
m,j , (7)

where the multipliers Am introduce a simple power control
for different users. At this point the total number of con-
straints for each of the spreading polynomials is equal to
MJ . Recalling that the last L samples of spreading codes
are fixed to be zero, the minimum spreading code length is
given by P = MJ + L. Substituting (7) in (4) for µ = m
and recalling (3) we have

GmHmCm = Am
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︸ ︷︷ ︸

Vm

H̄m,

(8)
where H̄m is the J × K north-west submatrix of Hm.

In order to perform the channel equalization after MUI
has been eliminated we need to invert the matrix product
VmH̄m in (8), which in turn needs to be of sufficient rank.
From (4) with µ = m we conclude that (8) can be further
written as a product of a diagonal matrix Hm(ρm) and a
J × K Vandermonde matrix Cµ(ρm). The second matrix
Cµ(ρm) is invertible as long as {ρm,j} are distinct. The
rank of Hm(ρm) can drop by at most L, and this only if
all the zeros of Hm(z) occur at the signature points ρm,j .
Thus, the sufficient condition for the invertibility of (8)
regardless of the channel is that J = K + L.

The bandwidth expansion reduces with increasing K
and when K tends to infinity the it becomes

BW expansion =
P

K
= [M(K + L) + L]/K

K→∞
−→ M.

Since there are M simultaneous transmitters in the system,
this is the minimum possible BW expansion per user.

From Fig. 2(c) it follows that (ignoring the noise)

ŝm(n) = AmΓmV
−1
m VmH̄msm(n) = AmΓmH̄msm(n).

(9)
Now, Γm can for example be chosen to eliminate ISI in the
absence of noise and this would be a zero-forcing equal-
izer (ZFE). For more details on this and alternative equal-
izers, the reader is referred to [1]. In the following we
consider the improvement of this conventional AMOUR
system obtained by sampling the received continuous-time
signal more densely than at the symbol-rate given by the
transmitters.

3 AMOUR with oversampling
Fractionally-spaced equalizers (FSE) typically show an

improvement in performance over SSEs at the expense of
more computations per unit time required at the receiver.
FSEs operate on a discrete signal obtained by sampling
the received continuous-time signal q times faster than at
symbol rate (thus the name fractionally-spaced). Our goal
in this section is to introduce the benefits of FSEs in the
ISI suppression, without violating the conditions for per-
fect MUI cancellation irrespective of the uplink channels.
As will be clear shortly, this is entirely achieved by using
the fractionally-spaced AMOUR (FSAMOUR) system, in-
troduced herein.

Consider the continuous-time AMOUR system with
FSE in Fig. 3(a). The information sequence sm(n) ap-
pears with symbol spacing PT/K, and the rate of the
transmitted signal um(n) is 1/T . Before entering the mth
uplink channel, it is converted into an analog signal and
passed through a pulse shaping filter. The combined effect
on um(n) is called the equivalent channel and is denoted
by hc(t). The received waveform xc(t), corrupted by noise
and MUI is sampled at q times the rate at the output of the
transmitter; here q is an integer greater than one. The se-
quence xm(n) with rate q/T enters the fractionally-spaced
equalizer and the resulting signal is downsampled, so that
the sequence ŝm(n) at the decision device has exactly the
same rate K/PT as the information sequence sm(n).

Now we derive the discrete-time equivalent of the over-
sampled system from Fig. 3(a). The received sequence
xm(n) in the absence of noise and MUI is given by

xm(n) = xc(n
T

q
) =

∞∑

k=−∞

um(k)hc(n
T

q
− kT ). (10)

By defining the discrete time sequence h
(q)
m (n)

4
= hc(nT/q),

which is actually the function hc(t) sampled q times more
densely than at integers, we have

xm(n) =
∞∑

k=−∞

um(k)h(q)
m (n − kq). (11)

This is shown in Fig. 3(b). Notice that although the
discrete-time equivalent structure incorporates the upsam-
pling by q at the output of the transmitters, this does
not result in any bandwidth expansion, since the physical
structure is still given in Fig. 3(a). For simplicity, in what
follows we assume q = 2, however it is easy to show that a
similar design procedure follows through for any integer q.
First we redraw the structure in Fig. 3(b) as shown in Fig.
3(c), where Hm,0(z) and Hm,1(z) are the Type-1 polyphase

components [3] of the oversampled filter H
(2)
m (z). In other

words H
(2)
m (z) = Hm,0(z

2) + z−1Hm,1(z
2). The proposed

form of the equalizer with rate reduction in the FSAMOUR
system is now shown in Fig. 4. In each of the branches
of the equalizer the symbol rate is equal to 1/T . Each of
the corresponding receiver structures resemble that from
Fig. 2(a). However, while the matrices Gm and V−1

m are
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kept the same as before, the matrices for ISI mitigation
Γm,i are different in each branch and their outputs are
combined, forming the information signal estimate ŝm(n).
Careful observation confirms that the output symbol rate
is equal to K/PT , precisely as desired.

The complete FSAMOUR system is shown in Fig. 5(a).
The effect of oversampling followed by the receiver struc-
ture with q branches is equivalent to receiving q copies of
the transmitted signal, but after going through different
multipath fading channels Hm,i(z). This temporal diver-
sity at the receiver is obviously beneficial for the equaliza-
tion process as will be demonstrated. Notice that Hm,0(z)
is nothing but the original integer-sampled channel Hm(z)
and the orders of each of the subchannels Hm,i(z) are
bounded by L. Since MUI elimination in AMOUR systems
does not depend on the uplink channels (as long as they
are of order ≤ L), it follows that the proposed FSAMOUR
system will be MUI-free. Repeating the matrix manipula-
tions similar to those demonstrated in Sec. 2, we conclude
that the system can be redrawn as in Fig. 5(b). Lower
triangular Toeplitz matrices H̄m,i here correspond to dif-
ferent polyphase components of the oversampled channel.
Noise vectors ei(n) are obtained by appropriately filtering
the noise from Fig. 5(a).

The equalizer Γ = [Γm,0 Γm,1] can be constructed as
a RAKE, zero-forcing or MMSE receiver corresponding to
the transmitter H̄m = [H̄T

m,0 H̄T
m,1]

T . The performance
of zero-forcing solutions can be improved by noticing that
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left inverses of H̄m are not unique. In the following we
derive the best ZFE for a given FSAMOUR system with
the oversampling factor q.

4 Optimal FSAMOUR ZFE
Consider the system given in Fig. 6(a). It corresponds

to the one in Fig. 5(b) with one difference, namely the
block-equalizer is allowed to have memory. In the following
we investigate the case of zero-forcing equalization, which
corresponds to having ŝm(n) = sm(n) in the absence of
noise. Obviously, this is achieved if and only if Γm(z) is
a left inverse of H̄m. Under the conditions on P and J
described in Sec. 2 this inverse exists, but it is not unique.
Our goal is to find the left inverse Γm(z) that minimizes
the noise power at the output, i.e. minimizes the power of
ŝm(n) given that sm(n) = 0. In order to solve the problem
we consider the Smith form decomposition

H̄m = Um ·

[
Σm

0

]

· Vm, (12)

where Um and Vm are qJ×qJ and K×K unitary matrices
respectively, and Σm is a K×K diagonal matrix of singular
values. From the aforementioned assumptions, it follows
that Σm is invertible; the most general left inverse of H̄m

is then given by Γm(z) = V†
m

[
Σ−1

m Am(z)
]
U†

m, where
Am(z) is an arbitrary K × (qJ − K) polynomial matrix
and represents a handle on the degrees of freedom in the
design of Γm(z). Defining the K × qJ , (qJ −K)× qJ and
K × (qJ −K) matrices D0, D1 and Bm(z) respectively as

[
D0

D1

]
4
= U

†
m, and Bm(z)

4
= V

†
m · Am(z), (13)

we can re-write this as [see Fig. 6(b)]

Γm(z) = V
†
mΣ

−1
m · D0 + Bm(z) · D1, (14)

and the design objective becomes that of finding Bm(z)
that minimizes the noise power E{ê†

mêm}/K at the output
of Fig. 6(b). It is evident that the optimal Bm(z) in
this context is nothing but a linear estimator of a vector
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ê(n)

K

K K

v(n)

u(n)

D1

K K

ŝ
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random process u(n) given v(n). The solution is well-
known and it depends on the cross-correlation between the
processes u(n) and v(n), as well as the autocorrelation of
v(n). Rather than describing the general solution which
has been presented in [5], we note that the memory in
Bm(z), i.e. in Γm(z) does not buy anything in terms of
performance unless the noise e(n) is strongly correlated
across different blocks. For sufficiently large input block
size qJ it is safe to assume that Ree(k) = 0 for k 6= 0 and
thus the optimal Bm(z) is a constant, namely

B
(opt)
m (z) = −V

†
mΣ

−1
m D0Ree(0)D

†
1

(

D1Ree(0)D
†
1

)−1

.

(15)
From (15) and (14) we get the optimal form of a ZFE

Γ
(opt)
m =V

†
mΣ

−1
m

[

IK − D0Ree(0)D
†
1

(

D1Ree(0)D
†
1

)−1
]

U
†
m.

(16)
Another important special case occurs when the noise sam-
ples at the input of the receiver are i.i.d. It is important
to notice here that e(n) in Figs. 5 and 6 is obtained by
passing the input noise through a bank of q receiver front
ends V−1

m Gm. Therefore, the noise autocorrelation matrix
Ree(0) is unlikely to be equal to a scaled identity. However,
in systems with many users M when there is no oversam-
pling and when Vm and Gm are chosen as in Sec. 2, it can
be shown [5] that the approximation Ree(k) ≈ δk · σ2

k · I
is very accurate. In conclusion, we have that the optimal
symbol-spaced ZFE in the systems with many users and
uncorrelated noise reduces to

Γ
(white noise)
m = V

†
m

[
Σ

−1
m 0

]
U

†
m. (17)

It can be shown that (17) corresponds to a pseudo-inverse
(
H̄†

mH̄m

)−1
H̄†

m. In other words, if the channel noise is
i.i.d. and there is no oversampling at the receiver, there
is nothing to be gained by using the optimal solution. In
contrast to this, with receiver oversampling the optimal
solution remains (16) and the improvement in performance
over the pseudo-inverse equalizer can be significant.

This point is demonstrated in Fig. 7 where we com-
pare the performance of two symbol-spaced and three
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fractionally-spaced equalizers (using q = 2). Other system
parameters were K = 12, M = 4, while J and P are chosen
to be the minimum for the guaranteed existence of chan-
nel ZFEs as explained in Sec. 2. The simulation results
are averaged over thirty independently chosen real random
channels of order L = 4. The half-integer sampled channel
impulse responses h

(2)
m (n) were also chosen randomly, with

the constraint that they coincide with AMOUR channels
at integers. Under these assumptions we can see that the
systems based on FSEs can significantly outperform the
SSEs. Exploiting the redundancy of such solutions can
result in further improvements (FSE-OPT). Finally, the
performance of optimal FSEs as in (16) is almost identical
to that of MMSE solutions. The latter depend on signal
statistics, which makes them more complicated.

5 Concluding remarks
We propose an improvement of the AMOUR system

called FSAMOUR that is based on oversampling the re-
ceived signal. This leads to fractionally-spaced equalizers
which are more robust in noisy environments. The implicit
redundancy in the design of FSEs is exploited in Sec. 4,
where we construct the optimal ZFEs in FSAMOUR. Per-
formance improvements are demonstrated in simulations.
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[4] S. Verdú, Multiuser Detection. Cambridge,1998.
[5] B. Vrcelj and P. P. Vaidyanathan, “Equalization with

oversampling in multiuser CDMA systems,” submit-
ted to IEEE Trans. Signal Processing.

[6] B. Vrcelj and P. P. Vaidyanathan, “Fractional
biorthogonal partners in channel equalization and sig-
nal interpolation,” IEEE Trans. Signal Processing,
vol. 51(7), July 2003.


