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ABSTRACT

The concept of fractional biorthogonal partners has been intro-
duced recently by the authors. They arise in many different con-
texts, one of them being channel equalization with fractionally
spaced equalizers. If the amount of oversampling at the receiver is
not an integer, but a rational number, the problem of fractionally
spaced equalization can be treated using the fractional biorthogo-
nal partner setting. This approach is adopted here. We consider
fractionally spaced equalizers with a rational amount of oversam-
pling, show that the FIR solution (if it exists) is not unique and
can be chosen to minimize the noise power at the receiver. These
findings are demonstrated by examples where we compare the per-
formance of fractionally spaced zero forcing equalizers to that of
the corresponding minimum mean-squared error solution.

1. INTRODUCTION

Biorthogonal partners have been introduced by the authors in both
the scalar [5] and the vector case [8]. A pair of digital filters
H(z) and F (z) are called biorthogonal partners of each other
with respect to an integer M if their cascade H(z)F (z) obeys
the Nyquist(M ) property. This concept has been extended more
recently [6] to the case where the upsampling and downsampling
ratios are not integers but rational numbers. In that case, the filters
are called fractional biorthogonal partners (FBPs) with respect to
the ratio L/M . Construction of fractional biorthogonal partners
is treated in [6] as well as conditions for the existence of FIR or
just stable FBPs. One situation where FBPs arise has also been
considered, namely signal interpolation.

In this paper we concentrate on another context in which FBPs
have a natural application: that of channel equalization with frac-
tionally spaced equalizers (FSEs). We show that, if the amount of
oversampling at the receiver is a rational number, the problem can
be posed in terms of fractional biorthogonal partners. The advan-
tage is that we can employ the results developed in this and similar
settings in order to find a fractionally spaced equalizer. Moreover,
we will show that if an FIR solution exists, it is not unique and
some optimization procedure can be used to construct a FSE that
will reduce the noise power at the receiver.

We first give a brief overview of the communication systems
with FSEs. Next, we review some of the results from [6] on frac-
tional biorthogonal partners. We consider the nonuniqueness of
FIR FBPs in greater detail, especially from the equalization point
of view. After constructing the optimal FIR FBPs to be used as
equalizers, we asses their performance in the section with experi-
mental results.
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1.1. Notations

If not stated otherwise, all notations are as in [4]. We use the encir-
cled symbol ↓ M to denote the decimation operation [turns x(n)
into x(Mn)]. The expanded version of x(n)

{
x(n/M) for n = mul of M,
0 otherwise

is similarly obtained as a result of the expander operation which is
denoted by the encircled symbol ↑ M .

2. FRACTIONALLY SPACED EQUALIZERS

Consider the continuous time communication system shown in
Fig. 1. Information sequence x(n), with symbol spacing T (rate
1/T ) is converted into an analog signal and after pulse shaping
fed into the communication channel. This is shown in Fig. 1(a).
Here fc(t) denotes the combined effect of the reconstruction filter
from the D/A converter, pulse shaping filter as well as the con-
tinuous time channel. After passing through the channel, signal
is corrupted with the additive noise and the received waveform
qc(t) is sampled at the rate (L/M)/T to produce the received
sequence q(n). If the ratio L/M is equal to 1, the equalizer at
the receiver from Fig. 1(b) is called the symbol spaced equalizer
(SSE). Several problems with this method have been pointed out in
[3]. The receiver in this case becomes very sensitive to the phase
shift at the sampling device; also, sampling at exactly the symbol
rate may create some aliasing problems. That is why the preferred
alternative is to keep L > M , giving rise to the receiver structure
called the fractionally spaced equalizer (FSE) - see Fig. 1(b). The
received sequence q(n) with the denser spacing (higher rate) en-
ters the fractionally spaced equalizer hFSE(n), which now has to
operate at a slightly higher rate. Accompanied with this process,
some rate reduction also needs to take place at the receiver, so that
the final sequence x̂(n) entering the decision device has exactly
the same rate 1/T as the information sequence x(n).
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Fig. 1. Continuous time communication system. (a) Transmitter
and channel. (b) Receiver.
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Fig. 2. FSEs with fractional oversampling. (a) Discrete time model
of the communication system. (b) Form of the proposed equalizer.

The purpose of the FSE at the receiver is to compensate for
the distortion introduced by fc(t). If the FSE is designed so that in
the absence of noise x̂(n) = x(n), then it is called the zero-forcing
equalizer (ZFE). Note, however that the ZFE is not necessarily the
best solution, since we need to take into account the effect of the
additive noise as well. In addition to taking care of some problems
of SSEs mentioned earlier, FSEs often provide FIR zero-forcing
solutions, which are in general favorable to IIR solutions for the
reasons of stability and complexity of implementation. Moreover,
in the case of vector signals and integer oversampling at the re-
ceiver (when L/M is an integer) it has been shown [8] that the
FIR solutions (even those of minimum order) are not unique. This
flexibility in the design of vector ZFEs was utilized to further re-
duce the noise at the receiver [7, 8]. Here we deal with the case
where the oversampling ratio L/M is not an integer but a rational
number. This leads to FSEs with fractional oversampling, which
are reviewed next. It is important to note here that if L/M is just
slightly greater than one, the computational overhead of the FSE
with fractional oversampling is significantly smaller than that of
the FSE with integer oversampling (since L/M = 2 is the mini-
mum oversampling ratio in the latter case).

2.1. FSEs with fractional oversampling

In the following we assume that L > M and that L and M are
coprime. Consider again Fig. 1(a) in the absence of noise. We can
see that

q(n) = qc(n
M

L
T ) =

∞∑

k=−∞

x(k)fc(n
M

L
T − kT ). (1)

By defining the discrete time sequence f(n)
4
= fc(nT/L), which

is actually the function fc(t) sampled L times more densely than
at integers, we have

q(n) =

∞∑

k=−∞

x(k)f(nM − kL). (2)

This identity is incorporated in Fig. 2(a) where we show the dis-
crete time model of the communication system from Fig. 1.

Obviously, the noise which is now discrete time needs to be
modified with respect to the one in Fig. 1. The box labelled “equal-
ization and rate reduction” is the object of our interest and we deal
with it within the FBP setting.

3. FRACTIONAL BIORTHOGONAL PARTNERS

Let us first consider the problem of zero-forcing equalization. As
mentioned before, this means that in the absence of noise the sys-
tem drawn in Fig. 2(a) is identity. As motivated in [6], we look

for the solution in the form shown in Fig. 2(b) and the complete
system is presented in Fig. 3(a). For completeness we first provide
the formal definition of fractional biorthogonal partners [6].

Definition. Transfer function H(z) is said to be a right frac-
tional biorthogonal partner (RFBP) of F (z) with respect to the
fraction L/M if the system shown in Fig. 3(a) is identity in the
absence of noise. Similarly, F (z) is also said to be a left fractional
biorthogonal partner (LFBP) of H(z) with respect to L/M .

We conclude that our design problem is to find a stable, prefer-
ably FIR H(z) given F (z) and integers L, M such that H(z) is an
RFBP of F (z) with respect to L/M . Following the development
from [6], we define the order-L polyphase components of F (z)
and H(z), namely Fk(z) and Hk(z) by

F (z) =

L−1∑

k=0

Fk(zL)zk, and H(z) =

L−1∑

k=0

Hk(zL)z−k. (3)

Now, since L and M are coprime, we can find the integers m and
l such that

lL + mM = 1. (4)

In fact, the unique solution for the smallest m and l can be obtained
by the Euclid’s algorithm. Next we define the filters

Pk(z)
4
= zklFk(z), and Qk(z)

4
= z−klHk(z), (5)

for 0 ≤ k ≤ L − 1 and the order-M polyphase components of
these filters

Pk(z) =

M−1∑

j=0

Ek,j(z
M )z−j , and Qk(z) =

M−1∑

i=0

Ri,k(zM )zi.

(6)
It has been shown in [6] that the system from Fig. 3(a) is equivalent
to the one in Fig. 3(b). Keeping in mind the definitions (3-6), the
L×M analysis and the M×L synthesis polyphase matrices E(z)
and R(z) respectively are given by

E(z)=








E0,0(z) E0,1(z) · · · E0,M−1(z)
E1,0(z) E1,1(z) · · · E1,M−1(z)

...
...

...
...

EL−1,0(z) EL−1,1(z) · · · EL−1,M−1(z)








,

R(z)=








R0,0(z) R0,1(z) · · · R0,L−1(z)
R1,0(z) R1,1(z) · · · R1,L−1(z)

...
...

...
...

RM−1,0(z) RM−1,1(z) · · · RM−1,L−1(z)








. (7)

Note that given F (z), L and M , matrix E(z) is uniquely defined.
In order to find an RFBP of F (z) we need to find a left inverse
of E(z), namely R(z) in Fig. 3(b). Once we determined a suit-
able R(z), the corresponding RFBP H(z) is again uniquely de-
termined. This makes these two problems [shown in Fig. 3(a) and
Fig. 3(b)] completely equivalent.

Under the assumption that F (z) is FIR, we can easily see that
E(z) is FIR as well. Of special interest is the situation when the
RFBP H(z) is FIR as well; in other words when the inverse R(z)
is FIR. Notice that E(z) is a tall L × M polynomial matrix, so
its left inverse can be FIR if and only if the gcd (greatest common
divisor) [1] of all its M × M minors is a delay (for more details
the reader is referred to [6]).
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Fig. 3. Construction of FBPs. (a) Definition. (b) Equivalent form.

3.1. Nonuniqueness of FIR RFBPs

In the following we show that if the conditions for the existence
of FIR solutions for R(z) are satisfied, this solution will not be
unique. Furthermore, we use this nonuniqueness to construct a so-
lution that performs favorably with respect to the undesired noise
amplification at the receiver. More detailed treatment of a simi-
lar problem can be found in [7], so here we limit ourselves to just
describing the solution.

Let E(z) have an FIR left inverse and consider its Smith form
[1]

E(z) = U(z)Γ(z)V(z). (8)

Here U(z) and V(z) are L×L and M ×M unimodular matrices
[1] and Γ(z) is a L × M diagonal matrix. The elements on its
diagonal are nonzero constants or delays, but without loss of gen-
erality we can assume that they are all constants. In other words,
Γ(z) = [Γ 0]T , where Γ is a M × M constant diagonal matrix.
Now from (8) we have that the general form1 of an FIR left inverse
of E(z) is given by

R(z) = V
−1(z)

M L−M

[Γ−1
A(z)] U−1(z), (9)

where A(z) is any M × (L − M) polynomial matrix. Note that
any choice of A(z) will produce a valid FIR ZFE H(z), but there
will be an A(z) (of a given order NA) that minimizes the noise
component of x̂(n). In order to find such A(z) we consider the
equivalent of Fig. 3(b) for the noise, shown in Fig. 4(a). Defining
the polynomial matrices D0(z) and D1(z) to be

[DT
0 (z)

︸ ︷︷ ︸

M

D
T
1 (z)

︸ ︷︷ ︸

L−M

]T = D(z)
4
= U

−1(z) (10)

we can see that R(z) from (9) can be rewritten as

R(z) = V
−1(z)Γ−1

D0(z) + V
−1(z)A(z)D1(z). (11)

Defining B(z)
4
= V

−1(z)A(z) we can now redraw Fig. 4(a) as
in Fig. 4(b). The problem of finding the optimal A(z) is now
transformed into the one of finding the optimal B(z) of order
NB = NA + ord{V−1(z)}− 1. The solution can be found in the

form of a Wiener filter [7]. Let C(z)
4
= V

−1(z)Γ−1
D0(z) and

let the matrices Bi, Ci and Di represent the impulse responses of
B(z), C(z) and D1(z) respectively. Next define the M × NCL
matrix C and the (L − M)NB × L(NB + ND − 1) matrix D1 as

C
4
= [C0 C1 · · · CNC−1]

1The unimodular matrices U(z) and V(z) in (8) are not unique so the
form (9) can be made slightly more general.
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Fig. 4. (a)-(b) Finding the optimal FIR RFBP. See text.

D1

4
=








D0 . . . DND−1 0 . . . 0

0 D0 . . . DND−1 . . . 0

...
. . .

. . .
0 . . . 0 D0 . . . DND−1








. (12)

Then the optimal B(z) is given by its impulse response matrix

B
4
= [B0 B1 · · · BNB−1]

=−CRε(1 : NCL, :)D†
1

(

D1Rε(1 : ND, 1 : ND)D†
1

)−1

(13)

Here Rε is a L(NB +ND−1)×L(NB +ND−1) autocorrelation
matrix of the input noise process, and we use Matlab’s notation
W(1 : N, :) to denote the matrix made of the first N rows of W.

3.2. MMSE equalizer

As we mentioned earlier, although the zero-forcing equalizer com-
pletely eliminates the channel distortion, the best equalizer R(z)
of a given order NR − 1 in Fig. 3(b) is the one that minimizes the
mean-squared error between x(n) and x̂(n). This is nothing but
the Wiener filter for vector signals described in [2]. Let the ma-
trices Ei and Ri denote the impulse response of E(z) and R(z)
respectively. Defining the NRL × M(NR + NE − 1) matrix Q

Q
4
=








E0 . . . ENE−1 0 . . . 0

0 E0 . . . ENE−1 . . . 0

...
. . .

. . .
0 . . . 0 E0 . . . ENE−1








the MMSE solution for R(z) is given by its impulse response

P
4
= [R0 R1 · · · RNR−1]

= RXX (1 : M, :)Q†
(

QRXXQ† + Ree

)−1

. (14)
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Fig. 5. Equalization results. Clockwise, starting from upper left:
SSE, plain FIR RFBP, optimized FIR RFBP and MMSE methods.

Here RXX is a M(NR+NE−1)×M(NR+NE−1) autocorrela-
tion matrix of the input sequence x(n) and Ree is a NRL×NRL
autocorrelation matrix of the noise process.

Eventhough the MMSE method provides statistically the best
solution, the equalizers based on zero-forcing are often preferred
for simplicity reasons. Namely, comparing the two solutions (13)
and (14) we see that as opposed to the MMSE method, the opti-
mized FIR RFBP method does not require the knowledge of the
signal autocorrelation matrix nor the noise variance.

4. EXPERIMENTAL RESULTS

In our experiments we compared the results of equalization of the
iid input sequence x(n) coming from a 64-QAM constellation us-
ing the four different methods; (1) traditional IIR SSE (case when
L = M ) and three FSE solutions: (2) the plain FIR RFBP method
described in Sec. 3 [without the optimization matrix A(z)], (3)
optimized FIR RFBP method described in Sec. 3.1 and (4) the
MMSE equalizer described in Sec. 3.2. The corresponding scatter-
ing diagrams are shown in Fig. 5. The channel sampled at integers
was of the fourth order given by the coefficients

1.0000 0.6600 − 0.3835 − 0.1276 0.5525

and the corresponding sequence f(n) [fc(t) oversampled by L]
was obtained by linear interpolation. In the FSE implementations
we took L = 5 and M = 4, so that the amount of computational
overhead for the fractionally spaced equalizer (with respect to the
symbol spaced one) was just 25%. The order of the matrix B(z)
used in the optimized FIR RFBP method was NB − 1 = 3 and the
order the Wiener solution R(z) given by (14) was NR − 1 = 7.
For fairness, these were chosen so that both the optimized FIR
RFBP and the MMSE equalizer have the same order. The noise
was taken to be white and the SNR corresponding to Fig. 5 was 29
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Fig. 6. Probability of error as a function of SNR in the four meth-
ods of equalization.

dB. The obtained probabilities of error for the four methods (clock-
wise in Fig. 5) were 0.552, 0.019, 7.67 × 10−5 and 2.00 × 10−5

respectively. These examples show that the improvement in perfor-
mance achieved by exploiting the redundancy in the construction
of FIR RFBP is significant. It can also be observed that the method
of optimized FIR RFBP equalizers does not perform far from the
optimal MMSE equalizer of the same order, while it requires no
knowledge of the input statistics and the noise variance.

5. CONCLUDING REMARKS

In this paper we consider one application fractional biorthogonal
partners (FBPs), namely fractionally spaced equalization of the
communication channels with a fractional oversampling at the re-
ceiver. The tools derived previously in the FBP setting prove useful
in finding FIR zero-forcing fractionally spaced equalizers. We also
show that this FIR equalization method allows for additional flex-
ibility in construction, which can lead to significant improvements
in the equalizer performance. Comparison with the MMSE equal-
izer shows no significant loss in performance, while the required
knowledge of the system parameters is greatly reduced.
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