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Abstract— Cyclic prefix based equalizers are widely used for It is preceded (followed) by the optimal precoder (equalizer)
high-speed data transmission over frequency selective channels.  for the given input and noise statistics. These blocks are real-
Their usein conjunction with DFT filterbanksisespecially attrac-  jzed by constant matrix multiplication, so that the overall com-
tive, given thelow complexity of implementation. Some examples  mynjcations system remains of low complexity.
include the DFT-based DMT systems. |n this paper we consider In the following we first give a brief overview of the cyclic
ageneral Cyd.'Cp.ref'X based system for communication and show prefix system with DFT matrices used as the basic ISI can-
that the equalization perfor mance can beimproved by smplepre- . . .
and post-processing aimed at reducing the noise at the receiver. Celer' Then, we mtmduc.:e a way tq deal with nplse suppres-
This processing is done independently of the 1Sl cancellation per- SO0 separa_tely and (_jenve the optimal const_ramed pair pre-
formed by the frequency domain equalizer.* coder/equalizer for this purpose. The constraint is that in the

absence of noise the overall system is still I1SI-free. The per-
formance of the proposed method is evaluated through com-
puter simulations and a significant improvement with respect to

There has been considerable interest in applying the edke original system without pre- and post-processing is demon-
ualization techniques based on cyclic prefix to high speed dasdrated.
transmission over frequency selective channels, such as twisted Throughout this paper we assume that the frequency selec-
pair channels in telephone cables [1], [2]. Cyclic prefix systemtve channel is &nown FIR system of ordef, i.e.
are invariably used in conjunction with the discrete Fourier
transform (DFT) matrices, and one example is the DFT-based k
discrete multitone modulation (DMT) system [3]. Although it C2) = Zc(k)z :
has been shown by Kalet [9] that the usadsal transmit and
receiye filters in.the mgltitone env[rqnment can lead to achievrpa notationsA” and At represent the transpose and trans-
ing signal to noise ratio (SNR) within 8-9 dB of the channelpose conjugate of a matri.
capacity (depending on the probability of error), in practice the
DFT filterbank is most commonly used because of its low com- ||, CycLIC PREFIX SYSTEM WITHDFT MATRICES
plexity. The development of these systems lead, for example

o . . " In this section we give a review of a cyclic prefix based sys-
to asymmetric digital subscriber loops (ADSL) and high-spee o . i
digital subscriber loops (HDSL) [2], [3]. gemfor channel equalization that employs DFT filterbanks. Be

The initial goal of cyclic prefix based methods for equalizafore we demonstrate the complete system, we first introduce the
L . ) . con lic prefix. This is a way of inserting redundan
tion is to cancel the intersymbol interference (ISl) induced bCO cept otcydlic pref S is away of inserting redundancy

the channel. This task i hieved by introducin me red nntothe input data stream and it becomes useful in the process
€ channet. S laskIs achieved by Introducing Some reduffy o, e equalization as will be explained later. Consider

dancy in the form of a cyclic prefix (see Sec. I1). Depending Ofhe symbol stream from Fig. 1(a). It is divided into blocks of

the nulls of the channel in question, the noise can get severg hgth M. The lastl, symbols from each block are copied and

amplified by the equalizer alone. In this paper we consider fserted at the beginning of that block (we assume hereafter

general cyclic prefix based system with the aim of further "€hat the redundanci < M). This is achieved by “squeezing”

ducing the noise at the receiver. This is achieved by perform; ; - X . . )
ing the ISI cancellation and the noise suppressiamrately, the samples as explained in Fig. 1(b)-(c). Obviously, this op

N . 7' _eration of inserting the redundancy into the input data stream
in different modules. The main module for ISI cancellation is 9 y P

. o . . esults in the bandwidth expansion. In this case the bandwidth
based on cyclic prefix with DFT filterbanks and is unChangeJexpansion ratio is given by = (M + L)/M, which can be

Lwork supported in part by the ONR grant N00014-99-1-1002, USA.  made sufficiently small by making/ large. The purpose of
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Figure 1. (@) Input symbol stream, (b)-(c) explanation of : .
how cyclic prefix is inserted. 0 0 0 ... Cu[M-1]

with Car[n] = Yok, c(k)e 727+n/M  As we noted before, the

L IS c L discard ISI cancellation is achieved by inverting in (1). Therefore,
qn) A il \QQ (Z) QO" # . . -1 . .
5 S chammel b | & after moving the matridv —* to the transmitter side, the com-
M ] fy S noiisps° —h»/v/ r(n) plete DFT-based cyclic prefix system is shown in Fig. 3. The

block labeled “channel and prefix system” is given in Fig. 2.
Matrix T ! is better known as thfrequency domain equal-
izer and contains on its diagonal the reciprocals of the DFT
coefficients of the channel. The input vector sequesteg in
Fig. 3 is obtained by blocking the symbol stream into blocks of
length M. The noise vectoe(n) is obtained by blocking the
physical noise process into blocks of lendth+ L and then
inserting the cyclic prefix is to allow the receiver to remove ISldiscardingL samples out of each block (see Fig. 2).
using some low-complexity operations. The main merit of the cyclic prefix system with DFT ma-
As the first step in understanding how this is achieved, coririces lies in its simplicity. From Fig. 3 we see that the trans-
sider Fig. 2, ignoring the noise for the time being. The box lamitter only needs to perform the inverse DFT operation fol-
beled “blocking” is a serial to parallel converter, similarly “un-lowed by the cyclic prefix insertion. On the other hand, the
blocking” performs the reverse operation and the block “prefixteceiver removes the cyclic prefix, performs the DFT operation
inserts the cyclic prefix as described in Fig. 1. Notice that thend frequency domain equalization, which amounts simply to
blocked sequenceg(n) andr(n) are related through a mul- multiplying each channel by a constant. Moreovei/ifis cho-
tiplication by theM x M right circulant [5] channel matrix sen as a power of two, both IDFT and DFT operations can be
C. The first column ofC consists of thel. + 1 coefficients implemented using the fast radix-2 algorithm. The noise vec-
of the channel impulse respongg) followed by M — L — 1  tor processe(n) at the receiver passes through the DFT ma-
zeros. Since we can safely assdm€)) # 0, it follows that trix W and the frequency domain equaliZég*. SinceW
C is nonsingular and the effect of the channel can be neutrab a scaled unitary matrix, the main contribution to amplify-
ized by inverting it. Next, note that any circulant matrix can beéng the noise power at the receiver comes from the multipliers
diagonalized by a DFT matrix [5]. Thus we can write [5] 1/Car[n] embedded iT'.~*. Obviously, if the channef!(z)
has zeros near the unit circle, these multipliers can get large,
consequently boosting the noise at the receiver and degrading
the performance. In the next section we propose a simple mod-
ification of the basic equalization structure from Fig. 3 that will
whereW is theM x M DFT matrix and the diagonal matrix impro\/e the performance Significanﬂy_
I'. has the eigenvalues 6f on its diagonal. Those eigenvalues,
in turn, are nothing but tha/-point DFT coefficients o&(k), I1l. M ODIFIED SYSTEM FOR NOISE SUPPRESSION

Figure 2: Channel with the system for cyclic prefix.

C=WT.W, (1)

Consider the system shown in Fig. 4(a)-(b). It consists of
20therwise we can shorten the impulse respong@(af). the same basic cyclic prefix transceiver (the middle portion)
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Figure 4: Cyclic prefix system with separated ISI cancellatiofNotice that neither the objective (6) nor the constraint (5) de-
and noise suppression. pend on the choice of the unitary matfix. This leads us to
conclude that without loss of generality we can chotke=
I,/, or T = P. Furthermore, it follows that we can achieve
nothing in terms of noise suppressiorlfitself is unitary [this
surrounded by the constant matricEs ' and T, so that the can also be concluded directly from Fig. 4(b)].
transmitter of the new system is shown in Fig. 4(a), while the In order to solve this problem of nonlinear optimization,
receiver is in Fig. 4(b). Notice that as for the signal part, thijmamely minimizing (6) subject to (5), it is useful to consider
system is completely equivalent to the one from Sec. I, i.e. thie unitary diagonalization of the positive definite matrices
signal still goes through an identity system. Therefore, the only
purpose of theorecoder T—! and the correspondingyualizer
T is to reduce the noise power at the receiver ougguf). It o ) A o .
is clear that without any additional constraints this task can Hg€fining the unitary matrivy’ = U}U,, the objective function
trivially accomplished by scaling the matrik by a very small ¢an be written as
constant; without changing the received signal, in this way we min Tr{VTAqVAz}. (8)
could arbitrarily reduce the received noise power. However, V.Ap b

this would in turn arbitrarily increase the power in the transmity gtice that the matrice¥ andA .. are arbitrary, subject to be-
. . . P ’
ted signakx(n), which is of course unacceptable. The remedyy, o nitary and diagonal positive definite, respectively. More

therefore, is to find the optimal precoder/equalizer patiject importantly, optimalA, can be chosen independently of opti-
to the constraint on the transmitted power. This constraint Cafal'V. Let us denote

be written as

P =U,A,U!, Q=U,A, U 7

A2 ViA,V, )
TH{ERx]} = THT 'Ras(T )} < Pey (3)
and the diagonal elements &f by a1, as,...,ax. Also de-
where T{-} andE[] denote the trace and expectation operatoraote the diagonal elements Af, by A, 1, A2, ..., A, and
respectively an® s; denotes the autocorrelation matrix of thethe diagonal elements af, by A, 1,\,2,..., A, - When

input vector process(n). Quantity P, denotes the maximum considered as a function ¢, ;}, the minimization problem
power in the transmit signal(n). From now on, we make the becomes

assumption that the input symbols are independent, identically M ) M _2

distributed, coming from a predefined constellation. Therefore, min Z aiXy i St Z Api =1 (10)

the autocorrelation matrix becom®&,, = P,I,s, with I, b=l =1

denoting theM x M identity matrix, andP, the power in the The problem nicely reduces to scalar optimization and this can
input symbol stream. Thus, if the transmit power needs to & readily solved using the method of Lagrange multipliers.
unchanged after employing the precoder, the power constraihfi€ optimal solution fof A, ;} as a function of the diagonal

becomes elements ofA is given by
_ _ _ _ —1/2
T{T (T H} =Tr{(T~ )T} =1, 4) \ort) _ < Vai (11)
P2 M :
2i=1 Vi

using the identity §AB} = Tr{BA}, for A, B square.
According to thepolar decomposition theorem [7] an arbi-
trary square matrisl' can be written as a produ@ = UP,
whereU is unitary andP a positive semidefinite matrix (in
our case, sincd is obviously desired to be nonsingul&,is
positive definite). Therefore, the power constraint (4) becomes

The next step is to find the optimal set of diagonal elements
of A, namely{q;} that minimize the objective (10). After sub-
stituting the solution fo{ A, ; }, the problem becomes

M
i i 1a;]. 12
T{UU@PHP} =Tr{P 2} = 1. (5) H};n[;“ + ;W] (12)
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IV. EXPERIMENTAL RESULTS
We now consider an experimental example designed to com-
* pare the equalization in a traditional cyclic prefix system versus
. the modified system with optimal precoder for noise suppres-
generated by Q sion. The channel'(z) was taken to be of orddr = 8, with
coefficients 1.0, -0.5974, 0.2346, -0.0305, 0.8519, 0.5680, -
0.0975, -1.0479, 0.6939. The magnitudes of the four complex
Figure 5: Convex polytope defined by the doubly stochastipairs of zeros of’(z) are given by

matrix 2; see text.
0.6839,0.9656,1.0793, 1.1687.

We see that four complex zeros 6fz) are very close to the
, M _ _ , unit circle. As a consequence, several DFT coefficients of
e o b o By 15 oo st 17 vrylowinmagriuce, ot eguency doman
oo A ) 9 _ y _ qualizer at those frequencies amplifies the noise severely. This
minimizing f(a) = >_,; v/aia;, with the vectora defined as  resulted in very high probabilities of error at signal to noise ra-
a2 [a1,as, . ..,ay]7. Itis important here to notice that(-) tios that are moderate to high, when the traditional cyclic prefix

is aconcave function ofa, since it is a positive linear combina- Systém is used. This can be seen from Fig. 8. The quahtity

tion of concave functions of the forya;a;. If we denote by Was chosen to be 128, so that the FFT algorithm can be used.
v;.; the (i, j)th element ol defined previously, then from (9) The input constellation was chosen to be 64-QAM. The sig-
we have nal to noise ratio used in the experiments was calculated at the

M input of the receiver [see Fig. 4(b)], i.e.
ai =Y |veil*Agk,
k=1

_ [,
SNR = 20 log;, lell,”

In Figs. 6-7 we show the results of the channel equaliza-
tion in the traditional system and the modified system with
precoder, respectively. The plots are obtained at the signal to
. . . . . noise ratio of 24 dB. The average probability of error corre-
Here£2 is adoubly stozhastlc matrix [7], with the (i, j)th el- sponding to the traditional system from Fig. 6 is slightly more
ement given byQ2; ; = |v;;|*. It follows [8] that (13) de- than8 x 10~3, while the error probability in the system with
fines aconvex polytope in the first quadrant of the redl/-  precoder is less thah x 10~5. In Fig. 8 we show the aver-
dimensional vector space. This is shown in Fig. 5. The corneggge symbol error probability as a function of signal to noise
of that polytope are given by the permutations of the vectofatio for the two systems (traditional and with pre- and post-
[Ag15Ag.2,-- -5 Aqm]" and are denoted by, in Fig. 5. Since processing). We see that in this example even at the moderate
f(:) is a concave function defined over a convex polytope itrobabilities of error the improvement is significant (more than
absolute minimum is reached at one of these corners. Thatgsg dB).
to say, the optimal matri¥ is a permutation matrix. But from
the form of the objective functioyi(a) we conclude that with- V. CONCLUDING REMARKS

out loss of generality we can také = I, Summarizing, we We have considered a cyclic prefix system with DFT matri-
have shown the following. ces, that is commonly used in several equalization methods,
Theorem. Optimal precoder/equalizer. Consider the sys- such as the DFT-based DMT. Note that apart from the fre-
tem for digital communication shown in Fig. 4. The optimalquency domain equalizer introduced in Sec. I, in practice
precoder/equalizer matrik in the sense of minimizing the out- there would typically be a time domain equalizer for channel
put noise power for the fixed transmitted power constrained ahortening as well [6], but this was not considered here. Our
in (3) is given byT = U,A,Ul. Unitary matrixU, is ob- approach was to treat the problem of noise suppression sepa-
tained as in (7), given the definition €f in (6). The diagonal rately from the ISI cancellation and implement it as a separate

or in other words

a=Qx N2 Aou]t (13)

elements ofA, are given by module. With this in mind we have constructed the optimal
constant (precoder, equalizer) pair for noise reduction, subject
\/T —1/2 to the constraint that there is no ISI in the absence of noise. Ob-

fort) — (%) viously, a more general solution would involve matrices with
2i=1 V Agi memory and/or substitute the restraint on the 1SI-free solution
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by the minimum mean-squared error objective. A similar ap-
proach was taken in [10], although the authors there do not
consider a cyclic prefix system, and unfortunately the solution
in that case involves ideal (unrealizable) filtering. Another gen-
eralization of our approach would involve a “tall” instead of a
square matrix precoder, and thus allow for some additional re-
dundancy in the system. Moreover, a similar approach could be
applied to modified DFT-based systems and generalized perfect
DMT systems [4]. Finally, note that although our initial goal
was not to allocate power in subbands, but perform a more gen-
eral precoding and equalization for noise reduction, some sort
of power allocation is performed here as well. In particular, in

Figure 6: Equalization results in a traditional system withouthe case when the noise autocorrelation matrix is a scaled iden-
optimal pre- and post-processing.
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Figure 7: Equalization results using a modified system with[4]

optimal precoder/equalizer.
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tity, one can easily show that the optimal matiixbecomes
indeed diagonal. Thus, in this case the optimal strategy is to
allocate as much signal power in the frequency bands where
the channel magnitude isw, so that the equalizer at those fre-
quencies does not amplify the noise.
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