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Abstract— Cyclic prefix based equalizers are widely used for
high-speed data transmission over frequency selective channels.
Their use in conjunction with DFT filterbanks is especially attrac-
tive, given the low complexity of implementation. Some examples
include the DFT-based DMT systems. In this paper we consider
a general cyclic prefix based system for communication and show
that the equalization performance can be improved by simple pre-
and post-processing aimed at reducing the noise at the receiver.
This processing is done independently of the ISI cancellation per-
formed by the frequency domain equalizer.1

I. I NTRODUCTION

There has been considerable interest in applying the eq–
ualization techniques based on cyclic prefix to high speed data
transmission over frequency selective channels, such as twisted
pair channels in telephone cables [1], [2]. Cyclic prefix systems
are invariably used in conjunction with the discrete Fourier
transform (DFT) matrices, and one example is the DFT-based
discrete multitone modulation (DMT) system [3]. Although it
has been shown by Kalet [9] that the use ofideal transmit and
receive filters in the multitone environment can lead to achiev-
ing signal to noise ratio (SNR) within 8-9 dB of the channel
capacity (depending on the probability of error), in practice the
DFT filterbank is most commonly used because of its low com-
plexity. The development of these systems lead, for example,
to asymmetric digital subscriber loops (ADSL) and high-speed
digital subscriber loops (HDSL) [2], [3].

The initial goal of cyclic prefix based methods for equaliza-
tion is to cancel the intersymbol interference (ISI) induced by
the channel. This task is achieved by introducing some redun-
dancy in the form of a cyclic prefix (see Sec. II). Depending on
the nulls of the channel in question, the noise can get severely
amplified by the equalizer alone. In this paper we consider a
general cyclic prefix based system with the aim of further re-
ducing the noise at the receiver. This is achieved by perform-
ing the ISI cancellation and the noise suppressionseparately,
in different modules. The main module for ISI cancellation is
based on cyclic prefix with DFT filterbanks and is unchanged.

1Work supported in part by the ONR grant N00014-99-1-1002, USA.

It is preceded (followed) by the optimal precoder (equalizer)
for the given input and noise statistics. These blocks are real-
ized by constant matrix multiplication, so that the overall com-
munications system remains of low complexity.

In the following we first give a brief overview of the cyclic
prefix system with DFT matrices used as the basic ISI can-
celer. Then, we introduce a way to deal with noise suppres-
sion separately and derive the optimal constrained pair pre-
coder/equalizer for this purpose. The constraint is that in the
absence of noise the overall system is still ISI-free. The per-
formance of the proposed method is evaluated through com-
puter simulations and a significant improvement with respect to
the original system without pre- and post-processing is demon-
strated.

Throughout this paper we assume that the frequency selec-
tive channel is aknown FIR system of orderL, i.e.

C(z) =

LX
k=0

c(k)z�k:

The notationsAT andAy represent the transpose and trans-
pose conjugate of a matrixA.

II. CYCLIC PREFIX SYSTEM WITHDFT MATRICES

In this section we give a review of a cyclic prefix based sys-
tem for channel equalization that employs DFT filterbanks. Be-
fore we demonstrate the complete system, we first introduce the
concept ofcyclic prefix. This is a way of inserting redundancy
into the input data stream and it becomes useful in the process
of channel equalization as will be explained later. Consider
the symbol stream from Fig. 1(a). It is divided into blocks of
lengthM . The lastL symbols from each block are copied and
inserted at the beginning of that block (we assume hereafter
that the redundancyL < M ). This is achieved by “squeezing”
the samples as explained in Fig. 1(b)-(c). Obviously, this op-
eration of inserting the redundancy into the input data stream
results in the bandwidth expansion. In this case the bandwidth
expansion ratio is given by� = (M + L)=M , which can be
made sufficiently small by makingM large. The purpose of
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Figure 1: (a) Input symbol stream, (b)-(c) explanation of
how cyclic prefix is inserted.
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Figure 2: Channel with the system for cyclic prefix.

inserting the cyclic prefix is to allow the receiver to remove ISI
using some low-complexity operations.

As the first step in understanding how this is achieved, con-
sider Fig. 2, ignoring the noise for the time being. The box la-
beled “blocking” is a serial to parallel converter, similarly “un-
blocking” performs the reverse operation and the block “prefix”
inserts the cyclic prefix as described in Fig. 1. Notice that the
blocked sequencesq(n) andr(n) are related through a mul-
tiplication by theM � M right circulant [5] channel matrix
C. The first column ofC consists of theL + 1 coefficients
of the channel impulse responsec(k) followed byM � L� 1
zeros. Since we can safely assume2 c(0) 6= 0, it follows that
C is nonsingular and the effect of the channel can be neutral-
ized by inverting it. Next, note that any circulant matrix can be
diagonalized by a DFT matrix [5]. Thus we can write [5]

C =W�1�eW; (1)

whereW is theM �M DFT matrix and the diagonal matrix
�e has the eigenvalues ofC on its diagonal. Those eigenvalues,
in turn, are nothing but theM -point DFT coefficients ofc(k),

2Otherwise we can shorten the impulse response ofC(z).

W -1

IDFT

s(  )n channel  and
prefix  system

e(  )n

W
DFT DFT domain

   equalizer

Γe

s(  )nr (  )n
T R A N S M I T T E R R E C E I V E R

q(  )n
-1

Figure 3: Conventional cyclic prefix system with DFT matrices
used for ISI cancellation.

thus we have

�e =

2
6664

CM [0] 0 0 : : : 0
0 CM [1] 0 : : : 0
...

. . .
...

0 0 0 : : : CM [M � 1]

3
7775 ; (2)

withCM [n] =
PL

k=0 c(k)e
�j2�kn=M . As we noted before, the

ISI cancellation is achieved by invertingC in (1). Therefore,
after moving the matrixW�1 to the transmitter side, the com-
plete DFT-based cyclic prefix system is shown in Fig. 3. The
block labeled “channel and prefix system” is given in Fig. 2.
Matrix �e

�1 is better known as thefrequency domain equal-
izer and contains on its diagonal the reciprocals of the DFT
coefficients of the channel. The input vector sequences(n) in
Fig. 3 is obtained by blocking the symbol stream into blocks of
lengthM . The noise vectore(n) is obtained by blocking the
physical noise process into blocks of lengthM + L and then
discardingL samples out of each block (see Fig. 2).

The main merit of the cyclic prefix system with DFT ma-
trices lies in its simplicity. From Fig. 3 we see that the trans-
mitter only needs to perform the inverse DFT operation fol-
lowed by the cyclic prefix insertion. On the other hand, the
receiver removes the cyclic prefix, performs the DFT operation
and frequency domain equalization, which amounts simply to
multiplying each channel by a constant. Moreover, ifM is cho-
sen as a power of two, both IDFT and DFT operations can be
implemented using the fast radix-2 algorithm. The noise vec-
tor processe(n) at the receiver passes through the DFT ma-
trix W and the frequency domain equalizer�e

�1. SinceW
is a scaled unitary matrix, the main contribution to amplify-
ing the noise power at the receiver comes from the multipliers
1=CM [n] embedded in�e

�1. Obviously, if the channelC(z)
has zeros near the unit circle, these multipliers can get large,
consequently boosting the noise at the receiver and degrading
the performance. In the next section we propose a simple mod-
ification of the basic equalization structure from Fig. 3 that will
improve the performance significantly.

III. M ODIFIED SYSTEM FOR NOISE SUPPRESSION

Consider the system shown in Fig. 4(a)-(b). It consists of
the same basic cyclic prefix transceiver (the middle portion)
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Figure 4: Cyclic prefix system with separated ISI cancellation
and noise suppression.

surrounded by the constant matricesT�1 andT, so that the
transmitter of the new system is shown in Fig. 4(a), while the
receiver is in Fig. 4(b). Notice that as for the signal part, this
system is completely equivalent to the one from Sec. II, i.e. the
signal still goes through an identity system. Therefore, the only
purpose of theprecoder T�1 and the correspondingequalizer
T is to reduce the noise power at the receiver outputŝ(n). It
is clear that without any additional constraints this task can be
trivially accomplished by scaling the matrixT by a very small
constant; without changing the received signal, in this way we
could arbitrarily reduce the received noise power. However,
this would in turn arbitrarily increase the power in the transmit-
ted signalx(n), which is of course unacceptable. The remedy,
therefore, is to find the optimal precoder/equalizer pairsubject
to the constraint on the transmitted power. This constraint can
be written as

TrfE[xxy]g = TrfT�1Rss(T
�1)yg � Px; (3)

where Trf�g andE[�] denote the trace and expectation operators
respectively andRss denotes the autocorrelation matrix of the
input vector processs(n). QuantityPx denotes the maximum
power in the transmit signalx(n). From now on, we make the
assumption that the input symbols are independent, identically
distributed, coming from a predefined constellation. Therefore,
the autocorrelation matrix becomesRss = PsIM , with IM
denoting theM �M identity matrix, andPs the power in the
input symbol stream. Thus, if the transmit power needs to be
unchanged after employing the precoder, the power constraint
becomes

TrfT�1(T�1)yg = Trf(T�1)yT�1g = 1; (4)

using the identity TrfABg = TrfBAg, forA;B square.
According to thepolar decomposition theorem [7] an arbi-

trary square matrixT can be written as a productT = UP,
whereU is unitary andP a positive semidefinite matrix (in
our case, sinceT is obviously desired to be nonsingular,P is
positive definite). Therefore, the power constraint (4) becomes

TrfUyU(P�1)yP�1g = TrfP�2g = 1: (5)

Our objective as mentioned before is to minimize the out-
put noise power (subject to the power constraint). This can be
written as

min
T

TrfT�e�1WReeW
y(�e

�1)yTyg; that is

min
P

TrfPyPQg; Q 4
= �e

�1WReeW
y(�e

�1)y (6)

Notice that neither the objective (6) nor the constraint (5) de-
pend on the choice of the unitary matrixU. This leads us to
conclude that without loss of generality we can chooseU =
IM , or T = P. Furthermore, it follows that we can achieve
nothing in terms of noise suppression ifT itself is unitary [this
can also be concluded directly from Fig. 4(b)].

In order to solve this problem of nonlinear optimization,
namely minimizing (6) subject to (5), it is useful to consider
the unitary diagonalization of the positive definite matrices

P = Up�pU
y
p; Q = Uq�qU

y
q : (7)

Defining the unitary matrixV
4
= UyqUp, the objective function

can be written as

min
V;�p

TrfVy�qV�
2
pg: (8)

Notice that the matricesV and�p are arbitrary, subject to be-
ing unitary and diagonal positive definite, respectively. More
importantly, optimal�p can be chosen independently of opti-
malV. Let us denote

A
4
= Vy�qV; (9)

and the diagonal elements ofA by a1; a2; : : : ; aM . Also de-
note the diagonal elements of�p by �p;1; �p;2; : : : ; �p;M and
the diagonal elements of�q by �q;1; �q;2; : : : ; �q;M . When
considered as a function off�p;ig, the minimization problem
becomes

min
�p;i

MX
i=1

ai�
2
p;i; s.t.

MX
i=1

��2p;i = 1: (10)

The problem nicely reduces to scalar optimization and this can
be readily solved using the method of Lagrange multipliers.
The optimal solution forf�p;ig as a function of the diagonal
elements ofA is given by

�
(opt)
p;i =

 p
aiPM

i=1

p
ai

!�1=2
: (11)

The next step is to find the optimal set of diagonal elements
ofA, namelyfaig that minimize the objective (10). After sub-
stituting the solution forf�p;ig, the problem becomes

min
ai

[
MX
i=1

ai +
X
i6=j

p
aiaj ]: (12)
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Figure 5: Convex polytope defined by the doubly stochastic
matrix
; see text.

Notice from (9) that
PM

i=1 ai = Trf�qg = const. (sinceQ
is fixed), so that the objective given by (12) becomes that of

minimizing f(a)
4
=
P

i6=j
p
aiaj , with the vectora defined as

a
4
= [a1; a2; : : : ; aM ]T . It is important here to notice thatf(�)

is aconcave function ofa, since it is a positive linear combina-
tion of concave functions of the form

p
aiaj . If we denote by

vi;j the(i; j)th element ofV defined previously, then from (9)
we have

ai =

MX
k=1

jvk;ij2�q;k ;

or in other words

a = 
� [�q;1�q;2 : : : �q;M ]T : (13)

Here
 is a doubly stochastic matrix [7], with the(i; j)th el-

ement given by
i;j
4
= jvj;ij2. It follows [8] that (13) de-

fines aconvex polytope in the first quadrant of the realM -
dimensional vector space. This is shown in Fig. 5. The corners
of that polytope are given by the permutations of the vector
[�q;1; �q;2; : : : ; �q;M ]T and are denoted bypi in Fig. 5. Since
f(�) is a concave function defined over a convex polytope its
absolute minimum is reached at one of these corners. That is
to say, the optimal matrixV is a permutation matrix. But from
the form of the objective functionf(a) we conclude that with-
out loss of generality we can takeV = IM . Summarizing, we
have shown the following.

Theorem. Optimal precoder/equalizer. Consider the sys-
tem for digital communication shown in Fig. 4. The optimal
precoder/equalizer matrixT in the sense of minimizing the out-
put noise power for the fixed transmitted power constrained as
in (3) is given byT = Uq�pU

y
q . Unitary matrixUq is ob-

tained as in (7), given the definition ofQ in (6). The diagonal
elements of�p are given by

�
(opt)
p;i =

 p
�q;iPM

i=1

p
�q;i

!�1=2
:

IV. EXPERIMENTAL RESULTS

We now consider an experimental example designed to com-
pare the equalization in a traditional cyclic prefix system versus
the modified system with optimal precoder for noise suppres-
sion. The channelC(z) was taken to be of orderL = 8, with
coefficients 1.0, -0.5974, 0.2346, -0.0305, 0.8519, 0.5680, -
0.0975, -1.0479, 0.6939. The magnitudes of the four complex
pairs of zeros ofC(z) are given by

0:6839; 0:9656; 1:0793; 1:1687:

We see that four complex zeros ofC(z) are very close to the
unit circle. As a consequence, several DFT coefficients of
CM [n] are very low in magnitude, so that the frequency domain
equalizer at those frequencies amplifies the noise severely. This
resulted in very high probabilities of error at signal to noise ra-
tios that are moderate to high, when the traditional cyclic prefix
system is used. This can be seen from Fig. 8. The quantityM
was chosen to be 128, so that the FFT algorithm can be used.
The input constellation was chosen to be 64-QAM. The sig-
nal to noise ratio used in the experiments was calculated at the
input of the receiver [see Fig. 4(b)], i.e.

SNR= 20 log10
jjrjj2
jjejj2

:

In Figs. 6-7 we show the results of the channel equaliza-
tion in the traditional system and the modified system with
precoder, respectively. The plots are obtained at the signal to
noise ratio of 24 dB. The average probability of error corre-
sponding to the traditional system from Fig. 6 is slightly more
than8 � 10�3, while the error probability in the system with
precoder is less than2 � 10�5. In Fig. 8 we show the aver-
age symbol error probability as a function of signal to noise
ratio for the two systems (traditional and with pre- and post-
processing). We see that in this example even at the moderate
probabilities of error the improvement is significant (more than
6-8 dB).

V. CONCLUDING REMARKS

We have considered a cyclic prefix system with DFT matri-
ces, that is commonly used in several equalization methods,
such as the DFT-based DMT. Note that apart from the fre-
quency domain equalizer introduced in Sec. II, in practice
there would typically be a time domain equalizer for channel
shortening as well [6], but this was not considered here. Our
approach was to treat the problem of noise suppression sepa-
rately from the ISI cancellation and implement it as a separate
module. With this in mind we have constructed the optimal
constant (precoder, equalizer) pair for noise reduction, subject
to the constraint that there is no ISI in the absence of noise. Ob-
viously, a more general solution would involve matrices with
memory and/or substitute the restraint on the ISI-free solution
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Figure 6: Equalization results in a traditional system without
optimal pre- and post-processing.
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Figure 7: Equalization results using a modified system with
optimal precoder/equalizer.
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Figure 8: Probability of error vs. SNR: without precoder
(dashed line) and with precoder (solid line).

by the minimum mean-squared error objective. A similar ap-
proach was taken in [10], although the authors there do not
consider a cyclic prefix system, and unfortunately the solution
in that case involves ideal (unrealizable) filtering. Another gen-
eralization of our approach would involve a “tall” instead of a
square matrix precoder, and thus allow for some additional re-
dundancy in the system. Moreover, a similar approach could be
applied to modified DFT-based systems and generalized perfect
DMT systems [4]. Finally, note that although our initial goal
was not to allocate power in subbands, but perform a more gen-
eral precoding and equalization for noise reduction, some sort
of power allocation is performed here as well. In particular, in
the case when the noise autocorrelation matrix is a scaled iden-
tity, one can easily show that the optimal matrixT becomes
indeed diagonal. Thus, in this case the optimal strategy is to
allocate as much signal power in the frequency bands where
the channel magnitude islow, so that the equalizer at those fre-
quencies does not amplify the noise.
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