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Abstract-The cyclic prefix is commonly used in the context of
frequency domain equalization in DMT channels. In this pa-
per we observe that it can be used in more general contexts
and show its advantages in blind equalization, especially for non
minimum phase channels.

I. INTRODUCTION

Techniques1 for channel equalization based on redundant
filter bank precoders have been introduced and well-studied in
recent years [6], [10]. A major contribution [2] was the obser-
vation that the redundancy introduced by the precoder can be
exploited to achieve blind equalization of FIR channels based
only on second order statistics unlike classical methods based
on fourth order moments [8]. Elegant theorems which make
this practicable using computations based on received data are
presented in [7] including procedures for channel identification,
as well as for direct identification of input.

In this paper we show how the cyclic prefix system with
DFT matrices, which is commonly employed in discrete mul-
titone systems for twisted pair channels in telephone cables
[1], [9], can actually be used for blind equalization of a much
broader class of channels. One advantage of the proposed
method is that besides FFT, there is very little computation
involved (e.g., no need to identify annihilating eigenvectors
and so forth as in [7]); the method is therefore very efficient.

If a channel has zeros in |z| ≥ 1 then there are some prob-
lems associated with traditional equalization, blind or other-
wise: the channel noise can get severly amplified. In this con-
text a second advantage of the proposed method is that it does
not require the channel to be minimum-phase. Equalization
does not severely amplify noise as long as the zeros of the
channel are not too close to the unit circle. The advantages of
the proposed method are obtained at the expense of a slightly
higher bandwidth expansion ratio compared to [7]. However,
as the so-called block-length (a design parameter the user can
choose) increases, this expansion becomes negligible as in [7].

s(n)
channel C(z) +
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Figure 1. The FIR channel under consideration.

Throughout the sequel we shall assume that the channel is an

1Work supported in part by the ONR grant N00014-99-1-1002,
USA.

Lth order FIR system

C(z) =
L∑

n=0

c(n)z−n (1)

with additive noise e(n) as shown in Fig. 1.

II. REDUNDANCY IN CHANNEL INPUT

As a prelude to the main idea consider Fig. 2(a) which
shows a symbol stream s(n) (e.g., PAM symbols), divided into
blocks of length M. Suppose we insert L zeros at the beginning
of each block as shown in the figure. Then from measurements
of output blocks we can recover the corresponding input blocks
readily (see below). For a given symbol rate, the zero-prefix
reduces the spacing between samples as demonstrated in Fig.
2(c). The bandwidth expansion factor

γ =
M + L

M

represents the excess bandwidth required for this. By making
M sufficiently large we can reduce γ but there are some com-
promises as we shall see. The zero-prefixed stream has blocks
of length L+M with the last M symbols in each block repre-
senting the original signal s(n). The channel output can also
be imagined as a succession of blocks of length L + M. Even
though all the samples in a block can be nonzero, the last M
samples of y(n) in any block depend only on the samples x(n)
in the corresponding input block. The channel output depends
on the input and the noise. Ignoring noise for a moment, we
have for the kth block:





y(Jk)

y(Jk + 1)
...

y(Jk + M − 1)



 = C∆





x(Jk)

x(Jk + 1)
...

x(Jk + M − 1)



 (2)

where Jk = k(L + M) + L and

C∆ =





c(0) 0 . . . 0
c(1) c(0) . . . 0

...
...

. . .
...

c(M − 1) c(M − 2) . . . c(0)





This is a lower triangular Toeplitz matrix representing causal
convolution. Eq. (2) is valid for any M > 0 (if M − 1 > L
then we have c(M − 1) = 0, etc.).
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Figure 2. (a) A symbol stream, (b) zero-prefixed version, and
(c) a schematic showing bandwidth expansion.

Assume2 c(0) �= 0. Then C∆ is nonsingular and its inverse is
also lower triangular Toeplitz:

C−1
∆ =





h(0) 0 . . . 0
h(1) h(0) . . . 0

...
...

. . .
...

h(M − 1) h(M − 2) . . . h(0)



 (3)

where h(n) are the first M coefficients of the inverse

1
C(z)

=
∞∑

n=0

h(n)z−n. (4)

Thus C−1
∆ can readily be found by long division, and the input

symbols in each block obtained by inverting (2).

A. Noise amplification
In practice the channel adds noise, so y(n) in Eq. (2) should

be replaced with a noisy version y(n)+e(n), and x(n) is not
recovered exactly. This noise could be severely amplified by
the preceding inversion process if C(z) has some zeros outside
the unit circle. For, in this case the causal expansion (4) is
unstable which means that the numbers h(n) could be very

large. For example if C(z) = 1−2z−1 then h(n) = 2n, n ≥ 0.
Such large values of n create large amplification of the channel
noise.

B. Blind Identification
Assume next that the channel order L is known but C(z)

itself is unknown. Then it is still possible to recover the input
stream from the output under some mild conditions. The fact
that such blind identification can indeed be performed based
on zero prefix is much less obvious, and is a direct consequence
of the results first advanced in [2]. Techniques for implement-
ing this, based on measurements of many successive output

2For this we can extract delays from C(z) if necessary.

blocks (to satisfy rank conditions on certain matrices) can be
found in [7]. These are based on the computation of annihilat-
ing eigenvectors of certain matrices formed from measurements
of multiple blocks of the channel output. The performance of
the method depends on the channel noise as well as the zeros
of C(z) for reasons similar to those described in Sec. A above.

First-principles method for blind identification. Now as-
sume that we are a bit more generous in the matter of admit-
ting redundancy. Thus instead of L zeros, suppose we insert
2L+1 redundant samples as shown in Fig. 3. We call this the
impulse redundancy. It has 2L zeros and an impulse in the
middle. If this symbol stream is convolved with the Lth order
channel c(n), it is clear that the exact impulse response c(n)
appears at the output starting from the location of the redun-
dant impulse in each block. Thus we can recover the channel
exactly (without even a scale factor ambiguity!) and then
invert it to recover the input x(n). This is admittedly a triv-
ial or “ultra simple” blind identification scheme but it differs
from [7] only in the need for 2L + 1 rather than L redundant
symbols. In return for this, the method is computationally
and conceptually very simple.The bandwidth expansion fac-
tor (2L + 1 + M)/M tends to unity for large M , as in [7].
Evidently the channel noise in practice contaminates the re-
dundant impulse part as well, making the estimation of c(n)
noisy. However, the noise can be reduced by averaging the
estimate over many blocks. This is analogous in principle (but
certainly not in detail) to the accumulation of many blocks in
[7] to satisfy certain rank conditions. Even assuming that the

estimate of the channel is acceptable, the inverse matrix C−1
∆

could still amplify noise as in earlier methods, if the channel
C(z) is not minimum-phase. Finally note that any method
which uses many blocks in the estimation naturally implies a
correspondingly large latency.
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Figure 3. Impulse redundancy of length 2L + 1 added to
every length-M block of the input symbol stream.

III. CYCLIC-PREFIX REDUNDANCY

We now show that instead of using a zero prefix or im-
pulse prefix we can also use a cyclic prefix and perform blind
identification. One advantage of this method is that the equal-
ization stage works even if the channel does not have minimum
phase. We will see that it is sufficient (but not necessary) that
the channel be free from unit circle zeros. Figure 4(a) again
shows the input stream divided into blocks of length M . The
L symbols at the end of each block are copied into the begin-
ning of that block, to form the cyclic prefix (thin lines in Fig.
4(c)). This evidently assumes L ≤ M . If we make the slightly
stronger requirement that L < M , then the effect of the cyclic
prefix is to replace the linear relation (2) with another linear
relation where the matrix is circulant rather than lower trian-
gular. Thus, the M input symbols s(n) in the mth block are
related to the last M output symbols y(n) in the mth block
as

y(m) = Cs(m) (5)



where

s(m) = [ s(mM) s(mM + 1) . . . s(mM + M − 1) ]T

y(m) = [ y(Jm) y(Jm + 1) . . . y(Jm + M − 1) ]T

with Jm = m(L + M) + L. The matrix C is circulant with
the elements of the top row coming from the channel impulse
response c(n). For example when L = 3 and M = 6,

C =





c(0) 0 0 c(3) c(2) c(1)
c(1) c(0) 0 0 c(3) c(2)
c(2) c(1) c(0) 0 0 c(3)
c(3) c(2) c(1) c(0) 0 0
0 c(3) c(2) c(1) c(0) 0
0 0 c(3) c(2) c(1) c(0)





If the channel is known, we can perform the equalization by
inverting (5) assuming C is nonsingular. The eigenvalues of
the M ×M circulant are equal to the DFT coefficients of the
top row [4]. Since the top row has the channel coefficients in
reversed order, these eigenvalues are

η(k) =
M−1∑

n=0

c(n)W−nk = C(e−j2πk/M )

where W = e−j2π/M and C(ejω) represents the channel
frequency response. Thus η(k) are obtained by sampling

C(ejω) uniformly at M frequencies. Note that c(n) = 0 for
L < n < M.

The circulant matrix C can be diagonalized with the DFT
matrix [4]. More specifically we have

C = W−1ΛcW

where W is the M × M DFT matrix and

Λc =





CM [0] 0 0 . . . 0
0 CM [1] 0 . . . 0
...

...
. . .

...

0 0 0 . . . CM [M − 1]





where CM [k] =
∑L

n=0 c(n)Wnk = M -point DFT of c(n).
Note that CM [k] is a permuted version of the eigenvalues η(k).
Thus the implementation of the communication system with
cyclic prefix can be represented as shown in Fig. 5. The
box labelled “blocking” is a serial to parallel converter (and
“unblocking” converts from parallel to serial). The diagonal

elements of [Λc]−1 are 1/CM [k], and can be regarded as a set
of DFT-domain equalizers.
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Figure 4. (a) Input symbol stream, (b)–(c) explanation
of how cyclic prefix is inserted, and (d) block diagram.

Figure 5 of course ignores channel noise which in practice can
be amplified by [Λc]−1. We shall address this later. Since
y(m) = Cs(m) according to Eq. (5), we can draw a schematic

version of Fig. 5 as shown in Fig. 6(a). As W−1 is the inverse

of Λ−1
c WC, we can redraw the system as in Fig. 6(b). In the

first version the receiver has all the complexity whereas in the
second version the IDFT is done at the transmitter, as in DMT
systems. If the channel is known, then we can move Λ−1

c and
W to the transmitter end, yielding a useful configuration for
cases where the receiver has to be the simplest. We can choose
M to be a power of two and implement W and W−1 using
radix-2 FFT.

Non minimum-phase channels. If the channel has no zeros
on the unit circle, then C is nonsingular and we can invert (5)
to obtain the input symbol stream. Once again the presence of
noise makes everything imperfect as in other methods. If C(z)
has zeros close to the unit circle, then some of the CM [k] could
be very small, and C becomes ill condition, thus amplifying the
noise like the earlier methods described in Sec. II. However,
unlike the earlier methods, the presence of zeros outside the
unit circle does not create a problem because only the samples
of C(ejω) matter in the inversion. This appears to be an
important advantage. For the hypothetical example where
C(z) = 1 − 2z−1 the methods described in Sec. II can yield

a large noise gain because the coefficients of C−1
∆ are large.

However in the cyclic prefix method, the DFT coefficients are
bounded as

|CM [k]| = |1 − 2e−j2πk/N | ≥ 1



so that the diagonal elements 1/CM [k] of the equalizer Λ−1
c

in Fig. 6(b) do not amplify noise!
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Figure 5. Block diagram description of the system
based on cyclic prefix. (a) Transmitter, and (b) receiver.
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Figure 6. (a) A simplified schematic of the cyclic prefix
system, and (b) a practically useful rearrangement

similar to the conventional DMT system.

IV. BLIND IDENTIFICATION WITH CYCLIC-PREFIX

When the channel is unknown, the cyclic prefix method
has to be further modified to allow blind identification. Thus
consider the simple schematic of Fig. 6(b). Recall that this
figure was obtained by introducing the length-L cyclic prefix
at the beginning of each length-M block of s(n). The vector
s(n) represents the M samples in the nth block. Imagine that
we introduce a further redundancy of L+1 samples into s(n).
For example let N = M + L + 1 and define the N -vector

t(n) =
[
r(n)
s(n)

]

where r(n) is a known vector of L + 1 nonzero samples. Fig-
ure 6(b) is now modified into Fig. 7. Here the subscript N
indicates the size of the matrices and distinguishes them from
Fig. 6(b). Thus CN is an N × N circulant, WN represents

the N × N DFT matrix, and the diagonal elements of Λ−1
cN

are 1/CN [k] where

CN [k] =
L∑

n=0

c(n)e−j2πkn/N .

Fig. 7 represents an identity system as before. Since the chan-

nel is unknown we cannot insert the matrix Λ−1
cN yet, but we

can measure the signal v(n) at the receiver. The top L + 1
components of v(n) represent the known vector r(n) scaled
by CN [0], CN [1], . . . , CN [L]. Since r(n) has known nonzero
samples, we can therefore identify CN [0], CN [1], . . . CN [L].
These are related to the channel c(0), c(1), . . . c(L) by the
top/left (L + 1) × (L + 1) submatrix Wsub of the N × N
DFT matrix. This submatrix is a nonsingular Vandermonde
matrix. The channel c(0), c(1), . . . c(L) can therefore be iden-
tified.
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Figure 7. The cyclic prefix system with further

redundancy for blind identification.

In practice v(n) has an additive noise component coming from
the channel noise. As in other practical techniques [7] we
can average the estimated CN [k] over a large number of out-
put blocks, the compromise being the latency involved. Also
for channels that vary in time, the rate at which we can up-
date the blind estimation is compromised. Notice finally that
blind identification has been possible only at the expense of
the additional redundancy of L + 1 samples. The complete
system therefore has a higher bandwidth expansion factor
(M + 2L + 1)/M . However, as in other methods, this ap-
proaches unity as M grows. Simulations (Sec. V) show that
if we fix the bandwidth expansion ratio in the cyclic prefix
method to be the same as for the method proposed in [7],
then the former still performs better in many examples.

The redundancy r(n) need not necessarily be inserted at
the beginning of the block. In fact for large M the submatrix
Wsub can get ill conditioned because its columns “get closer”.
This results in undesirable amplification of channel noise. If
we spread out the L+1 rendundant symbols more evenly this
problem is less severe. If L + 1 is a factor of N we can place
the redundant symbols such that the submatrix to be inverted
is itself the size-(L + 1) DFT matrix which is unitary up to
scale.

V. EXAMPLES

We now consider an example where the channel c(n) has
order L = 8 and impulse response coefficients 1.0, 0.2, 0.5825,
0.25, 0.0892,−0.3463,−0.2886, 0.2757, 0.4. This has four
complex conjugate pairs of zeros, and the magnitudes are

1.092, 0.815, 0.927, and 0.767,

so there is one pair outside the unit circle. The quantity M
was chosen as M = 119 so that the DFT sizes in Fig. 7 are
M+L+1 = 128 which can be implemented with an FFT. The
extra redundant symbols for blind identification were taken as
r(i) = 1 for all i, and were distributed uniformly so that Wsub
is a 9 × 9 DFT matrix.
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Figure 8. Result of blind identification (cyclic prefix).

The above channel was assumed unknown, and estimated us-
ing the method described in Sec. IV. The result of channel
measurements in thirty successive blocks were averaged, and
used in the detection process. With a 64-QAM constellation
for the input s(n), and an SNR of 21.5 dB at the receiver
input in Fig. 7, the result of equalization after blind identifi-
cation is as shown in Fig. 8. This corresponds to an average
probability of error 6 × 10−5. Notice that the bandwidth ex-
pansion factor was (M + 2L + 1)/M = 136/119 = 8/7.
We tried to identify the same channel using the “direct blind
identification method” of [7] for the same SNR and the same
constellation. The block length was chosen as M = 56 so
that the bandwidth expansion factor (56 + 8)/56 = 8/7 is
the same as in our method. In this example the identification
using the method of [7] was not successful and gave an average
error probability of 0.3692 (see Fig. 9). It is possible that the
method of [7] will work better if we use zero prefixes at other
positions in each block rather than just at the beginning, as
stated by Eq. (30) in [7]. This has not been attempted here.

VI. CONCLUDING REMARKS

We have shown that the cyclic prefix method, which is tra-
ditionally used in DMT systems for channel equalization, can
be modified readily for blind equalization of more general chan-
nels. Compared to the recent method of [7] this method re-
quires a little more redundancy but it is computationally and
conceptually much simpler. It also offers a smaller noise gain
for channels with zeros outside the unit circle. The method
also allows frequency domain allocation of power as in tra-
ditional DMT, but this was not exploited in Sec. V. Notice
finally that a scale factor ambiguity in the channel, if complex,
can rotate QAM consellations, which is undesirable (e.g., see
Fig. 9). The blind identification method of Sec. IV does not
have such ambiguities.

The idea of inserting redundancies into the blocks of the
input is common to all the methods discussed in this paper,
including those in [2] and [7]. For the case where the channel is
unknown this allows blind identification. In fact, these meth-
ods can also be viewed as generalizations of the conventional
method of sending training sequences periodically, once per
block of M samples. The general theme in all these methods
is to indirectly incorporate training sequences in a sophisti-
cated and efficient way.
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Figure 9. Result of blind identification based on [7].
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