
EFFICIENT IMPLEMENTATION OF ALL-DIGITAL

INTERPOLATION∗

Bojan Vrcelj and P. P. Vaidyanathan
Contact Author: P. P. Vaidyanathan, Department of Electrical Engineering 136-93,

California Institute of Technology, Pasadena, CA 91125 USA,
Phone: (626) 395-4681 E-mail: ppvnath@systems.caltech.edu

July 19, 2001

EDICS number: 2-INTR

ABSTRACT

B-splines are commonly used for continuous representation of discrete time signals. This kind of

representation proves to be very useful in applications such as image interpolation, rotation and

edge detection. In all these applications, the first step is to compute the B-spline coefficients of the

signal, and this involves the use of an IIR noncausal filter called the direct B-spline filter. The signal

reconstruction is achieved using the indirect B-spline filter, which in many applications operates at

a higher rate.

In this paper we introduce a simplified implementation of the signal reconstruction part that

will significantly reduce the overall complexity. We also show that the direct B-spline filter can

safely be replaced by a short FIR filter, without compromising the performance of the traditional

method. Numerous examples will show both visually and numerically that the differences between

this method and the traditional one are indeed very small. Finally, we report the performance of

these newly proposed methods in other image processing applications such as edge detection and

least squares approximation.

∗Work supported in part by the National Science Foundation under grant MIP 0703755, and by Microsoft research,
Redmond, WA.
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1 INTRODUCTION

Natural signals in digital signal processing are almost always represented in the form of uniformly

spaced samples. In many applications, however, it is necessary to estimate the signal values between

those samples. In order to solve for intermediate signal values, it is a common approach to assume

some parameterized model for the underlying continuous signal. Polynomial spline functions have

a long history of application in this context [1], since they provide a flexible representation (e.g. see

[2]), and by simply choosing the order of these approximation functions it is possible to control the

smoothness of the resulting continuous signal. Thanks to a classical result by Schoenberg [3], it is

enough to consider a very special class of piecewise polynomials, namely B-splines, since all other

polynomial splines are obtained as a linear combination of shifted B-splines. The work by Unser

et al. ([5], [6], [7]) represents a major contribution in B-spline signal processing. They showed

that both the representation of discrete signals in terms of B-splines and the reverse process, i.e.

interpolative signal reconstruction from its B-spline coefficients can easily be implemented using

the discrete filtering. In that implementation the direct B-spline transform is realized by noncausal

IIR filtering [5]; the indirect B-spline filter is a symmetric FIR filter, but it usually operates at a

higher rate in applications such as signal interpolation and least squares approximation.

In this paper we will address both these filtering operations. We will show that the complexity

of the interpolative signal reconstruction (indirect B-spline filtering) can be significantly reduced

by employing the polyphase identities [9]. As for the direct B-spline transform, we will show that

the IIR filtering is not necessary if the only objective is the visual quality of the interpolated image.

Recently, spline interpolation has been considered in the framework of biorthogononal partners [10]

as well as sampling theorems for nonbandlimited signals [11]. The authors in [10] show that exact

spline interpolation is possible using only FIR filters as long as the original signal is oversampled.

In Section II, a short overview of B-splines and their use in signal interpolation is provided. An

FIR substitute for the direct B-spline filter is motivated and introduced in Section III. Also, the

comparison of interpolation results obtained by the traditional method and this FIR (approximate)

method is provided. In Section IV, we introduce the simplified implementation of the indirect

B-spline filtering that will not only reduce the complexity of the all-FIR interpolation, but also

provide flexibility in design. In Section V, two other B-spline processing applications are considered,

namely signal differentiation and least squares approximation. The main conclusion is that these

applications are also quite insensitive to the FIR approximations introduced in Section III.

The sets of real numbers, integers and natural numbers are denoted by R, Z, and N, respectively.
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The set of square-summable sequences is denoted by l2. By || · ||2 we denote the usual l2 norm of

sequences, defined by the inner products. Subscript c denotes that the signal is continuous-time,

while no subscript as in f denotes the discretized version of fc and is nothing but the restriction of

fc to integers, such that f(k) = fc(k),∀k ∈ Z. Also, as a general remark, t will invariably denote a

continuous argument, while k, l,m, and n will denote discrete arguments.

2 B-SPLINES IN SIGNAL REPRESENTATION

In many signal processing applications it is of interest to regard the discrete signal f(k) as samples

of a continuous time signal fc(t). While this kind of representation is not unique, it is especially

useful if fc(t) is a smooth function in the sense that it is differentiable a certain number of times

everywhere. Many researchers have proposed the use of spline functions in this context (e.g. see

[6] and references therein). Splines of order n are equal to polynomials of degree n on each interval

between two knots, and those polynomials are connected in such a way that the overall function

is (n − 1) times continuously differentiable even at the knots ([2], pp. 3-7). It was shown by

Schoenberg [3] that every n-th order spline with equidistant knots, f n
c (t) can be represented as

fn
c (t) =

∞
∑

k=−∞

c(k)βn(t− k), ∀t ∈ R. (1)

Here c(k) is an l2 sequence of reals and βn(t) is a centered B-spline of order n, which is obtained

as an n-fold convolution of the centered unit pulse with itself1

βn(t) = βn−1 ∗ β0(t) = β0 ∗ β0 ∗ . . . ∗ β0(t),

β0(t) =

{

1 for t ∈ [− 1
2 , 1

2)
0 otherwise.

(2)

Note that B-splines are compactly supported and symmetric around zero. For n,m ∈ N, the

discrete B-spline bn
m(k) is defined [5], [6] as a sequence of integral samples of the corresponding

(n-th order) continuous B-spline, expanded by a factor of m; in other words, bn
m(k) = βn( k

m
). Let

us denote by F (z), Bn
m(z), and C(z) the z-transforms of f(k), bn

m(k), and c(k) respectively. If in

(1) we fix fn
c (k) = f(k),∀k ∈ Z, which is often a natural choice in signal representation, we can

rewrite (1) by restricting t to integers as

F (z) = C(z)Bn
1 (z). (3)

1For more detailed discussion of B-splines and their properties, reader is referred to [2] and [6].
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Figure 1: Block diagram of the B-spline signal interpolation.

As shown in [4], all zeros of Bn
1 (z) for all n ∈ N are real and negative and none of them is equal

to −1. Moreover, since it is a symmetric polynomial, if Bn
1 (z) vanishes at z = zi, then it will

also vanish at z = z−1
i . Therefore, by carefully choosing the region of convergence, we can make

[Bn
1 (z)]−1 stable, but noncausal IIR. The poles of that filter for different values of n are tabulated in

[7], p. 837, Table I. It is clear from (3) that given the input sequence f(k), its B-spline coefficients

c(k) are obtained by performing the “direct B-spline transform,” i.e. in the z-domain by multiplying

F (z) by [Bn
1 (z)]−1. Since the latter transfer function is noncausal, a two-pass recursive algorithm

is necessary, as described in [5] and [7].

Signal interpolation is now one step away. Having obtained the coefficients c(k) as previously

described, we just need to recall that the spline interpolation by an integral factor m of the signal

f(k) is given by fn
c ( k

m
), which we will denote by fn

m(k). From (1) we now have

fn
m(k) =

∞
∑

l=−∞

c(l)bn
m(k − lm), (4)

so that the overall system for interpolation is shown in Fig. 1. The operation of interpolative

signal reconstruction in (4) is called the “indirect B-spline transform”. The digital filter Bn
m(z) is

symmetric FIR. Moreover, it has a special structure as described in [6]. When m and n are not

both even, it can be decomposed as

Bn
m(z) =

zα

mn

(

1− z−m

1− z−1

)n+1

Bn
1 (z) = zαm[Mm(z)]n+1Bn

1 (z), (5)

where α = (m−1)(n+1)/2, and the filter Mm(z) = 1
m

(1+z−1 + . . .+z−(m−1)) will be referred to as

the running sum. The decomposition as in (5) is beneficial from the point of view of computational

complexity for m ≥ 3. However, note that the digital filter Bn
m(z) operates at a higher rate,

because the input signal has m times more samples (in each dimension), and this makes the filtering

operation costly.
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3 FIR TRUNCATION OF THE DIRECT B-SPLINE FILTER

It has been noticed that the poles of the direct B-spline filter lie far from the unit circle, at least

for spline orders that are most commonly used in practice. This causes the impulse response of

the noncausal IIR filter [Bn
1 (z)]−1 to decay very fast. The central part of the impulse response of

the cubic direct B-spline filter is shown in Fig. 2. Let us denote by γ3
1(k) the impulse response of

[B3
1(z)]−1 and by h5(k) the five-tap truncation of γ3

1(k); in other words

h5(k) =

{

γ3
1(k) for −2 ≤ k ≤ 2

0 otherwise

and similarly by h7(k) the seven-tap truncation of γ3
1(k). Then the relative energies in the cropped

parts are given by
||γ3

1(k)− h5(k)||22
||γ3

1(k)||22
= 0.00069061,

||γ3
1(k)− h7(k)||22
||γ3

1(k)||22
= 0.00004958.

This implies that even for severe truncations, such as length five or length seven, the resulting

projection coefficients c̃(k) from Fig. 1 will only become slightly perturbed. It is important to

note here that the resulting interpolated signal f̃n
m(k) is still an oversampled polynomial spline

of order n, only the values at its knots will not correspond to the starting signal f(k), but some

slightly different signal f̃(k). The resulting signal fn
m(k) remains in the desired space, so that all

the differentiability properties of f n
m(t) are preserved. This, of course, holds true for any choice of

the prefilter. In particular, it will hold if instead of plain truncation of the impulse response from

Figure 2: Impulse response γ3
1(k) of the direct cubic B-spline filter [B3

1(z)]−1 for |k| ≤ 9.
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Fig. 2 (which corresponds to multiplying it with the rectangular window), some other windowing

technique is used. This approach has proved to be beneficial.

In the experiments we used eleven different regions from different images. These testing exam-

ples were selected on the basis of diversity in content, edge information and contrast, so that the

results would give a comprehensive picture of the comparative performance. These regions (ten

of them are 150 × 150 pixels and one is 200 × 200 pixels) were the inputs2 into the interpolation

scheme from Fig. 1. Cubic B-splines (n = 3) were used, since they appear to be particularly pop-

ular among researchers. The interpolation was by a factor m = 3. We compared the performance

of four different schemes:

1. the noncausal IIR implementation (NONCIIR), as in [5] or [7];

2. the implementation where the direct B-spline filter from (1) is replaced by its five-tap trun-

cation (5TFIR);

3. the implementation where the direct B-spline filter from (1) is replaced by its seven-tap

truncation (7TFIR), and

4. the implementation where the direct B-spline filter from (1) is replaced by a five-tap Kaiser

windowed truncation (5KFIR).

The optimal Kaiser parameter3 βopt in 5KFIR will be the one that maximizes the PSNR of the ap-

proximation f̃n
m(k) with respect to the exact cubic spline interpolant f n

m(k) obtained by NONCIIR,

after normalization and storing the result in a byte-format. This value βopt will obviously depend

on the signal f(k). Therefore, our approach was to find the optimal values βopt for each of the

eleven training examples and then use the weight-averaged value as the universal parameter βuniv.

The weights were chosen to be proportional to the corresponding PSNR value, so that the βopt from

the good training images are favored. The truncated impulse responses were scaled in order for

the resulting system to preserve the average value of the input. The PSNR values were computed

according to the formula

PSNR = 20log10

255mN

||f̃n
m(k) − fn

m(k)||2
,

where the size of the input image is N × N . In Table 1, the PSNRs of the images obtained by

methods 2, 3 and 4 with respect to the image obtained by method 1 are given. The optimal values

of Kaiser parameters for different training images and the corresponding PSNRs are shown in Table

2Note that both direct and indirect B-spline transforms are separable, so that on a two-dimensional signal we just
need to perform successive one-dimensional filtering along each of the coordinates.

3The Kaiser windowing technique (see [12]) contains two parameters: N , which is equal to 5 in this case, and β.
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Image 5TFIR 7TFIR 5KFIR

Airplane 44.2 52.2 56.4
Barbara 43.7 52.3 53.3
Boat 43.0 50.9 53.4
Feynman 44.7 52.1 56.5
France 39.6 50.2 44.0
Goldhill 44.7 52.2 52.5
Lena 42.8 50.8 54.4
Mandril 40.1 49.3 47.4
Mountain 37.2 46.3 42.0
Parrots 40.7 48.9 52.9
Peppers 45.5 52.7 53.6

Table 1: Comparing the PSNR values in dB of
three different methods with respect to the tra-
ditional NONCIIR method; the universal Kaiser
parameter βuniv = 1.76.

Image βopt PSNR [dB]

Airplane 1.87 56.7
Barbara 1.76 53.3
Boat 1.81 53.5
Feynman 1.91 57.0
France 1.48 44.6
Goldhill 1.71 52.5
Lena 1.85 54.6
Mandril 1.65 47.5
Mountain 1.56 42.5
Parrots 1.87 53.1
Peppers 1.79 53.6

Table 2: The optimal values for the Kaiser pa-
rameter and the corresponding PSNRs in the
method 5KFIR.

2. These PSNR values are so high that it is hard to see any differences. We demonstrate this point

in Figs. 3-6, where the four resulting images for the input image Mountain are shown; note that this

was the image with the worst overall performance according to the PSNR values, yet the differences

are hardly noticeable. From Table 1, we can see that the error increases in the testing examples

where the high frequency content is significant, which is expected. As mentioned in [5], the direct

B-spline transform tends to enhance the high frequencies. After truncating its impulse response

we are slightly degrading that performance, and hence the error is more noticeable. However, the

average human visual system cannot detect the difference. The coefficients of the five-tap filter

H5(z) used in method 4 are given in Table 3. Notice that this filter is symmetric FIR of length 5,

which makes the filtering operation very easy to implement. Furthermore, and most importantly,

fast all-FIR implementation can be used in real-time interpolation of one-dimensional signals,

which cannot be achieved with the two-pass recursive algorithm as the one described in [7].

The idea of truncating an IIR impulse response is by no means new to the signal processing

community. It has also been proposed in a similar setting [8] in which the goal was to find the

inverse of an FIR filter. However, the solution proposed in [8] minimizes the mean-squared error at

the output c̃(k) of the FIR approximation, which, in general, will not yield the best approximation

at the output f̃n
m(k) of the interpolation system of Fig. 1. Moreover, it is a simple exercise to

show that the best FIR approximation in this context (minimizing the mean-squared error of the

output f̃n
m(k)) is signal-dependent. Therefore, the Kaiser-windowed filter from Table 3 should be

7



Figure 3: Cubic spline interpolation of Moun-
tain image using the NONCIIR method.

Figure 4: Approximate cubic spline interpo-
lation of Mountain image using the 5TFIR
method.

Figure 5: Approximate cubic spline interpo-
lation of Mountain image using the 7TFIR
method.

Figure 6: Approximate cubic spline interpo-
lation of Mountain image using the 5KFIR
method, β = 1.76.
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0.06049527 -0.37739071 1.63379087 -0.37739071 0.06049527

Table 3: Coefficients of the five-tap Kaiser windowed approximation H5(z) of the direct B-spline
filter [Bn

1 (z)]−1.

viewed just as one possible solution that yields good results on a variety of examples. We compared

the performance of this 5KFIR method to the least-squares five-tap approximation as in [8] and

found the 5KFIR to be superior in all but the three images with significant high frequency content

(France, Mandril and Mountain).

4 POLYPHASE-BASED SIMPLIFICATION OF THE INDIRECT

B-SPLINE FILTER

The digital filter Bn
m(z) appearing at the final stage of the interpolation process showed in Fig. 1

is a symmetric FIR filter of length4 (n + 1)m− 1. However, it operates on the signal that is dense

with zeros (from the expander by m) and therefore it is to be expected that the total number of

operations per input pixel could be reduced. The implementation of the indirect B-spline filter

proposed in this section will achieve this as well as allow for some flexibility in design.

The filter Bn
m(z) can be written in a Type 2 polyphase form [9] as

Bn
m(z) =

m−1
∑

l=0

zlRl(z
m), (6)

where Rl(z), for 0 ≤ l ≤ m− 1 is the l-th polyphase component of Bn
m(z). Notice that (according

to our notation) for l > 0, the length of Rl(z) is n+1, and that R0(z) = Bn
1 (z). Now, we can move

the expander from Fig. 1 past those polyphase components and get the scheme shown in Fig. 7,

where the switch is in the position CUBIC. This scheme is completely analogous to the one in Fig.

1 when we substitute the direct B-spline filter by its five-tap truncation. The performance of this

scheme was reported in Section III. However, the scheme of Fig. 7 has the advantage that all the

polyphase component filters operate at the lower rate than the composite interpolation filter Bn
m(z).

Furthermore, in the ideal case when instead of H5(z) in Fig. 7, there is [Bn
1 (z)]−1, we can see that

R0(z) and [Bn
1 (z)]−1 cancel out, which results in the scheme with the switch in the position REVER

(reversible). The advantage of this scheme over the previous one is that the complexity is even

lower and the interpolation becomes completely reversible, in the sense that [f̃n
m(k)]↓m = f(k).

The only price to pay in this case is that now the signal f̃n
m(k) does not represent exactly the cubic

4For simplicity of presentation, in the following we assume that the order of spline n is odd. Similar analysis can
be performed for n even, and all the main results continue to hold.
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Figure 7: Modified scheme for interpolation, simplified using the polyphase decomposition.

spline interpolant of some perturbed signal f̃(k), but is modified at the knots of that interpolant

in order to agree with the exact signal f(k).

Therefore, the scheme in Fig. 7 allows for a choice between two desirable properties of signal

interpolation. With the switch in the position CUBIC the resulting signal is an oversampled

piecewise polynomial with all the desirable smoothness properties, but the interpolation is not

reversible. However, from the PSNR values presented in Tables 1 and 2, one can easily conclude

that the errors introduced in the original signal positions are quite small. On the other hand, when

the switch is in the position REVER the interpolation becomes reversible, but the output samples

are not obtained by oversampling a spline. Considering the specific application, the designer can

choose between these two implementations. It is important to note that the average value of the

input is preserved by both implementations. This first order approximation is achieved by scaling

the truncated impulse response of the direct spline filter H5(z) as mentioned in Section III.

Repeating the same experiments as shown in Tables 1 and 2, but with the scheme from Fig.

7, switch in position REVER, we found that the PSNR values improved by 1 to 2 dB, so that for

example the worst PSNR for the five-tap Kaiser windowed truncation, using βuniv = 1.77 was 44.0

dB (Mountain image).

Now we give a quantitative estimate of the reduction in complexity of the indirect B-spline
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transform alone. Consider the case of interpolating a square image (dimensions N ×N) by a factor

m, using the n-th order spline. We will compare the complexity of three different methods:

1. just FIR filtering with Bn
m(z) (we call this complexity CFIR);

2. decomposing Bn
m(z) as in (5): Bn

m(z) = zαm[Mm(z)]n+1Bn
1 (z) (complexity Cdecom), and

3. polyphase representation as in Fig. 7, with the switch in position REVER (complexity Cpoly).

The filter Bn
m(z) is symmetric and of length (n+1)m−1, which implies m(n+1)/2 multiplications

and m(n+1)−2 additions per input sample, per dimension. The size of the input image is (Nm)2,

so that in terms of only multiplications and additions:

CFIR = N2m3(n + 1) [MUL] + 2N 2m2[m(n + 1)− 2] [ADD].

If we use the decomposition given by method 2, we should also notice that mMm(z) applied to the

upsampled image corresponds just to repeating the pixel values, and therefore, we should count the

complexity of Bn
1 (z) plus that of n running sums only. The complexity of Bn

1 (z) is (n−1) additions

and (n + 1)/2 multiplications per input sample, per dimension. As for the running sums Mm(z),

each of those demands two additions and one multiplication per input sample, per dimension. Thus

the complexity of this filtering becomes:

Cdecom = N2m2(3n + 1) [MUL] + N 2m2(6n− 2) [ADD],

which is more efficient than CFIR for larger values of m. In the polyphase realization from Fig. 7,

we have (m − 1) FIR filters Rl(z), 1 ≤ l ≤ m − 1, each of length (n + 1). These require (n + 1)

multiplications and n additions per input sample in each of the two stages (one stage per dimension).

The size of the input signal to the first stage is N 2 and to the second stage is N 2m. However, in

the second stage, the polyphase component R0(z) needs to operate on a fraction (m− 1)/m of the

input pixels, so that the complexity of the implementation 3 becomes:

Cpoly = N2(m2 + m− 2)(n + 1) [MUL] + N 2(m2 + m− 2)n [ADD],

and this is clearly superior to the two previous methods. Moreover, note that many operations

in the third method are performed in parallel, so that the filters can operate at the lower rate.

Computational complexities of the three methods are compared in Table 4. In this example, n = 3,

m = 4, and the size of the input image is N ×N .

11



Operation Method 1 Method 2 Method 3

MUL 256N 2 160N2 72N2

ADD 448N 2 256N2 54N2

Table 4: Computational complexities of the indirect B-spline transform for n = 3 and m = 4,
implemented using three different methods.

n Ntap βuniv average PSNR [dB]

3 5 0 42.4
5 7 2.93 44.8
7 9 3.10 43.4

Table 5: The Kaiser parameters βuniv and the corresponding PSNR values achievable for different
spline orders n and number of taps Ntap in the FIR approximation of [Bn

1 (z)]−1.

5 OTHER APPLICATIONS AND REMARKS

5.1 Higher Order Spline Interpolation

In Section III we showed that noncausal IIR filters [Bn
1 (z)]−1 can in most applications be replaced by

relatively short FIR filters. We demonstrated our point on the example of cubic spline interpolation.

Sometimes it is desirable to use higher order splines. In the method proposed by Unser et al. [7], the

complexity of the direct B-spline filtering grows linearly with the spline order, since they obtain the

higher order solution by cascading the noncausal IIR blocks. However, the poles of the higher order

B-spline filters are still far from the unit circle. For example, the 7-th order direct B-spline filter

has three poles inside the unit circle (the other three are reciprocals of these) and all of them have

magnitudes less than 0.54. That is why the same method of IIR truncation still yields good results,

and even at sublinear growth with respect to the filter length. We performed experiments on the

same set of eleven images mentioned earlier.5 Our goal was to find the length of the Kaiser window

(with some universally selected parameter βuniv), such that the resulting FIR approximation of the

filter [Bn
1 (z)]−1 would produce PSNRs similar to those obtained by the 5TFIR method, for n = 3

(which still produced visually good results). The conclusion is that for n = 5 it is enough to use

a seven-tap FIR, and for n = 7 it suffices to use a 9-tap FIR. The values of the universal Kaiser

parameters and the obtained average PSNRs on the set of testing images are shown in Table 5.

The first row in that table corresponds to the 5TFIR method, and thus βuniv = 0 in this case.

5All the images used for testing, as well as the Matlab code are available on [15].
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5.2 Differentiation

Besides signal interpolation, B-splines find their application in other signal processing techniques,

such as edge detection and noise reduction (e.g. see [6]). The reason for this is that many operations

performed in the digital domain are nothing but the discretized continuous domain operations.

Differentiation is one such example. While well-defined for continuous signals, it is an ill-posed

problem for digital signals. That is why some discrete approximations, such as the finite difference

operator, are used instead. However, by utilizing the spline model for the continuous underlying

signal, it is possible to find a very elegant solution for signal differentiation (as shown by Unser et

al. [6]), and implement it completely in the digital domain. The first step in this implementation

is once more the direct B-spline filtering. The same approach of Kaiser windowing the direct B-

spline impulse response (Kaiser window of length 5 with βuniv = 1.76 for n = 3) was tested in this

application, and the result is satisfactory. The PSNR values with respect to the exact gradient-

based method using IIR filter [Bn
1 (z)]−1 (cf. [7], Sec. IV-A) were ranging from 33.7 dB (Airplane

image) to 22.6 dB (Mountain image). Since the output of the edge detector is a binary image, a

fair way to express those results would be to specify the percentage of the pixels in error. The edge

information in the Airplane image differed in 0.04 percent of the pixels, whereas in the Mountain

image it differed in 0.55 percent of the pixels. In Fig. 8 and Fig. 9, the visual comparison between

the exact edge detector and this all-FIR approximation is provided for the Lena image. Both images

are displayed at the lower resolution for easier comparison. The differences are hardly noticeable

(and the PSNR between the two images is 27.0 dB).

Figure 8: Edge detection using the first deriva-
tive and cubic spline model; exact implementa-
tion based on NONCIIR method.

Figure 9: Edge detection using the first deriva-
tive and cubic spline model; approximation
based on 5KFIR method, β = 1.76.
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Figure 10: Block diagram of the least squares spline filtering.

5.3 Least Squares Spline Approximation

Least squares splines are sometimes used for noise reduction. The idea is to model the unknown non-

corrupted signal as a spline with fewer degrees of freedom, which actually becomes an oversampled

spline. The oversampling parameter m determines the degree of smoothness. Although this model

is not accurate for most natural signals, the expectation is that having fewer degrees of freedom

will impose some smoothness constraints on the resulting signal, and thus eliminate the noise. The

reconstruction part is, therefore, identical to the one shown in Fig. 1, and is presented in the

right half of Fig. 10. The projection coefficients c(k) are obtained by projection prefiltering.

This prefiltering part is such that the resulting signal f̃(k), which belongs to the space of n-th

order splines oversampled by m is closest to the noisy signal f(k) in the l2 norm. The prefiltering

operation is unique [10] and the complete projection scheme is demonstrated in Fig. 10. Here, the

filter P n
m(z) is given by:

P n
m(z) = ([(Bn

m(z))2]↓m)−1. (7)

This filter is again a noncausal IIR filter. Its properties are briefly mentioned in [7] and the main

result is that as m grows larger, the poles of P n
m(z) get closer to those of [B2n+1

1 (z)]−1, and even for

m = 3 the corresponding poles are quite close (the difference is within 0.5 percent). As a result, this

IIR filter can safely be replaced by the Kaiser windowed truncation of the corresponding impulse

response, which is again symmetric. This assertion was verified by the experiment on the same

set of images, with m = 3 and n = 3, so that the poles of P 3
3 (z) were quite close to those of

[B7
1(z)]−1, and therefore, we chose the same value for the Kaiser parameter: βuniv = 3.10 and the

window of length 9, as suggested by Table 5. The average PSNR with respect to the IIR method

was 41.2 dB, which still qualifies as the good approximation with hardly noticeable differences. It

is worth mentioning that the complexity of this method can further be reduced by deploying the

same polyphase decomposition trick on both Bn
m(z) filters (as described in Section IV), and moving

the decimator/expander past those filters, thus lowering the operating rate.
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6 CONCLUSION

There are several existing interpolation techniques well-known in computer graphics, that do not

require prefiltering and that can be performed using only FIR-type operations. The method of

quasi-interpolation [13] reproduces polynomials up to degree n at the expense of changing the

original signal values (being nonreversible). As opposed to that, various subdivision schemes [14]

(e.g. cubic Lagrange subdivision) achieve reversible interpolation, but sacrifice the approximation

order.

In this work we propose a simplified, all-FIR implementation of signal interpolation based on

piecewise polynomial models, the motivation being that the original cardinal spline interpolation

method [5] provides good approximation order while being reversible. However, in the original

method this is achieved with noncausal IIR filtering. In our approximate method, the interpola-

tive signal reconstruction (indirect B-spline filtering) is realized efficiently using the polyphase

decomposition. The proposed structure allows for an additional flexibility: the designer can choose

between a nonreversible spline interpolation and a lower complexity reversible interpolation. As

for the direct B-spline transform, it is shown that noncausal IIR filtering can be replaced by short

FIR filtering without compromising the visual quality of the interpolated image. These findings

are extended to two other B-spline processing applications, namely signal differentiation and least

squares approximation.
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