
MIMO BIORTHOGONAL PARTNERS AND APPLICATIONS∗

Bojan Vrcelj and P. P. Vaidyanathan
Contact Author: P. P. Vaidyanathan, Department of Electrical Engineering 136-93,

California Institute of Technology, Pasadena, CA 91125 USA,
Phone: (626) 395-4681 E-mail: ppvnath@systems.caltech.edu

October 30, 2001

EDICS number: 2-MWAV

ABSTRACT

Multiple InputMultiple Output (MIMO) biorthogonal partners arise in many different contexts, one

of them being multiwavelet theory. They also play a central role in the theory of MIMO channel

equalization, especially with fractionally spaced equalizers. In this paper we first derive some

theoretical properties of MIMO biorthogonal partners. We develop conditions for the existence of

MIMO biorthogonal partners and conditions under which FIR solutions are possible. In the process

of constructing FIR MIMO biorthogonal partners we exploit the non-uniqueness of the solution.

This will lead to the design of flexible fractionally spaced MIMO zero-forcing equalizers. The

additional flexibility in design makes these equalizers more robust to channel noise. Finally, other

situations where MIMO biorthogonal partners occur will also be considered, such as prefiltering in

multiwavelet theory and deriving the vector version of the least squares signal projection problem.

∗Work supported in part by the National Science Foundation under grant MIP 0703755.
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1 Introduction

Digital filters H(z) and F (z) are called biorthogonal partners of each other with respect to an integer

M if their cascade H(z)F (z) obeys the Nyquist(M) property [20]. The theory of biorthogonal

partners was developed recently in [20] for the simple, single input single output (SISO) case.

Multiple input multiple output (MIMO) biorthogonal partners are defined using a similar approach

[24, 23]. However, in the MIMO case the “biorthogonal partner” relation is not symmetric, so we

distinguish between a left biorthogonal partner (LBP) and a right biorthogonal partner (RBP). In

this paper we first derive some theoretical properties of MIMO biorthogonal partners. Many of

these properties are extensions to the vector case of some known results from the case of scalar

signals [20]. However, some of the properties take a different form in the case of vector signals

and, furthermore, lead to some new applications. One of the applications of MIMO biorthogonal

partners that will be explored in this paper is the equalization of vector digital communication

channels. Specifically, we will be interested in zero-forcing fractionally-spaced MIMO equalizers.

Fractionally-spaced equalizers (FSE) demonstrate many advantages over symbol-spaced equalizers

(SSE), such as the existence of an FIR solution and reduced sensitivity to the shift in sampling

instances [11]. Moreover, the FSE turns out to be a particular form of a biorthogonal partner of the

equivalent channel transfer matrix and therefore we can resort to the theory of MIMO biorthogonal

partners in the process of designing fractionally spaced equalizers.

1.1 Paper Outline and Relation to Past Work

In Sec. 2 we introduce the precise definition of MIMO biorthogonal partners. We derive a general

closed form expression for a MIMO transfer function H(z) to be a biorthogonal partner of F(z).

We also derive a set of necessary and sufficient conditions on F(z) which allow for the existence of

its MIMO biorthogonal partner.

In Sec. 3 we consider FIR MIMO biorthogonal partners in greater detail. A set of necessary and

sufficient conditions for the existence of FIR MIMO biorthogonal partners will be derived. We will

also concentrate on the fact that the FIR MIMO biorthogonal partner (if it exists) is not unique.

In Sec. 4 we will exploit this non-uniqueness in order to reduce the noise power at the output of

fractionally spaced equalizers for vector channels. Finally, we will address the performance of our

algorithms through simple examples of fractionally spaced equalizers (FSE) for vector channels.

In Sec. 5 we deal with other possible applications of MIMO biorthogonal partners. In particular,

we will review their role in the least squares approximation of vector signals. In the context of this
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paper the least squares problem will be limited to that of finding the approximation for a vector

signal x(n) within a certain signal model. In the scalar case the idea originated in the context

of spline interpolation [3], where it was suggested that the signal corrupted by noise could be

approximated within the model of oversampled splines. We show that in the vector signal case

the solution to this problem involves a particular form of MIMO biorthogonal partners. This

work is also closely related to the concept of oblique projections studied intensively in [1] and [2].

Finally, we will consider the relation between biorthogonal partners and multiwavelets. In one of

the pioneering works on the subject [26], the use of prefiltering for multiwavelet transform was

introduced. In this contribution we consider the prefiltering problem in the light of biorthogonal

partners and draw the connection between the two. Portions of this paper have been presented at

the ICASSP 2001 and ICC 2001 conferences [23, 24].

1.2 Notations

If not stated otherwise, all notations are as in [19]. We use the notation [x(n)]↓M and [X(z)]↓M to

denote the decimated version x(Mn) and its z-transform. The expanded version

{
x(n/M) for n = mul of M,
0 otherwise

is similarly denoted by [x(n)]↑M , and its z-transform X(zM ) denoted by [X(z)]↑M . In a block

diagram, the scalar decimation and expansion operations will be denoted by encircled symbols

↓ M and ↑ M respectively. In the case of vectors and matrices, the decimation and expansion are

performed on each element separately. The corresponding vector sequence decimation/expansion

symbols are placed in square boxes as in Fig. 2.

The polyphase decomposition [19] is also valid in the matrix case. Thus for example if F(z) is

a matrix transfer function, then it can be written in the Type-2 polyphase form as

F(z) =
M−1∑
k=0

zkFk(zM ). (1)

If not mentioned otherwise, all the matrices in this paper are rectangular. It is implicit that their

dimensions are such that the matrix products in question are well defined and that the product

matrix has the appropriate size.

2 MIMO Biorthogonal Partners: Definition and Properties

We start the discussion in this section by defining the notion of a MIMO biorthogonal partner.

3



x(n)
x0

x(n)

M
xL�1

x1 H(z)

g(n)

F(z)

M

M

M

M

M

Figure 1: Block diagram interpretation of a left biorthogonal partner.

Definition 1. MIMO Biorthogonal partners. A MIMO transfer function H(z) is said to

be a left biorthogonal partner (LBP) of F(z) with respect to an integer M if

[H(z)F(z)]↓M = I (2)

Similarly, a MIMO transfer function H(z) is said to be a right biorthogonal partner (RBP) of F(z)

with respect to an integer M if [F(z)H(z)]↓M = I.

The interpretation of the first part of the above definition is shown in Fig. 1. Recall that the

multirate system in Fig. 1 is just an LTI system with transfer function [H(z)F(z)]↓M , which under

the condition (2) becomes the identity. It can be seen that if H(z) is a LBP of F(z) this implies

that F(z) is a RBP of H(z), but it does not imply that H(z) is also a RBP of F(z). The latter

would happen if, for example, the two matrices commuted. The other important point to make

here is that if M is changed, the two filters might not remain partners. However, we will often omit

the term “with respect to M”, since it will usually be understood from the context.

In the following we concentrate on the issues of existence and the general form of MIMO

biorthogonal partners. The first result gives the most general form of a biorthogonal partner. In the

subsequent discussion, the question of uniqueness of biorthogonal partners will also be addressed.

The second result states necessary and sufficient conditions on a transfer matrix F(z) and integer

M such that there exists a biorthogonal partner of F(z) with respect to M .

2.1 General Expression

We first derive a general expression for H(z) in terms of F(z) in Fig. 1. The theorem has two

parts, one for left biorthogonal partners and the other for right biorthogonal partners. It is very

intuitive that whatever holds for LBPs should also hold for RBPs (in a slightly modified form),

and this comes into play in the proof of the Theorem 1.
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Figure 2: Pertaining to the proof of Theorem 1.

Theorem 1. General form of biorthogonal partner.

1. A MIMO transfer function H(z) is a LBP of F(z) if and only if it can be written in the form

H(z) = ([G(z)F(z)]↓M↑M )−1 G(z) (3)

for some MIMO transfer function G(z).

2. A MIMO transfer function H(z) is a RBP of F(z) if and only if it can be written in the form

H(z) = G(z) ([F(z)G(z)]↓M↑M )−1 (4)

for some MIMO transfer function G(z).

Proof. First we will prove the “if part” of the statement one. Given H(z) as in (3), we have

[H(z)F(z)]↓M = [([G(z)F(z)]↓M↑M )−1 G(z)F(z)]↓M = ([G(z)F(z)]↓M )−1 [G(z)F(z)]↓M = I

The “if part” of the second statement follows in the same manner. Now we will prove the “only

if part” of the second statement. For this, first consider Fig. 2(a). Here xi(n) is an arbitrary

vector sequence and gi(n) is the corresponding output of H(z). By assumption H(z) is a RBP of

F(z) and from the definition we have that the output of the system has to be xi(n) again. However,

this also means that the signal gi(n) when input to the system in Fig. 2(b) comes out as gi(n).

Thus we have

H(z)[F(z)Gi(z)]↓M↑M = Gi(z). (5)

This equality holds for any Gi(z) obtained as in Fig. 2(a). We repeat the procedure sufficient

number of times, each time taking Xn(z) to be linearly independent from the previous vectors X1(z),

X2(z), ... Xn−1(z). Collecting those vectors as columns in a matrix X(z), and the corresponding

vectors Gi(z) in a matrix G(z), we have the following

H(z)[F(z)G(z)]↓M↑M = G(z)
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which after solving for H(z) gives

H(z) = G(z) ([F(z)G(z)]↓M↑M )−1 (6)

and this concludes the proof of (4). Notice that [F(z)G(z)]↓M↑M = [X(z)]↑M so that by choosing

the sequences xi(n) carefully we can ensure that the matrix inversion in (6) is valid. Now we move

on to prove the “only if part” of the first statement. For this we notice that if H(z) is a LBP of

F(z), then HT (z) is a RBP of FT (z), with the superscript T denoting the transpose of a matrix.

Thus from (4) we have

HT (z) = GT (z)
(
[FT (z)GT (z)]↓M↑M

)−1
,

for some matrix GT (z). Finally, taking the transpose of both sides we arrive at (3) and this

concludes the proof. ���
In the proof of Theorem 1 we used the idea of “transposing the result” for RBP in order to

prove a similar result for LBP. The same trick could also be used for the remaining results in the

paper. That is why we will consider only left biorthogonal partners in the following; very similar

results hold for right biorthogonal partners.

Clearly, from the equations (3) and (4) we have that MIMO biorthogonal partners are in general

not unique. Any stable transfer matrix G(ejω) such that det
(
[G(ejω)F(ejω)]↓M

)
is nonzero for all

ω gives rise to a stable LBP of F(z). The similar conclusion holds for right biorthogonal partners.

Here are some special cases of interest.

Example 1. In the square case, if
∣∣det [F(ejω)

]∣∣ > 0 for all ω then H(z) = F−1(z) is a theoreti-

cally stable biorthogonal partner (both LBP and RBP) of F(z). It can be obtained from (3) or (4)

with the choice G(z) = F−1(z). This is conceptually the simplest biorthogonal partner.

Example 2. If the construction of biorthogonal partners from Example 1 does not work for a

particular F(z), we can try the following. Suppose that det
[
[F(ejω)]↓M

]
is nonzero for all ω. This

condition is easily verified to be looser than the one in the previous example. Then, substituting

G(z) = I in (3) or (4) we get a biorthogonal partner H(z) = ([F(z)]↓M↑M )−1.

Example 3. To get yet another solution for a LBP, consider the matrix filter

H(z) =
(
[F̃(z)F(z)↓M↑M

)−1
F̃(z),

where F̃(z) = F†(1/z∗). This solution is obtained from (3) with G(z) = F̃(z), and is valid as long

as det
(
F†(ejω)F(ejω)]↓M

)
is nonzero on the unit circle. In the rest of the paper this solution will

play a significant role, because it occurs in several different contexts.
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2.2 Existence

In the following, we look into the problem of the existence of biorthogonal partners more closely.

We present a necessary and sufficient condition on a MIMO transfer function F(z) for the existence

of its MIMO biorthogonal partner H(z). Throughout this paper by “existence of a biorthogonal

partner” we actually mean “existence of a stable biorthogonal partner”.

Theorem 2. Existence of LBP. A MIMO transfer function F(z) with the Type-2 polyphase

form as in (1) has a LBP if and only if the following implication holds for each ω in 0 ≤ ω < 2π

CT (ejω)[FT
0 (e

jω) FT
1 (e

jω) · · · FT
M−1(e

jω)] = 0 ⇒ C(ejω) = 0.

Therefore, for any fixed ω there cannot exist a nonzero common annihilating vector C(ejω) for

all the M polyphase components of F(ejω). Note that in order for F(z) to have an inverse we need

to have det[F(ejω)] �= 0, for all ω, and that condition is stricter than the one in Theorem 2.

Proof. We start by proving the forward part of the theorem, i.e. supposing H(z) is a stable

LBP of F(z), we need to show that there cannot exist a nonzero common annihilating vector

C(ejω). By the supposition we have that [H(z)F(z)]↓M = I and that implies that there cannot

exist a nonzero vector C(z) such that F(z)C(zM ) = 0. Indeed, if we assume there exists such

nonzero vector C(z), we end up with the following contradiction

0 = [H(z)F(z)C(zM )]↓M = C(z).

Rewriting F(z) in the Type-2 polyphase form (1) we then have that there cannot exist a nonzero

vector C(z) such that
M−1∑
k=0

zkFk(zM )C(zM ) = 0

or equivalently, such that

Fk(z)C(z) = 0 ∀k, 0 ≤ k ≤ M − 1.

Therefore, if there exists a stable LBP of F(z), then there cannot exist a common nonzero annihi-

lating vector C(ejω) for all the M polyphase components Fk(ejω).

Now we proceed to prove the converse. To that end we suppose that for no ω does there exist

a common nonzero vector C(ejω) that annihilates all the M polyphase components Fk(ejω). That

is to say, given any ω ∈ [0, 2π) such that C(ejω) �= 0, there exists k such that Fk(ejω)C(ejω) �= 0.

This implies that the following matrix S(ω) is positive definite for all ω

S(ω) =
M−1∑
k=0

F†
k(e

jω)Fk(ejω). (7)
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To justify this, observe that for any vector C(ejω) and S(ω) as in (7), the entity C†(ejω)S(ω)C(ejω)

is a summation of nonnegative terms. Moreover, as asserted previously, for any nonzero choice of

C(ejω) at least one of those terms is strictly positive, so that the overall result is positive. Now

we observe that the matrix S(ω) defined by (7) can be rewritten as S(ω) = [F†(ejω)F(ejω)]↓M and

from the previous discussion we have that

det
(
[F†(ejω)F(ejω)]↓M

)
> 0. (8)

The final conclusion is that if there does not exist a common nonzero annihilating vector C(ejω)

for all the M polyphase components Fk(ejω) then F(z) has a stable LBP. In particular, one such

LBP is obtained as in Example 3 and is given by

H(z) =
(
[F̃(z)F(z)↓M

)−1

↑M
F̃(z). (9)

This concludes the proof. ���
In the following we will see that the LBP given by (9) has some other interesting properties.

The next corollary asserts that if F(z) has any LBP, the choice (9) will be a valid one.

Corollary 1. A MIMO transfer function F(z) has a left biorthogonal partner if and only if

S(ω) = [F†(ejω)F(ejω)]↓M is a positive definite matrix for all ω in the range [0, 2π).

Proof. If [F†(ejω)F(ejω)]↓M is a positive definite matrix for all ω then (8) holds and thus (9) is

a valid choice for LBP. Conversely, suppose that there exists a stable LBP of F(z). Consider S(ω),

which is obviously a positive semi-definite matrix for all ω. Writing S(ω) as in (7) and recalling

from Theorem 1 that the polyphase components Fk(ejω) cannot have a common annihilating vector

we finally conclude that S(ω) has to be positive definite, which concludes the proof. ���

3 Existence of FIR LBP

In Theorem 2 and Corollary 1 we saw the necessary and sufficient conditions for a transfer matrix

F(z) to have a biorthogonal partner. In practice the situation of most significance is when F(z) is

a rational function of z. A question of considerable interest is the following: under what conditions

does a rational function F(z) have an FIR biorthogonal partner H(z)? In fact it suffices to pose

the previous question for any FIR filter F(z), which is evident by the following reasoning. Let

Fr(z) be an arbitrary rational transfer matrix and let D(z) be the least common multiple of the

polynomials appearing in the denominators of the rational entries of Fr(z). Then we can write

Fr(z) = F(z)/D(z), where F(z) is an FIR matrix. If there exists an FIR biorthogonal partner

H(z) of F(z), then Hr(z) = H(z)D(z) is the corresponding FIR biorthogonal partner of Fr(z).
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In view of all this, we begin the discussion in this section by finding the conditions for the

existence of an FIR biorthogonal partner of an FIR transfer matrix. To this end we need to revisit

the notion of greatest right common divisors (grcd) of polynomial matrices [19, 7]. In the linear

systems literature, grcd’s are most commonly defined for square matrices. In this setting, we will

extend this definition to the case of rectangular matrices. In principle, we can define the grcd of a

p1 × r polynomial matrix A(z) and a p2 × r polynomial matrix B(z) to be any m × r polynomial

matrix R(z) such that:

1. R(z) is a common right divisor of A(z) and B(z), i.e. there exist polynomial matrices A1(z)

and B1(z) such that A(z) = A1(z)R(z) and B(z) = B1(z)R(z);

2. If R1(z) is another m1×r common right divisor of A(z) and B(z), then R1(z) is a right divisor

of R(z), i.e. there exists a m × m1 polynomial matrix T(z) such that R(z) = T(z)R1(z).

However, for the purpose of this paper it is enough to consider only square grcd’s R(z), so from

now on by grcd we shall mean square grcd. Now we can state the following result.

Theorem 3. Existence of FIR LBP. Suppose F(z) is a causal and FIR p × r matrix, with

the Type-2 polyphase form as in (1). Then there exists a causal FIR r × p matrix H(z) such that

[H(z)F(z)]↓M = I if and only if grcd[F0(z),F1(z), . . . FM−1(z)] is a unimodular1 matrix R(z).

Before proceeding to the proof of Theorem 3, several comments are due. Given an arbitrary

MIMO transfer function, the grcd-condition is almost always satisfied. For example let

F(z) =
[
3 + 2z−1 + z−2 2 + 3z−1 + z−2

1 + 3z−2 2 + z−1 + 3z−2

]
.

The trivial biorthogonal partner (as in Example 1) is IIR in this case, since det [F(z)] = 4+4z−1+

6z−2 − 2z−3. However, it can be verified that the grcd of the two polyphase components of F(z) is

unimodular, with one solution being (for construction of a grcd, see [7])

R(z) = −2
[
4 2
0 1

]
.

Therefore, an FIR LBP for M = 2 indeed exists and one possibility is (see the proof of Theorem 3)

H(z) =
1
16

[
8 + 4z−1 + 3z−2 −8− z−2

−4− 8z−1 − 6z−2 12 + 2z−2

]
.

In the statement of Theorem 3 we have not assumed anything about the integers p and r - the

dimensions of F(z). It will soon become clear that the necessary relation between them is given by

r ≤ 2p. (10)
1A square polynomial matrix is said to be unimodular if its determinant is a nonzero constant.
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Also, the constraint on F(z) and its LBP to be causal is unnecessary; it can be avoided if we allow

the determinant of R(z) to be of the form czk, with k ∈ Z, rather than just a constant.

Proof of Theorem 3. First we consider the case M = 2. If F0(z) and F1(z) are right coprime

(which is equivalent to saying that R(z), i.e. the grcd[F0(z),F1(z)] is unimodular) then there exist

polynomial matrices H0(z) and H1(z) such that

H0(z)F0(z) + H1(z)F1(z) = I. (11)

This follows from the simple Bezout identity [7], extended to the rectangular case. (Although the

extension is straightforward, we summarize these results in the Appendix for convenience.) In fact,

from the construction for a grcd [7] it follows that there exists a unimodular matrix U(z) such that

r

2p−r

p p[
U11(z) U12(z)
U21(z) U22(z)

]
︸ ︷︷ ︸

U(z)

r[
F0(z)
F1(z)

]
p

p
=

r[
R(z)

0

]
r

2p−r
(12)

with indicated sizes of the building blocks. From (12) it is easy to see that we can choose

H0(z) = R−1(z)U11(z), H1(z) = R−1(z)U12(z) (13)

and that these are really polynomial (actually causal FIR) matrices since R(z) is unimodular.

So far we have considered the M = 2 case, but the extension to arbitrary M follows readily by

applying the rule

grcd0≤k≤M−1[Fk(z)] = grcd[FM−1(z), grcd0≤k≤M−2[Fk(z)]]. (14)

Now, suppose by contradiction that F(z) has a causal FIR LBP H(z), but that

grcd[F0(z),F1(z), . . . FM−1(z)] = C(z)

is not unimodular. Writing H(z) in the Type-1 polyphase form [19] we have

I = [H(z)F(z)]↓M =
M−1∑
k=0

Hk(z)Fk(z) =

(
M−1∑
k=0

Hk(z)F̂k(z)

)
C(z)

and it follows that
M−1∑
k=0

Hk(z)F̂k(z) = C−1(z).

The left hand side of the above equation is a causal FIR matrix (since all Hk(z) and F̂k(z) are

causal FIR), but the right hand side is not. This contradiction concludes the proof. ���
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Notice that (12) readily implies that r ≤ 2p in order for this particular construction to work.

To see that (10) has to hold for any FIR LBP to exist, observe that (11) can be rewritten as

[
H0(z) H1(z)

] [ F0(z)
F1(z)

]
︸ ︷︷ ︸

P(z)

= I.

If r > 2p, the matrix P(z) above becomes “fat”, i.e. has no left inverse, thus in this case there is

no FIR LBP of F(z). We return to this relation in Sec. 5, when we talk about multiwavelet theory.

It is important to notice here that, if it exists, FIR LBP is not unique. There are two reasons

for this. Firstly, the grcd of two matrices is unique only up to a premultiplication by a unimodular

matrix. Secondly, there are many unimodular matrices U(z) that satisfy (12) and each of them

provides a valid solution. The issue of parametrization of these solutions will be treated in the

following section. Also, notice that in the successive applications of the construction (12), as

implied by the right-hand side of (14), grcd’s of rectangular p × r matrices Fi(z) and square r × r

matrices R(z) are computed. The result will again be a r × r matrix, and the necessary condition

now becomes r ≤ p+ r, which is always satisfied. The sizes of the building blocks Uij(z) from (12)

will also need to be adjusted accordingly.

4 Application in Channel Equalization

In the following we will consider the case where an FIR LBP is used as a MIMO channel equalizer.

We will show that the flexibility in the choice of H(z) can be exploited in order to reduce the

undesirable amplification of the channel noise. But, before proceeding to these results, we give a

brief overview of some equalization techniques.

The discrete-time equivalent of a MIMO digital communication system with symbol-spaced

equalizer (SSE) [11] is shown in Fig. 3(a). The symbol rate at the input x(n) is 1/T . Notice that

the equalizer H2(z) works at the same rate (thus the name symbol-spaced equalizer). The discrete

versions of the pulse shaping filter and the channel, G2(z) and C2(z) respectively, are obtained by

sampling the corresponding continuous-time impulse responses also at the rate 1/T . We will refer

to their cascade F2(z) = C2(z)G2(z) as the equivalent channel for the SSE case. Therefore, as

for the signal x(n), the system from Fig. 3(a) can be represented as a cascade of the equivalent

channel F2(z) and a SSE H2(z). An ideal equalizer (or a zero-forcing equalizer [11]) H2(z) is then

obtained as a left inverse of the equivalent channel F2(z).

From this discussion, several drawbacks of symbol-spaced equalizers are apparent. The MIMO

transfer function F2(z) does not have a left inverse if it is a fat matrix. Even if the matrix is not
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Figure 3: (a) Discrete-time equivalent of a digital communication system with SSE; the equivalent
channel is F2(z) = C2(z)G2(z). (b) Digital communication system from (a), now equalized with
FSE H(z). (c) Further simplification of the system from (b); the equivalent channel is F(z) =
C(z)G(z).

fat, its invertibility will depend on the rank. Furthermore, if F2(z) is invertible, its inverse is most

probably IIR, which often amplifies the noise at the receiver. Finally, it has been observed that

the ISI suppression achieved by this equalizer is very sensitive to the phase of the sampling at the

receiver [11, 17]. For all these reasons, a popular alternative is to use a so called fractionally spaced

equalizer (FSE). It can be shown to be far less sensitive to the sampling phase [17], it can be used

with fat channel transfer functions, and it often allows for FIR solutions while SSE does not.

The idea behind a FSE is to let the equalizer work at a higher rate. Because of this additional

redundancy, FSEs are both more flexible and more robust than SSEs. In the continuous-time

communication system, FSE is realized by sampling the received waveform at M times the symbol

rate, and feeding such oversampled signal to the equalizer, which now operates at the rate M/T . In

discrete-time this is modeled as shown in Fig. 3(b). The discrete transfer functions G(z) and C(z)

are obtained after sampling the corresponding continuous-time impulse responses at the rate M/T .

Thus, the equivalent channel F(z) in this case is such that F2(z) = [F(z)]↓M and the simplified

scheme is shown in Fig. 3(c). Note that the noise also needs to be modified, but this is not the

main point of discussion here. We recall from Sec. 3 that a zero-forcing FSE H(z) in Fig. 3(c) is

nothing but a LBP of the channel matrix F(z). In this section we will exploit the nonuniqueness

of this biorthogonal partner with the aim of minimizing the noise power at the receiver.
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Optimization of MIMO systems of the type shown in Fig. 3(a) has been considered by several

authors in many different contexts (e.g. [10], [12], [27]). The authors in [27] derive the optimal

transmitter and receiver for a given channel in the sense of minimizing the overall mean squared

error. This MMSE solution clearly outperforms any zero-forcing equalizer, however the price is paid

in terms of complexity: the solution in [27] involves ideal filtering. Here we have taken a simplistic

approach of decoupling the problems of ISI and noise suppression. Moreover, the system shown in

Fig. 3(b) brings in an additional element of freedom, which will be exploited in this section.

4.1 Optimizing LBP for Channel Equalization

The size of the channel F(z) will be assumed to be p × r, with r ≤ 2p. For simplicity we will first

assume that the oversampling ratio M is equal to 2 (see Fig. 4(a)). In this case the system can

be redrawn as in Fig. 4(b). Here w0(n) and w1(n) are the corresponding polyphase components

of the noise vector sequence w(n) from Fig. 4(a), while F0(z), F1(z) and Ĥ0(z), Ĥ1(z) are the

polyphase components of F(z) and Ĥ(z), respectively. Recall that if the conditions of Theorem

2 are satisfied, then H0(z) and H1(z) as in (13) lead to one possible solution for Ĥ(z). However,

from (12) we see that another class of solutions is given by

Ĥ0(z) = H0(z) + A(z)U21(z), Ĥ1(z) = H1(z) + A(z)U22(z) (15)

for an arbitrary r × 2p − r matrix A(z) and matrices Uij(z) defined in (12). Our goal here is to

design A(z) such that the noise component of y(n) in Fig. 4(a) is minimized. For that purpose,

we consider the noise model shown in Fig. 4(b). Let us define the following

e(n) =
[

w0(n)
w1(n)

]
, B(z) =

[
H0(z) H1(z)
U21(z) U22(z)

]
. (16)

Then the equivalent of the system in Fig. 4(b) is shown in Fig. 4(c). Our task now becomes that

of finding the matrix A(z) =
∑NA−1

i=0 Aiz
−i such that the norm of

ê(n) = u(n) +
NA−1∑
i=0

Aiv(n − i)

is less than the corresponding norm when any other polynomial matrix Ā(z) of the same or lower

order is used. That turns out to be equivalent to the problem of finding the best linear estimator of

order NA − 1 for the vector process u(n) given the observations v(n). The solution to this problem

is well-known and is based on the orthogonality principle. Let us define the r ×NA(2p− r) matrix

A (corresponding to the optimal solution) to be

A def= [A0 A1 . . . ANA−1] (17)
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Figure 4: Block diagram interpretation of the construction of FSE for M = 2. (a) Discrete-time
equivalent communication channel with FSE, (b) equivalent of (a) obtained using noble identities
[19], and (c) equivalent model for noise.

and the NA(2p − r)× 1 vector sequence V(n) to be

V(n) def=
[
vT (n) vT (n − 1) . . . vT (n − NA + 1)

]T
By the orthogonality principle we then have2 E[uV†] + E[AVV†] = 0, so that the solution for the

optimum estimator A becomes

A = −E[uV†]RVV−1 (18)

with RVV denoting the autocorrelation of V. This is nothing but a standard Wiener solution [6].

Now we need to express (18) in terms of the statistics of the input noise e(n). Define H̄(z)

(r×2p matrix) to consist of the first r rows of the 2p×2p matrix B(z) defined in (16) and similarly

Ū(z) (2p− r× 2p matrix) to consist of the last 2p− r rows of B(z). If NB − 1 is the order of B(z),

we define H̄i and Ūi as

H̄(z) =
NB−1∑
i=0

H̄iz
−i and Ū(z) =

NB−1∑
i=0

Ūiz
−i.

Now, the 2p(NA + NB − 1)× 1 vector E(n), the r × 2p(NA + NB − 1) matrix H and the NA(2p −
r)× 2p(NA + NB − 1) matrix U are defined as follows

E(n) def=
[
eT (n) eT (n − 1) . . . eT (n − NA − NB + 1)

]T
2Symbol E[·] denotes the expected value.
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H def=
[
H̄0 H̄1 . . . H̄NB−1 0 . . . 0

]

U def=




Ū0 . . . ŪNB−1 0 . . . 0
0 Ū0 . . . ŪNB−1 . . . 0
...

. . . . . .
0 . . . 0 Ū0 . . . ŪNB−1


 .

Then the following holds

u(n) = HE(n), V(n) = UE(n). (19)

Finally, all we need to do is substitute (19) in (18) and arrive at the final solution for A

A = −HREEU†
(
UREEU†

)−1
. (20)

Notice that the final solution depends only on the statistics of the input noise (REE ) and the

elements of the previously determined matrix B(z). Also notice that the solution (20) provides

constant matrices Ai (as in (17)) and the linear estimator A(z) is given by A(z) =
∑NA−1

i=0 Aiz
−i.

It should also be noted that the solution (15) is not the most general one; it is possible that there

exists another FIR LBP H′(z) which will outperform any Ĥ(z) of the same order obtained via (15).

The linear estimator A(z) derived in this section is unique given the form of the solution (15) and

the initial values H0(z), H1(z). However, (15) presents only one possible form of the solution. The

problem of the general solution is further treated in [22].

4.2 Case of General M

So far in this section we have only considered the M = 2 case, which leads to the solutions as in

(12), (13), and (15). In the following we consider the case when M > 2. The changes that need to

be made with respect to the M = 2 case are twofold. Firstly, the procedure for finding the initial

values of polyphase components Hk(z) (given by (12) and (13) when M = 2) has to be extended to

accommodate for larger values of M . Secondly, the introduced redundancy for LBP optimization

given by (15) also needs to be modified.

We deal with the initial values Hk(z) first. The way of extending the construction (12) and

(13) is suggested by (14); apart from (12), M − 2 additional equations also need to be satisfied:

r

p

r p[
U(i)

11 (z) U(i)
12 (z)

U(i)
21 (z) U(i)

22 (z)

]
︸ ︷︷ ︸

U(i)(z)

[
Ri−1(z)
Fi+1(z)

]
r

p
=

r[
Ri(z)

0

]
r

p
, for 1 ≤ i ≤ M − 2. (21)

Here Ri(z) = grcd [F0(z),F1(z), . . . Fi+1(z)]. If we denote R(z) = grcd[F0(z),F1(z), . . . FM−1(z)]

(as we did in Sec. 3), then the polyphase components Hk(z) can be found from (21) as Hk(z) =
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R−1(z)Vk(z). Here the r × p matrices Vk(z) are given by

V0(z) =

(
M−2∏
i=0

U(M−2−i)
11 (z)

)
; VM−1(z) = U(M−2)

12 (z);

Vk(z) =

(
M−2−k∏

i=0

U(M−2−i)
11 (z)

)
U(k−1)

12 (z), for 1 ≤ k ≤ M − 2. (22)

Notice that when M = 2 the above equations (22) reduce to V0(z) = U11(z) and V1(z) = U12(z),

which is in compliance with previously established result (13).

Now we move on to find the equivalent of (15) for M > 2. If we want to keep the same structure

of having only one matrix A(z) to represent the degrees of freedom, then the solution equivalent

to the one in (15) is going to be

Ĥk(z) = Hk(z) + A(z)Wk(z), for 0 ≤ k ≤ M − 1 (23)

with the p × p matrices Wk(z) satisfying
∑M−1

k=0 Wk(z)Fk(z) = 0. As it turns out, the matrices

Wk(z) can be obtained from (21) in a fashion similar to the one when we obtained U21(z) and

U22(z) from (12). They are given by

W0(z) = U(M−2)
21 (z)

(
M−3∏
i=0

U(M−3−i)
11 (z)

)
; WM−1(z) = U(M−2)

22 (z);

Wk(z) = U(M−2)
21 (z)

(
M−3−k∏

i=0

U(M−3−i)
11 (z)

)
U(k−1)

12 (z), for 1 ≤ k ≤ M − 2. (24)

Now we can repeat the whole procedure of finding the optimal estimator A(z), along the same lines

as in (16)-(20), the only difference being in the dimensions of the vector e(n) and the matrix B(z).

Finally, we note that it is possible to construct solutions similar to the one in (23), but with

more degrees of freedom. For example, we may consider any pair of polyphase components Fi(z)

and Fj(z) (i �= j) and find the corresponding matrices Wij,0(z) and Wij,1(z) such that

Wij,0(z)Fi(z) + Wij,1(z)Fj(z) = 0.

The solution to this problem is again based on (12). Now pick any r × 2p − r matrix Aij(z). It

follows that if Hi(z) and Hj(z) are valid polyphase components of a LBP corresponding to Fi(z)

and Fj(z), then the following solutions are also valid:

Ĥi(z) = Hi(z) + Aij(z)Wij,0(z); Ĥj(z) = Hj(z) + Aij(z)Wij,1(z).

Repeating the above reasoning for all the pairs (i, j) we can generate proper LBPs with much more

degrees of freedom, given by the matrices Aij(z). However it becomes very difficult to optimize all

these parameters, since the matrices Aij(z) cannot be interpreted as linear estimators.
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Figure 5: MIMO equalization of a square 3 × 3 channel: (left) plain old SSE, (middle) direct
derivation of FSE, and (right) FSE optimized as in Sec. 4.1, with A(z) of order 4.

4.3 Experimental Results

In this section we present the results of numerical simulations. Three different methods for the

MIMO channel equalization are compared: SSE, FIR FSE as described previously in Sec. 3, and

the generalized solution for FIR FSE as in (15) with A(z) chosen optimally for the given noise

statistics. A block diagram of the digital communication systems with SSE and FSE were shown

in Fig. 3(a) and 3(c), respectively.

In the following we present the results of equalizing two MIMO channels: a square 3×3 channel

Fsq(z) and a rectangular, fat 2× 3 channel Frec(z). For simplicity Frec(z) was chosen such that it

consists of the first two rows of Fsq(z); in other words

Frec(z) =
[
1 0 0
0 1 0

]
Fsq(z).

In both examples we chose M = 2. The MIMO channel Fsq(z) was characterized by a 3 ×
3 matrix polynomial of order 6 and the corresponding coefficients can be found at [28]. The

constellation was chosen to be 16-QAM. The noise on the channel was taken to be white. The

signal to noise ratio used in the experiments was obtained as (see Fig. 4(a))

SNR = 20 log10

||r||2
||w||2

.

The transfer function F2(z) of the equivalent channel in the SSE case (see Fig. 3(a)), was chosen

in such way that the inverse matrix H2(z) is stable, but with two poles very close to the unit circle.

At the same time, the conventional FIR solution for the FSE in this case exists and can be found

at [28]. In the absence of noise, SSE was performing as well as both the FSEs, i.e. all the symbols

were received intact, but in the presence of noise the received symbols were virtually unintelligible.
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Figure 6: Probability of error as a function of the estimator order: (left) square 3× 3 channel, and
(right) rectangular 2× 3 channel - see the text.

To demonstrate this, in the left part of Fig. 5 we show the output of SSE with SNR = 18dB. At

the same noise level a simple FIR FSE (middle of Fig. 5) performed much better, with less than

one percent of the symbols being misinterpreted. Finally, when we used the improved FIR FSE

with only a third order estimator Asq(z) (the coefficients can also be found at [28]), almost all the

symbols were detected correctly and the eye-diagram (right part of Fig. 5) shows clear separation.

While it is intuitive that the higher order estimators Asq(z) should perform better than the lower

order ones, it is still of importance to quantitatively evaluate this improvement in performance.

Notice that the procedure for obtaining linear estimators as in Sec. 4.1 applies to any desired order

NA − 1. The only difference for higher orders is that the matrix A in (17) becomes larger, and

in turn so do the matrices H and U in (20). What we have noticed in our examples (taking the

noise to be white) is that, with increasing NA, the performance of the estimator does not improve

much after a certain point (see Fig. 6). This is because all the terms in matrices Ak in (17) tend

to decay very fast for large values of k and their influence on the equalizer performance diminishes

in the similar fashion.

In the left part of Fig. 6 we plotted the estimated probability of error at the detector in the 3×3

channel case as a function of the order of estimator NA − 1. The probability of error is obtained as

the average value of the error probabilities in each of the three channels. The first measurement,

for NA − 1 = −1 corresponds to the case where there is no optimization of the equalizer, i.e. where

Asq(z) is a zero matrix. The probability of error in this case with SNR = 18dB was equal to

0.82 percent. Interestingly, the probability of error can be reduced by several orders of magnitude

by employing just the zeroth order (constant) matrix Asq(z). Only two out of 105 symbols were

misinterpreted in this case. However, there is not much improvement as the order increases.
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Very similar findings were true in the rectangular case as well. Although the left inverse does

not exist in this case, it is still possible to equalize the 2 × 3 channel Frec(z) with oversampling

just by two [28]. However, the default equalizer obtained by the LBP construction as in Sec. 3

does not perform very well. As shown in the right part of Fig. 6, for no estimator correction

Arec(z) employed, the error rate was more than than 20 percent for SNR = 32dB. However, even

the constant correction Arec(z) resulted in the dramatic decrease in the probability of error to

10−4, while the higher order corrections kept the error probability below 4× 10−5. This, together

with the previous, square, example stands to show that exploiting the redundancy of LBP even to

the smallest extent can prove to be very fruitful.

5 Some Further Applications of Biorthogonal Partners

In this section we will consider two other situations where we encounter MIMO biorthogonal part-

ners. In both these instances, the solutions are already well-known and our intention here is to

make a connection to the biorthogonal partner theory described in this paper.

5.1 Least Squares Signal Approximation

First we will address the problem of least squares signal approximation for vector signals. In

the scalar case, a similar problem is very common in multiresolution theory [9] as well as in the

spline approximation theory [18], [20]. This topic has been treated extensively in the mathematics

literature, in the more general setting of oblique projections [1, 2]. The article by Aldroubi and

Unser [2] is especially insightful and is closely connected to the material in this section.

Suppose we are given the signal model as shown in Fig. 7(a). The vector signal y(n) is obtained

by upsampling the vector sequence c(n) and passing the result through the matrix transfer function

F(z). Now, given a vector signal x(n), suppose we want to approximate it by a signal y(n) admitting

the described model

y(n) =
∑
k∈Z

F(n − kM)c(k), (25)

or in the z-domain

Y(z) = F(z)C(zM ). (26)

It turns out that the optimum vector sequence c(n) can be determined as in Fig. 7(b). The prefilter

H(z) turns out to be a particular form of a MIMO biorthogonal partner of F(z). In the following

we refer to this as the least squares problem.
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Figure 7: Least squares signal modeling: (a) signal model and (b) least squares solution (see text).

A very similar problem arises in multiwavelet theory (see [26] and also the next section). Con-

sider the two-band multiwavelet transform. The space V0 is spanned by N scaling functions and

their integer shifts. Similarly, the space W0 is spanned by N wavelets and their integer shifts. Those

two spaces together form a finer resolution space V1. Suppose we have a signal x1(n) belonging to

the space V1 and we want to find a coarser signal x0(n) from V0 such that the distance (in the �2

sense) from the signal x1(n) is minimized. This problem can be formulated as a vector valued least

squares problem, so the solution is again given by Fig. 7.

We first state the vector valued least squares problem in the general form. Consider the space F
of all vector signals y(n) satisfying the model (25), where c(n) is an arbitrary �2 vector sequence.3

This situation is depicted in Fig. 7(a). Here F(z) is a given MIMO transfer function. The problem

is as follows. Given any vector signal x(n), we want to find the corresponding projection in F ,

i.e. the vector signal y(n) ∈ F such that

∑
n

‖y(n) − x(n)‖2 (27)

is minimized. Here ‖ · ‖ denotes the vector norm in �2. The following theorem describes the

algorithm by which this is achieved and the corresponding corollary will address the uniqueness of

the proposed solution.

Theorem 4. Solution to least squares problem. Given a MIMO transfer function F(z)

and assuming that S(ejω) = [F†(ejω)F(ejω)]↓M is a positive definite matrix for all ω, we define the

(orthogonal) projection filter by

H(z) =
(
[F̃(z)F(z)↓M

)−1

↑M
F̃(z). (28)

If we pass the vector signal x(n) through the projection filter and decimate the outputs by M we

get the optimal driving sequence c(n) (see Fig. 7(b)). This c(n) can be used to find the least

squares approximation y(n) as in Fig. 7(a).
3This means that all the scalar sequences corresponding to the vector entries are square summable.
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Notice that the projection filter is equal to the generic LBP given by (9). The positive-

definiteness condition is necessary only to ensure the stability of H(z).

Proof. The error (27) that needs to be minimized can be rewritten in the frequency domain

∑
n

‖y(n) − x(n)‖2 =
∫ 2π

0
‖Y(ejω)− X(ejω)‖2 dω

2π
=
∫ 2π

0
‖F(ejω)C(ejωM )− X(ejω)‖2︸ ︷︷ ︸

E(ω)

dω

2π
.

Note that C(ejωM ) appearing in the integrand is periodic with period 2π/M , and thus can be chosen

independently only in the range 0 ≤ ω ≤ 2π/M . That is why the integrand can be rewritten as

E(ω) =
M−1∑
k=0

‖F(ej(ω+ 2πk
M

))C(ejωM )− X(ej(ω+ 2πk
M

))‖2.

For each ω in 0 ≤ ω ≤ 2π/M we can choose C(ejωM ) such that the nonnegative integrand E(ω) is
minimized and that would in turn minimize the projection error (27). Define the vector a(ω) and

the matrix B(ω) as

a(ω) = [XT (ejω) XT (ej(ω+ 2π
M

)) . . . XT (ej(ω+
2π(M−1)

M
))]T

B(ω) = [FT (ejω) FT (ej(ω+ 2π
M

)) . . . FT (ej(ω+ 2π(M−1)
M

))]T .

The problem now reduces to that of minimizing

E(ω) = ‖B(ω)C(ejωM )− a(ω)‖2

= [C†(ejωM )− a†(ω)B(ω)S−1(ω)]S(ω)[C(ejωM )− S−1(ω)B†(ω)a(ω)]

+a†(ω)a(ω)− a†(ω)B(ω)S−1(ω)B†(ω)a(ω) (29)

where S(ω) = B†(ω)B(ω). The form (29) was obtained by the “completion of squares”. Consider

the right hand side of the last equality in (29). It consists of two parts; the first part depends on

the choice of C(ejωM ) and the second part does not. Since the first part is always nonnegative,

we should choose C(ejωM ) such that it becomes zero. Note that the matrix S(ω) = B†(ω)B(ω) is

positive definite, which follows from the assumption [F†(ejω)F(ejω)]↓M > 0. Therefore, the only

way to make the first part zero is to choose C(ejωM ) =
(
B†(ω)B(ω)

)−1 B†(ω)a(ω). In order to

rewrite this solution in terms of multirate building blocks, we note [19] that for any transfer function

A(ejω), [A(ejω)]↓M = 1
M

∑M−1
k=0 A(ej ω+2πk

M ). Therefore,

B†(ω)B(ω) =
M−1∑
k=0

F†(ej(ω+ 2πk
M

))F(ej(ω+ 2πk
M

)) = M [F†(ejω)F(ejω)]↓M↑M ,
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B†(ω)a(ω) =
M−1∑
k=0

F†(ej(ω+ 2πk
M

))X(ej(ω+ 2πk
M

)) = M [F†(ejω)X(ejω)]↓M↑M .

The optimal C(ejωM ) is therefore

C(ejωM ) =
[(

[F†(ejω)F(ejω)]↓M
)−1

↑M
F†(ejω)X(ejω)

]
↓M↑M

.

Thus we have C(z) = [H(z)X(z)]↓M , with H(z) given by (28). This concludes the proof. ���
The next corollary states that the least squares solution proposed by Theorem 2 is unique.

While the proposed proof provides an elegant argument, the result of Corollary 2 also follows from

the uniqueness of the orthogonal projection onto a closed subspace [2].

Corollary 2. Uniqueness of projection filter. Consider Fig. 7. For fixed F(z) satisfying

the condition of Theorem 2 and x(n) ∈ �2, the least squares approximation y(n) is unique. Next,

suppose the prefilter H(z) in Fig. 7(b) is such that the output of F(z) (Fig. 7(a)) is the least

squares approximation of x(n) for any choice of the �2 input x(n). Then H(z) is unique and is

therefore given by (28).

Proof. The uniqueness of c(n) and thus y(n) follows from the proof of Theorem 2. Next, let

two different prefilters H(z) and H1(z) both be optimal for all x(n) ∈ �2. Thus by the uniqueness

of c(n) we have that

[(H(z)− H1(z))X(z)]↓M = 0

for any choice of X(z). The choice X(z) = zkei, where ei is the ith unit vector (i.e. the ith column

of the identity matrix), implies that the kth polyphase component of the ith column of H(z)−H1(z)

is zero. This holds for all i and k, so the conclusion is that all the polyphase components of all

columns of H(z)− H1(z) are zero, and thus H(z) = H1(z), i.e. the prefilter is indeed unique.

���

5.2 Multiwavelets and Prefiltering

Multiwavelet theory emerged recently as the extension of wavelet theory to the case where there

is more than one scaling function and mother wavelet. It has been shown [16] that multiwavelets

have some advantages over the conventional wavelets, especially in data compression. In this

section we provide the connection between MIMO biorthogonal partners and prefilters employed

in multiwavelet theory. To that end we first give a brief overview of some of the results in this

area. For a more thorough and comprehensive exposition to multiwavelets, reader is referred to the

works by Geronimo et al. [5, 4], Xia et al. [26, 25], Vetterli and Strang [21, 8, 15], and Selesnick

[14, 13].
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Consider the set of N scaling functions {φn(t)}, 0 ≤ n ≤ N − 1 and the corresponding set

of N mother wavelets {ψn(t)}. The scaling functions are chosen in such way that their integer

shifts {φn(t− k)}, together with the shifts of the dilated versions {φn(2jt− k)} (integer j is called

the scale) span a sequence of nested subspaces of L2. These subspaces Vj ⊂ Vj+1, j ∈ Z form a

multiresolution analysis [5] of L2. Some of the desirable properties of the scaling functions are linear

phase, orthogonality and compact support. In the scalar case (for N = 1) these properties occur

simultaneously only in the Haar basis, while in the multiwavelet case (N > 1) many such examples

are known [5, 15, 14]. In the following we will assume that the scaling functions are orthogonal

and compactly supported. Let xc(t) (subscript c stands for continuous) be a continuous-time signal

contained in V0. Then it can be written as

xc(t) =
N−1∑
n=0

∑
k∈Z

c0,n(k)φn(t − k)

=
N−1∑
n=0

∑
k∈Z

cJ0,n(k)2J0/2φn(2J0t − k) +
N−1∑
n=0

∑
J0≤j<0

∑
k∈Z

dj,n(k)2j/2ψn(2jt − k), (30)

where J0, j < 0. This decomposition algorithm suggests possibilities for a tree-like signal decom-

position in terms of the coefficients at coarser scales. In fact, given the coefficients {c0,n(k)} the

corresponding coefficients {cj,n(k)} and {dj,n(k)}, j < 0 can be found using the concept of vector-

valued wavelets and filterbanks (see [26] and references therein). Let us denote the vectors of

stacked coefficients at scale j

cj(k) = [cj,0(k) cj,1(k) · · · cj,N−1(k)]T , dj(k) = [dj,0(k) dj,1(k) · · · dj,N−1(k)]T .

Starting from the dilation equation on scaling functions and wavelets, it can be shown that

cj−1(k) =
∑
m∈Z

Hmcj(2k − m) and dj−1(k) =
∑
m∈Z

Gmcj(2k −m)

for some appropriate matrix polynomials H(z) =
∑

m Hmz−m and G(z) =
∑

m Gmz−m. In other

words, this gives rise to the vector-valued filterbank pyramid for decomposition, as shown in Fig.

8. From the orthogonality condition on the scaling functions it follows [26] that the reconstruction

part is as shown in the lower part of Fig. 8.

The initial step in the multiwavelet decomposition is the so-called prefiltering [26, 25] and is

not shown in Fig. 8. In order to understand the nature of this operation, consider again the first

equality in (30) and rewrite it at instances t = n
M (the significance of the factor M will be clear

shortly)

x(n) def= xc(
n

M
) =

∑
k∈Z

φT
c (

n

M
− k)c0(k), (31)
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Figure 8: Vector-valued wavelet pyramid: decomposition to coarser scales and reconstruction.

where we introduced the column vector φc(t) = [φ0(t) φ1(t) · · · φN−1(t)]
T . Now, let us define

the following

φM (n) def= φc(
n

M
), with ΦM (z) =

∑
k∈Z

φM (n)z−n.

Then we can rewrite (31) as

x(n) =
∑
k∈Z

φT
M (n − kM)c0(k), or X(z) = ΦT

M (z)C0(zM ). (32)

This is depicted in Fig. 9(a). Notice here that x(n) is a sequence of samples of xc(t) oversampled

by M . The purpose of prefiltering is to obtain the multiwavelet coefficients c0(k) at scale 0 from

the signal samples x(n). This prefiltering is unnecessary in the case of the so called interpolating

multiwavelets [13]. The scaling functions there are chosen such that the multiwavelet coefficients are

equal to signal samples. Balanced multiwavelets [8, 14] present similar attempts at circumventing

the prefiltering operation, however they are in general only approximate methods. Therefore, in

the most general multiwavelet setting the prefiltering operation is unavoidable. To understand how

this operation is performed, we define the scalar filter Fn(z) to be the nth entry in the column

vector ΦM (z). In other words we have

Fn(z) =
∑
k∈Z

φn(
k

M
)z−k.

Now we can redraw the signal model from Fig. 9(a) as in the left half of Fig. 9(b). Notice how this

figure resembles the transmultiplexer [19], where the composite signal x(k) is obtained as the sum

of signals c0,n(k) modulated by filters Fn(z), for n = 0, 1, . . . , N −1. The recovery of partial signals

c0,n(k) is then achieved as in the right part of Fig. 9(b), for appropriately chosen filters Hn(z).
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Figure 9: Prefiltering for multiwavelet transform. (a) Signal model. (b) Equivalent drawing of (a)
together with the prefiltering part. (c) Equivalent drawing using polyphase matrices. (d) Final
form of the traditional method for prefiltering by left-inverting the polyphase matrix. See text.

In order to find those prefilters Hn(z), we present both filterbanks from Fig. 9(b) in terms of

their polyphase matrices [19], which is shown in Fig. 9(c). Those matrices are defined by

P(z) =




F0,0(z) F0,1(z) · · · F0,N−1(z)
F1,0(z) F1,1(z) · · · F1,N−1(z)

FM−1,0(z) FM−1,1(z) · · · FM−1,N−1(z)


 , and (33)

Q(z) =




H0,0(z) H0,1(z) · · · H0,M−1(z)
H1,0(z) H1,1(z) · · · H1,M−1(z)

HN−1,0(z) HN−1,1(z) · · · HN−1,M−1(z)


 . (34)

The entries in the above matrices P(z) and Q(z) are nothing but the Type-1 and Type-2 polyphase
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components of order M of filters Fn(z) and Hn(z), respectively given by

Fn(z) =
M−1∑
k=0

Fk,n(zM )z−k, Hn(z) =
M−1∑
k=0

Hn,k(zM )zk.

Now we see that given the samples xc( n
M ), we can obtain the corresponding multiwavelet coefficients

c0(n) at scale 0 as shown in the right half of Fig. 9(c). Notice here that P(z) is a known M × N

matrix and Q(z) is an unknown N ×M matrix, which describes the prefiltering operation. Next we

note that the middle part of Fig. 9(c) (enclosed in a dashed box) is equivalent to identity, since it is

a cascade of unblocking and blocking operators. Therefore, this is equivalently redrawn as in Fig.

9(d). The matrix Q(z) is obtained as a left inverse of P(z) (see Fig. 9(d)), i.e. Q(z)P(z) = I.

From here it immediately follows that the minimum amount of oversampling M ≥ N is necessary,

since we need P(ejω) to have rank N on the unit circle.

In the following we show the connection between the polynomial matrix inversion problem

(as motivated in the multiwavelet setting) and the problem of constructing MIMO biorthogonal

partners. As it turns out, these two problems are completely equivalent. For simplicity here we

assume that M is an even integer, i.e. M = 2L. Then, we can redraw Fig. 9(b) as in Fig. 10(a).

Now we consider the middle part of Fig. 10(a) (enclosed in a dashed box) and present it using the

polyphase matrices of filters Fn(z) and Hn(z), only now with respect to L = M
2 . This is shown in

Fig. 10(b), with

P̄(z) =




F̄0,0(z) F̄0,1(z) · · · F̄0,N−1(z)
F̄1,0(z) F̄1,1(z) · · · F̄1,N−1(z)

F̄L−1,0(z) F̄L−1,1(z) · · · F̄L−1,N−1(z)


 , and (35)

Q̄(z) =




H̄0,0(z) H̄0,1(z) · · · H̄0,L−1(z)
H̄1,0(z) H̄1,1(z) · · · H̄1,L−1(z)

H̄N−1,0(z) H̄N−1,1(z) · · · H̄N−1,L−1(z)


 , (36)

and the entries in the above matrices satisfying

Fn(z) =
L−1∑
k=0

F̄k,n(zL)z−k, Hn(z) =
L−1∑
k=0

H̄n,k(zL)zk.

Comparing Fig. 10(b) with Fig. 1, we see that Q̄(z) is found as a left biorthogonal partner of

P̄(z) with respect to 2, or [Q̄(z)P̄(z)]↓2 = I. Therefore, we conclude that the problem of finding a

left inverse Q(z) as in Fig. 9(d) is completely equivalent to finding a LBP Q̄(z) as in Fig. 10(b).

Moreover, comparing (35) and (36) to (33) and (34), we can easily verify the following relation[
P̄0(z)
P̄1(z)

]
= P(z),

[
Q̄0(z) Q̄1(z)

]
= Q(z), with (37)
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Figure 10: Biorthogonal partners in prefiltering for multiwavelet transform. (a) Equivalent of Fig.
9(b) for even M . (b) Equivalent of Fig. 9(d) for even M . See text.

P̄(z) = P̄0(z2) + z−1P̄1(z2), and Q̄(z) = Q̄0(z2) + zQ̄1(z2). (38)

From the relation between the solutions Q(z) and Q̄(z), it is evident that many properties of one

solution immediately apply to the other as well. For example, if one matrix is rational/FIR, the

other will also be rational/FIR. The previous findings are summarized in the following lemma.

Lemma 1. Consider the continuous-time signal xc(t) ∈ V0, given by its samples xc( k
M ). Let the

space V0 be spanned by a set of N scaling functions {φn(t)} and their integer shifts; furthermore,

let M ≥ N be an even integer and let P(z) be the corresponding polyphase matrix defined by (33).

Then there will exist (an FIR) prefilter Q(z) for the corresponding multiwavelet transform if and

only if there exists (an FIR) LBP Q̄(z) of the M
2 × N polyphase matrix P̄(z) given by (35). The

relation between them is given by (37) and (38).

Significance of Lemma 1. First notice that the equivalence between the matrix inversion

problem and that of finding a LBP holds for matrix transfer functions in general, and is not

restricted to polyphase matrices of multiscaling functions. Therefore, we can use one method

to solve the other problem, and vice versa. This approach sometimes proves to be beneficial.

Moreover, we can use the results that are well understood in one setting and apply them in the

other setting. As an example, recall the discussion after the proof of Theorem 3. In order to prove

the necessary relation (10) between the dimensions of the polynomial matrix F(z), we used the

well-known fact that fat matrices do not have left inverses. Finally, the construction of grcd’s and
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MIMO biorthogonal partners have been studied extensively in Sec. 3 and Sec. 4 and all the results

shown there can be applied in the prefilter construction problem as introduced in Sec. 5.2. In

particular, the non-uniqueness of a left FIR inverse (thus a prefilter matrix) can be exploited in a

similar fashion as described in Sec 4. This may become useful in many applications where prefilters

are required to have certain properties [8, 26, 25], and is an interesting topic for further research.

6 Concluding Remarks

Multiple input multiple output (MIMO) biorthogonal partners arise naturally in many signal pro-

cessing applications including MIMO channel equalization and multiwavelet theory. The theory of

MIMO biorthogonal partners is to some extent a natural extension of the SISO case as considered

in [20]. However, in the vector case we are presented with additional degrees of freedom which

may be useful in some applications. In this paper we have considered many theoretical aspects of

MIMO biorthogonal partners and pointed out several applications.

7 Appendix

In the appendix we provide the statement and the proof of the simple Bezout identity for rectangular

matrices. This result occurs frequently in linear systems theory (see [7] for example), but is usually

stated for the case where one of the matrices is square. In this context (cf. Sec. 3) both matrices

are of the same size and are allowed to be rectangular.

Theorem 5. Rectangular p× r polynomial matrices F0(z) and F1(z) are right coprime if and

only if there exist polynomial matrices H0(z) and H1(z) such that

H0(z)F0(z) + H1(z)F1(z) = I.

Before proving the simple Bezout identity for rectangular matrices, we need to introduce the

following results.

Lemma 2. Given any two p×r polynomial matrices F0(z) and F1(z), there exists a unimodular

matrix U(z), such that (12) holds true for some R(z). This R(z) is a grcd of F0(z) and F1(z).

Furthermore, if R0(z) is any grcd of F0(z) and F1(z), it can be written as

W0(z)F0(z) + W1(z)F1(z) = R0(z), (39)

for some polynomial matrices W0(z) and W1(z).

Proof of Lemma 2. The first statement about the existence of a unimodular matrix U(z) is

proved in the general case (see Theorem 6.3-2. of [7]). Now, since U(z) is unimodular, its inverse
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is a polynomial matrix; call it V(z). Therefore, from (12) we have[
F0(z)
F1(z)

]
=
[

V11(z) V12(z)
V21(z) V22(z)

]
︸ ︷︷ ︸

V(z)

[
R(z)

0

]
,

which implies

F0(z) = V11(z)R(z); F1(z) = V21(z)R(z).

Thus R(z) is a common right divisor of F0(z) and F1(z). If R̄(z) is any other common right divisor,

we can write similarly

F0(z) = X(z)R̄(z); F1(z) = Y(z)R̄(z) (40)

with the appropriately chosen polynomial matrices X(z) and Y(z). Now, reading the first matrix

equality from (12) we get

U11(z)F0(z) + U12(z)F1(z) = R(z), (41)

which after substituting (40) leads to

(U11(z)X(z) + U12(z)Y(z))R̄(z) = R(z),

and this proves that R(z) is indeed a grcd of F0(z) and F1(z). Finally, we use the fact that any two

grcd’s are identical up to a premultiplication by a unimodular matrix [7]. Therefore, an arbitrary

grcd R0(z) can be written as R0(z) = T(z)R(z). Applying this to (41) leaves us with

T(z)U11(z)︸ ︷︷ ︸
W0(z)

F0(z) + T(z)U12(z)︸ ︷︷ ︸
W1(z)

F1(z) = R0(z),

which concludes the proof of Lemma 2. ���
Proof of Theorem 5. First we show the “if part”. From Lemma 2 we have that if R(z) =

grcd[F0(z),F1(z)], then there exist polynomial matrices H̄0(z) and H̄1(z) such that

H̄0(z)F0(z) + H̄1(z)F1(z) = R(z). (42)

If F0(z) and F1(z) are right coprime, then H0(z)
def= R−1(z)H̄0(z) and H1(z)

def= R−1(z)H̄1(z) are

also polynomial matrices. Thus, premultiplying both sides of (42) by R−1(z), the “if part” follows.

Conversely, suppose there exist polynomial matrices H0(z) and H1(z) such that (11) holds. Let

R(z) be any grcd of F0(z) and F1(z). It follows that F0(z) = F̄0(z)R(z) and F1(z) = F̄1(z)R(z)

for appropriate polynomial matrices F̄0(z) and F̄1(z). Thus we have

(H0(z)F̄0(z) + H1(z)F̄1(z))R(z) = I, or R−1(z) = H0(z)F̄0(z) + H1(z)F̄1(z).

Since the right-hand side of the above equation is a polynomial matrix, this shows that R(z) is a

unimodular matrix, which concludes the proof. ���
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