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ABSTRACT

Some of the major challenges in the design of new generation wireless mobile systems are the

suppression of multiuser interference (MUI) and inter-symbol interference (ISI) within a single

user created by the multipath propagation. Both of these problems were addressed successfully

in a recent design of A Mutually-Orthogonal Usercode-Receiver (AMOUR) for asynchronous or

quasi-synchronous CDMA systems. AMOUR converts a multiuser CDMA system into parallel

single-user systems regardless of the multipath and guarantees ISI mitigation irrespective of the

channel null locations. However, the noise amplification at the receiver can be significant in some

multipath channels. In this paper we propose to oversample the received signal as a way of improv-

ing the performance of AMOUR systems. We design Fractionally-Spaced AMOUR (FSAMOUR)

receivers with integral and rational amounts of oversampling and compare their performance to the

conventional method. An important point often overlooked in the design of zero-forcing channel

equalizers is that sometimes they are not unique. This becomes especially significant in multiuser

applications where, as we will show, the nonuniqueness is practically guaranteed. We exploit this

flexibility in the design of AMOUR and FSAMOUR receivers and achieve noticeable improvements

in performance.

∗Work supported in part by the ONR grant N00014-99-1-1002, USA.
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1 Introduction

The performance of the new generation wireless mobile systems is limited by the multiuser inter-

ference (MUI) and inter-symbol interference (ISI) effects. The interference from other users (MUI)

has traditionally been combated by the use of orthogonal spreading codes at the transmitter [16],

however this orthogonality is often destroyed after the transmitted signals have passed through the

multipath channels. Furthermore, in the multichannel uplink scenario, exact multiuser equalization

is possible only under certain conditions on the channel matrices [13]. The alternative approach is

to suppress MUI statistically, however this is often less desirable.

A recent major contribution in this area is the development of A Mutually-Orthogonal Usercode-

Receiver (AMOUR) by Giannakis et al. [4, 22]. Their approach aims at eliminating MUI determin-

istically and at the same time mitigating the undesired effects of multipath propagation for each

user separately. The former is achieved by carefully designing the spreading codes at the trans-

mitters and the corresponding equalization structures at the receivers. In [3, 4] AMOUR systems

were designed for multiuser scenarios with uniform information rates, whereas in [22] the idea was

extended for the case when different users communicate at different rates. One clear advantage

of this over the previously known methods is that MUI elimination is achieved irrespective of the

channel nulls. Moreover, ISI cancellation can be achieved using one of the previously known meth-

ods for blind channel equalization [4]. In summary, AMOUR can be used for deterministic MUI

elimination and fading mitigation regardless of the (possibly unknown) multipath uplink channels.

In this work we consider a possible improvement of the basic AMOUR-CDMA system described

in [3]. The proposed structure consists of a multiple-transmitter, multiple-receiver AMOUR system

with signal oversampling at the receivers. This equalizer structure can be considered as a fraction-

ally spaced equalizer (FSE) [12] and thus the name Fractionally-Spaced AMOUR (FSAMOUR).

We consider two separate cases: integral and rational oversampling ratios. Even though integral

oversampling can be viewed as a special case of rational oversampling, we treat them separately

since the analysis of the former is much easier. In particular, when the amount of oversampling is a

rational number we need to impose some additional constraints on the systems parameters in order

for the desirable channel-invariance properties of conventional AMOUR systems to carry through.

In contrast, no additional constraints are necessary in the integral case.

An additional improvement of multiuser communication systems is achieved by exploiting the

fact that zero-forcing channel equalizers are not unique, even for fixed equalizer orders. This

nonuniqueness allows us to choose such ZFEs that will reduce the noise power at the receiver. Note
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that this improvement technique is available in both AMOUR and FSAMOUR systems. As in

other areas where FSEs find their application [12, 15, 17], the advantages over the conventional

symbol-spaced equalizers (SSE) are lower sensitivity to the synchronization issues and freedom in

the design of zero-forcing equalizers (ZFE). We will see that the aforementioned additional freedom

translates to better performance of FSAMOUR ZFEs.

In Sec. 1.1 we provide an overview of the AMOUR-CDMA systems as introduced by Giannakis

and others. Our approach to the system derivation provides an alternative point of view and leads

to notable simplifications, which prove essential in the derivation of FSEs. In Sec. 2 we design

the FSAMOUR system with integral amount of oversampling. The system retains all the desired

properties of conventional AMOUR and provides additional freedom in the design of ZF solutions,

which corresponds to finding left inverses of tall matrices with excess rows. This freedom is further

exploited and the corresponding improvement in performance over the AMOUR system is reported

in the subsection with the experimental results. In Sec. 3 we generalize the notion of FSAMOUR

to the case of fractional oversampling at the receiver. If the amount of oversampling is given by

(M + 1)/M for a large integer M the computational overhead in terms of the increased data rate

at the receiver becomes negligible. Experimental results in Sec. 3.5 confirm that the improvements

in the equalizer performance can be significant even if the oversampling is by 6/5.

1.1 Notations

If not stated otherwise, all notations are as in [14]. We use bold face letters to denote matrices.

Superscripts (·)T and (·)† respectively denote the transpose and the transpose-conjugate operations

on matrices. The identity matrix of size N × N is denoted by IN . Let r(z) be the rank of a

polynomial matrix in z. The normal rank is defined as the maximum value of r(z) in the entire z

plane.

In a block diagram, the M -fold decimation and expansion operations will be denoted by encircled

symbols ↓ M and ↑ M respectively.

The polyphase decomposition [14] plays a significant role in the following. If F (z) is a transfer

function, then it can be written in the Type-1 polyphase form as

F (z) =
M−1∑

k=0

z−kFk(z
M ), (1)

where Fk(z) is the kth Type-1 polyphase component of F (z). A similar expression defines the

Type-2 polyphase components, namely G(z) =
∑M−1

k=0 zkGk(z
M ).
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The structure in Fig. 1 describes the AMOUR-CDMA system for M users, i.e. M transmitters

and M potential receivers. The upper part of the figure shows the mth transmitter followed by

the uplink channel corresponding to the mth user and the lower part shows the receiver tuned

to the user m. The symbol stream sm(n) is first blocked into a vector signal sm(n) of length

K. This signal is upsampled by P > K and passed through a synthesis filterbank of spreading

codes {Cm,k(z)}K−1
k=0 ; thus each of the transmitters introduces redundancy in the amount of P/K.

It is intuitively clear that this redundancy serves to facilitate the user separation and channel

equalization at the receiver. While larger K serves to reduce the bandwidth expansion P/K, for

any fixed K there is the minimum required P (a function of K and the channel order L) for which

user separation and perfect channel equalization is possible. It will become clear that for large

values of K, the overall bandwidth expansion tends to M , i.e. its minimum value in a system with

M users. It is shown in [22] that a more general system where different users communicate at

different information rates can be reduced to the single rate system. Therefore in the following we

consider the case where K and P are fixed across different users.

The channels Hm(z) are considered to be FIR of order ≤ L. The mth receiver is functionally

divided into three parts: filterbank {Gm,j(z)}J−1
j=0 for MUI cancellation, block V−1

m which is supposed

to eliminate the effects of {Cm,k(z)} and {Gm,j(z)} on the desired signal sm(n), and the equalizer Γm

aimed at reducing the ISI introduced by the multipath channel Hm(z). Filters Gm,j(z) are chosen

to be FIR and are designed jointly with {Cm,k(z)} to filter out the signals from the undesired users

µ 6= m. The choice of {Cm,k(z)} and {Gm,j(z)} is completely independent of the channels Hm(z)

and depends only on the maximum channel order L. Therefore, in this paper we assume that CSI

is available only at the block-equalizers Γm. If the channels are altogether unknown, some of the

well-known blind equalization techniques [10], [8], [1], [2] can be readily incorporated at the receiver

(see [4, 9]). While the multiuser system described here is ultimately equivalent to the one in [3],

the authors believe that this design provides a new way of looking at the problem. Furthermore,

the simplifications introduced by the block notation will prove instrumental in Sec. 2 and Sec. 3.

In the following we design each of the transmitter and receiver building blocks by rewriting

them in a matrix form. The banks of filters {Cm,k(z)} and {Gm,j(z)} can be represented in terms

of the corresponding P × K and J × P polyphase matrices Ĉm and Gm respectively [14]. The

(j, i)th element of Gm is given by gm,j(i) and the (i, k)th element of Ĉm by cm,k(i). Note that the

polyphase matrices Ĉm and Gm become constant once we restrict the filters Cm,k(z) and Gm,j(z)

to length P .
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The system from Fig. 1 can now be redrawn as in Fig. 2(a), where the receiver block is defined

as Tm
4
= ΓmV−1

m Gm. The P × P block in Fig. 2(a) consisting of the signal unblocking, filtering

through the mth channel and blocking can be equivalently described as in Fig. 2(b). Namely, it

can be shown [14] that the corresponding P × P LTI system is given by the following matrix

Ĥm = [Hm X(z)]. (2)

Here we denote by Hm the P × P − L full banded lower triangular Toeplitz matrix

Hm =














hm(0) 0 · · · 0
... hm(0)

...

hm(L)
...

. . . 0
0 hm(L) 0
...

...
. . .

...
0 0 · · · hm(L)














, (3)

and X(z) is the P×L block that introduces the IBI. By choosing the last L samples of the spreading

codes {Cm,k(z)} to be zero, Ĉm is of the form Ĉm = [CT
m 0T ]T with the L×K zero-block positioned

appropriately to eliminate the IBI block X(z), namely we have

ĤmĈm = [Hm X(z)] ·

[
Cm

0

]

= HmCm.

Therefore the IBI-free equivalent scheme is shown in Fig. 2(c), with the noise vector signal êm(n)

obtained by blocking the noise from Fig. 2(a). Next we use the fact that full banded Toeplitz

matrices can be diagonalized by Vandermonde matrices. Namely, let us choose

Gm =








1 ρ−1
m,0 · · · ρ−P+1

m,0

1 ρ−1
m,1 · · · ρ−P+1

m,1
...

...
...

1 ρ−1
m,J−1 · · · ρ−P+1

m,J−1








, for ρm,j ∈ C, (4)

denote by Θm the first P − L columns of Gm and define the diagonal matrix

Hm(ρm)
4
= diag[Hm(ρm,0), Hm(ρm,1), · · · , Hm(ρm,J−1)], (5)

with the argument defined as ρm

4
= [ρm,0 ρm,1 · · · ρm,J−1]. For any J ∈ N and an arbitrary set of

complex numbers {ρm,j}
J−1
j=0 the following holds

GmHm = Hm(ρm)Θm. (6)

The choice of {ρm,j}
J−1
j=0 (which are also called signature points) is such that Gm eliminates MUI

as explained next. It will become apparent that the signature points need to be distinct.
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Consider the interference from user µ 6= m. From Fig. 2(c) it follows that the interfering signal

sµ(n) passes through the concatenation of matrices

GmHµCµ = Hµ(ρm)ΘmCµ = Hµ(ρm)Cµ(ρm), where (7)

Cµ(ρm) =








Cµ,0(ρm,0) Cµ,1(ρm,0) · · · Cµ,K−1(ρm,0)
Cµ,0(ρm,1) Cµ,1(ρm,1) · · · Cµ,K−1(ρm,1)

...
...

...
Cµ,0(ρm,J−1) Cµ,1(ρm,J−1) · · · Cµ,K−1(ρm,J−1)








. (8)

The first equality in (7) is a consequence of (6). From (7) we see that in order to eliminate MUI

regardless of the channels it suffices to choose {ρm,j}
M−1,J−1
m,j=0 such that

Cµ,k(ρm,j) = 0, ∀m 6= µ, ∀k ∈ [0, K − 1], ∀j ∈ [0, J − 1]. (9)

In practice, the signature points ρm,j are often chosen to be uniformly spaced on the unit circle

ρm,l = ej
2π(m+lM)

MJ , 0 ≤ l ≤ J − 1, (10)

since this leads to FFT based AMOUR implementations having low complexity [3].

Equations (9) define (M −1)J zeros of the polynomials Cm,k(z). In addition to this, let Cm,k(z)

be such that

Cm,k(ρm,j) = Amρ−k
m,j , (11)

where the multipliers Am introduce a simple power control for different users. At this point the

total number of constraints for each of the spreading polynomials is equal to MJ . Recalling that

the last L samples of spreading codes are fixed to be zero, the minimum spreading code length is

given by P = MJ + L. Substituting (11) in (7) for µ = m and recalling (6) we have

GmHmCm = Am








1 ρ−1
m,0 · · · ρ−J+1

m,0

1 ρ−1
m,1 · · · ρ−J+1

m,1
...

...
...

1 ρ−1
m,J−1 · · · ρ−J+1

m,J−1








︸ ︷︷ ︸

Vm

H̄m, (12)

where H̄m is the J × K north-west submatrix of Hm.

In order to perform the channel equalization after MUI has been eliminated we need to invert

the matrix product VmH̄m in (12), which in turn needs to be of sufficient rank. From (7) with

µ = m we conclude that (12) can be further written as a product of a diagonal matrix Hm(ρm) and

a J × K Vandermonde matrix Cµ(ρm). The second matrix Cµ(ρm) is invertible as long as {ρm,j}

are distinct. The rank of Hm(ρm) can drop by at most L, and this only if all the zeros of Hm(z)
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occur at the signature points ρm,j . Thus, the sufficient condition for the invertibility of (12) is

J = K + L. In summary, the minimal system parameters are given by

J = K, (known CSI), J = K + L, (unknown CSI) and P = MJ + L.

In the limit when K tends to infinity the bandwidth expansion becomes

BW expansion =
P

K
=

{
[MK + L]/K for known CSI
[M(K + L) + L]/K unknown CSI

K→∞
−→ M.

Since there are M simultaneous transmitters in the system, this is the minimum possible bandwidth

expansion.

From Fig. 2(c) it readily follows that (ignoring the noise)

ŝm(n) = AmΓmV−1
m VmH̄msm(n) = AmΓmH̄msm(n). (13)

Therefore, Γm can be chosen to eliminate the ISI in the absence of noise and this would be a zero-

forcing equalizer (ZFE). For more details on this and alternative equalizers, the reader is referred to

[3, 4]. In the following we consider the improvement of this conventional AMOUR system obtained

by sampling the received continuous-time signal more densely than at the symbol-rate given by the

transmitters.

2 AMOUR with integral oversampling

Fractionally-spaced equalizers (FSE) typically show an improvement in performance at the expense

of more computations per unit time required at the receiver. FSEs with integral oversampling

operate on a discrete-time signal obtained by sampling the received continuous-time signal q times

faster than at the transmission rate (thus the name fractionally-spaced). Here q is assumed to be

an integer greater than one. Our goal in this section is to introduce the benefits of FSEs in the ISI

suppression, without violating the conditions for perfect MUI cancellation irrespective of the uplink

channels. As will be clear shortly, this is entirely achieved through the use of the fractionally-spaced

AMOUR (FSAMOUR) system, introduced in the following.

In order to develop the discrete-time equivalent structure for the AMOUR system with integral

oversampling at the receiver, we consider the continuous-time AMOUR system with a FSE shown

in Fig. 3(a). Let T be defined as the symbol spacing at the output of the transmitter [signal um(n)

in Fig. 3(a)]. Working backwards we conclude that the rate of the blocked signal sm(n) is P times

lower, i.e. 1/PT . Since sm(n) is obtained by parsing the information sequence sm(n) into blocks
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of length K as shown in Fig. 2(a), we conclude that the corresponding data rate of sm(n) at the

transmitter is K/PT .

Each of the transmitted discrete signals um(n) are first converted into analog signals and passed

through a pulse-shaping filter. The combined effect of the reconstruction filter from the D/A

converter, pulse shaping filter as well as the continuous time uplink channel followed by the receive

filters is referred to as the equivalent channel and is denoted by hc(t). After passing through the

equivalent channel, the signal is corrupted by the additive noise and interference from other users.

The received waveform xc(t) is sampled at q times the rate at the output of the transmitter [see Fig.

3(a)]. The sequence xm(n) with rate q/T enters the fractionally spaced equalizer which operates at

the correspondingly higher rate. Accompanied with the equalization process, some rate reduction

also needs to take place at the receiver, so that the sequence ŝm(n) at the decision device has

exactly the same rate K/PT as the starting information sequence.

Now we derive the discrete-time equivalent of the oversampled system from Fig. 3(a). Consider

the received sequence xm(n) in the absence of noise and MUI. We can see that

xm(n) = xc(n
T

q
) =

∞∑

k=−∞

um(k)hc(n
T

q
− kT ). (14)

Defining the discrete time sequence h
(q)
m (n)

4
= hc(nT/q), which is nothing but the waveform hc(t)

sampled q times more densely than at integers, we have

xm(n) =
∞∑

k=−∞

um(k)h(q)
m (n − kq). (15)

This is shown in Fig. 3(b), where the noise and MUI which were continuous functions of time in Fig.

3(a) now need to be modified (by appropriate sampling). Notice that although the discrete-time

equivalent structure incorporates the upsampling by q at the output of the transmitters, this does

not result in any bandwidth expansion, since the physical structure is still given in Fig. 3(a). Our

goal in this section is to design the block in Fig. 3(b) labeled “equalization and rate reduction”. In

the following we introduce one possible solution that preserves the MUI cancellation property as

it was described in Sec. 1.1 yet provides additional flexibility when it comes to the ISI elimination

part. For simplicity in what follows we assume q = 2, however it is easy to show that a similar

design procedure follows through for any integer q.

Oversampling by q = 2. First we redraw the structure in Fig. 3(b) as shown in Fig. 3(c). Here

Hm,0(z) and Hm,1(z) are the Type-1 polyphase components [14] of the oversampled filter H
(2)
m (z).

In other words

H(2)
m (z) = Hm,0(z

2) + z−1Hm,1(z
2). (16)
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In Fig. 3(c) we also moved the additive noise and interference past the delay and upsamplers

by splitting them into appropriate polyphase components in a fashion similar to (16). Before we

proceed with the design of the fractionally-spaced AMOUR receiver, we recall that the construction

of the spreading codes {Cm,k(z)} and the receive filters {Gm,j(z)} in Sec. 1.1 ensured the elimination

of MUI regardless of the propagation channels as long as their delay spreads are bounded by L.

Returning to Fig. 3(c) in view of (16) we notice that Hm,0(z) is nothing but the original integer-

sampled channel Hm(z). Also, each of the subchannels Hm,i(z) can have the order at most equal

to the order of Hm(z), i.e. the maximum order of Hm,i(z) is L. Moreover, each of the q polyphase

components of MUI drawn in Fig. 3(c) is obtained by passing the interfering signals uµ(n) through

the corresponding channel polyphase components Hµ,i(z). From the discussion in Sec. 1.1 we

know how to eliminate each of these MUI components separately. Therefore, our approach in the

equalizer design will be to keep these polyphase channels separate, perform the MUI cancellation

in each of them and combine the results to obtain the MUI-free signal received from user m. This

is achieved by the structure shown in Fig. 4.

The received oversampled signal is first divided into the Type-2 polyphase components (a total

of q polyphase components for oversampling by q). This operation assures that in each of the

equalizer branches the symbol rate is equal to 1/T . At the same time, each branch contains

only one polyphase component of the desired signal and MUI from Fig. 3(c). These polyphase

components are next passed through a system that resembles the conventional AMOUR receiver

structure from Fig. 2(a). Notice one difference: while the matrices Gm and V−1
m are kept the same

as before, the matrices for ISI mitigation Γm,i are different in each branch and their outputs are

combined, forming the information signal estimate ŝm(n). Careful observation confirms that the

output symbol rate is equal to K/PT , precisely as desired.

In order to further investigate the properties of the proposed solution we show the complete

FSAMOUR system in terms of the equivalent matrix building blocks in Fig. 5(a). The effect of the

oversampling followed by the receiver structure with q branches is equivalent to receiving q copies

of each transmitted signal, but after going through different multipath fading channels Hm,i(z).

This temporal diversity in the received signal is obviously beneficial for the equalization process as

will be demonstrated in Sec. 2.1. As mentioned previously, MUI elimination in AMOUR systems

does not depend on the uplink channels as long as their order is upper-bounded by L, and this is

why the proposed FSAMOUR system eliminates MUI in each branch of Fig. 5(a). Notice that the

length conditions on P and J for MUI elimination remain the same as in Sec. 1.1.
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Repeating the matrix manipulations similar to those demonstrated in Sec. 1.1, but this time in

each branch separately, we conclude that the equivalent FSAMOUR system is shown in Fig. 5(b).

Lower triangular Toeplitz matrices H̄m,i here correspond to different polyphase components of the

oversampled channel. Noise vectors ei(n) are obtained by appropriately blocking and filtering the

noise from Fig. 5(a). As in [3, 4] the equalizer Γm = [Γm,0 Γm,1] can be constructed as a RAKE,

zero-forcing or MMSE receiver corresponding to the transmitter H̄m = [H̄T
m,0 H̄T

m,1]
T :

Γ(rake)
m = H̄†

m,

Γ(zfe)
m =

(

H̄†
mH̄m

)−1
H̄†

m (pseudo-inverse),

Γ(mmse)
m = RssH̄

†
m

(

Ree + H̄mRssH̄
†
m

)−1
, (17)

where Rss and Ree represent the autocorrelation matrices of the signal sm(n) and noise e(n)
4
=

[eT
0 (n) eT

1 (n)]T processes respectively. See Fig. 5(b).

The improvement in performance over the conventional AMOUR system comes as a result of

having more degrees of freedom in the construction of equalizers, namely qJ − K more rows than

columns in FSAMOUR compared to J −K in AMOUR. Another way to appreciate this additional

freedom in the ZFE design is as follows. In the AMOUR systems the construction of ZFEs amounts

to finding Γm as in (13) such that ΓmĤm = IK , in other words Γm is a left inverse of Ĥm. On the

other hand, referring to Fig. 5(b) we conclude that the ZFEs in the FSAMOUR systems need to

satisfy

Γm,0Ĥm,0 + Γm,1Ĥm,1 = IK

thus providing more possibilities for the design of Γm,i. In addition to all this, the performance

of the zero-forcing solutions can be further improved by noticing that left inverses of H̄m are not

unique. In the following subsection we derive the best ZFE for a given FSAMOUR system with

the oversampling factor q. This optimal solution corresponds to taking advantage of the qJ − K

degrees of freedom present in the equalizer design.

2.1 Optimal FSAMOUR ZFE

Consider the equivalent FSAMOUR system given in Fig. 6(a). It corresponds to the system

shown in Fig. 5(b) with one difference, namely the block-equalizer is allowed to have memory.

In the following we investigate the case of zero-forcing equalization, which corresponds to having

ŝm(n) = sm(n) in the absence of noise. Obviously, this is achieved if and only if Γm(z) is a left

inverse of H̄m. Under the conditions on P and J described in Sec. 1.1 this inverse exists. Moreover,
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the fact that H̄m is tall implies that this inverse is not unique. Our goal is to find the left inverse

Γm(z) as in Fig. 6(a) of a given order that will minimize the noise power at the output, i.e.

minimize the power of ŝm(n) given that sm(n) = 0. The equalizer design described here is closely

related to the solution of a similar problem presented in [21]. One difference is that the combined

transmitter/channel matrix H̄m in Fig. 6(a) is constant, so we use its singular value decomposition

[5] instead of a Smith form decomposition as in [21].

The tall rectangular matrix H̄m can be decomposed as [5]

H̄m = Um ·

[
Σm

0

]

· Vm, (18)

where Um and Vm are qJ×qJ and K×K unitary matrices respectively, and Σm is a K×K diagonal

matrix of singular values. Since we assumed H̄m has rank K it follows that Σm is invertible. It

can be seen from (18) that the most general form of a left inverse of H̄m is given by

Γm(z) = V†
m

[
Σ−1

m Am(z)
]
U†

m, (19)

where Am(z) is an arbitrary K × (qJ − K) polynomial matrix and represents a handle on the

degrees of freedom in the design of Γm(z). Defining the K × qJ , (qJ −K)× qJ and K × (qJ −K)

matrices D0, D1 and Bm(z) respectively as

[
D0

D1

]
4
= U†

m, and Bm(z)
4
= V†

m · Am(z), (20)

equation (19) can be re-written as [see Fig. 6(b)]

Γm(z) = V†
mΣ−1

m · D0 + Bm(z) · D1. (21)

Since there is a one to one correspondence (20) between the matrices Am(z) and Bm(z), the design

objective becomes that of finding the Bm(z) of a fixed order Nb − 1, given by its impulse response

Bm(z) =

Nb−1
∑

n=0

Bm,nz−n, (22)

that minimizes the noise power E{ê†mêm}/K at the output of Fig. 6(b). The operator E{·} denotes

the expected value. From Fig. 6(b) it is evident that the optimal Bm(z) in this context is nothing

but a linear estimator of a vector random process u(n) given v(n). The solution is well-known [11]

and is given by

[Bm,0 Bm,1 · · · Bm,Nb−1]
4
= B = −E{u(n)V†(n)} · R−1

VV , (23)
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where V(n)
4
=[vT (n) vT (n− 1) · · · vT (n−NB +1)]T and RVV is its autocorrelation matrix. Next

we rewrite the solution (23) in terms of the noise statistics, namely its qJ × qJ crosscorrelation

matrices Ree(k)
4
= E{em(n)e†m(n − k)}. First note that

RVV =








D1Ree(0)D
†
1 D1Ree(1)D

†
1 · · · D1Ree(Nb − 1)D†

1

D1Ree(1)D
†
1 D1Ree(0)D

†
1 · · · D1Ree(Nb − 2)D†

1
...

...
. . .

...

D1Ree(Nb − 1)D†
1 D1Ree(Nb − 2)D†

1 · · · D1Ree(0)D
†
1








. (24)

Similarly, we can rewrite

E{u(n)V†(n)} = V†
m · Σ−1

m · D0 ·
[

Ree(0)D
†
1 Ree(1)D

†
1 · · · Ree(Nb − 1)D†

1

]

. (25)

For sufficiently large input block size qJ it is often safe to assume that the noise is uncorrelated

across different blocks; in other words Ree(k) = 0 for k 6= 0. In this important special case the

optimal Bm(z) is a constant, namely

Bm(z) = Bm,0 = −V†
mΣ−1

m D0Ree(0)D
†
1

(

D1Ree(0)D
†
1

)−1
. (26)

From (26) and (21) we get the optimal form of a ZFE

Γ(opt)
m = V†

mΣ−1
m

[

IK − D0Ree(0)D
†
1

(

D1Ree(0)D
†
1

)−1
]

U†
m. (27)

Another important special case occurs when the noise samples at the input of the receiver are

i.i.d. It is important to notice here that e(n) in Figs. 5 and 6 is obtained by passing the input

noise through a bank of q receiver front ends V−1
m Gm. Therefore, the noise autocorrelation matrix

Ree(0) is not likely to be a scaled identity. Instead, in this case we have

Ree(k) = δk · diag0≤z≤q−1{σ
2
z · V−1

m GmG†
mV−†

m }, (28)

which is a qJ × qP block-diagonal matrix, with noise variances σ2
z corresponding to different signal

polyphase components. Starting from (4) and (12) the reader can readily verify that for large values

of M , V−1
m GmG

†
mV

−†
m ≈ M · IJ . Therefore, in the case of white channel noise and no oversampling

in a system with many users, the optimal ZFE from (27) becomes

Γ(white noise)
m = V†

m

[
Σ−1

m 0
]
U†

m. (29)

This follows since D0D
†
1 = 0 and Ree(k) ≈ δk · σ2

k · I.

At this point we would like to make a distinction between the optimal ZFEs in AMOUR and

FSAMOUR systems. From the derivations presented in this subsection it is evident that the optimal
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ZFEs can be constructed in a traditional AMOUR system of [3, 4] and it is to be expected that this

solution would perform better than the ordinary ZFE based on the matrix pseudo-inverse similar

to (17). However, in the following we show that if the channel noise in Fig. 3(a) is i.i.d. then

any optimization of ZFEs in AMOUR systems will not improve their performance. This is not

true for fractionally spaced AMOUR systems, since the noise samples in vectors e0(n) and e1(n) in

Fig. 6(b) need not have the same variances although they remain independent. This is due to the

fact that e0(n) and e1(n) correspond to signals received through different polyphase components

of the channel. Consequently, in the FSAMOUR case, the noise autocorrelation matrices Ree(0)

appearing in (27) are not given by scaled identity matrices and (29) does not correspond to the

optimal solution. Now let us compare the optimal ZFE in the AMOUR system for the white noise

(29) to the corresponding zero-forcing solution given in (17). The result is summarized as follows.

Proposition 1. Pseudo-inverse is the optimal AMOUR ZF SSE if the noise is white.

Comment. This result is indeed well-known. The reader is referred to [7] for a detailed

treatment of various equalizers in a traditional CDMA system. For completeness, in the following

we give a short proof of Proposition 1.

Proof. Starting from the traditional ZFE Γ
(zfe)
m we have

Γ(zfe)
m =

(

H̄†
mH̄m

)−1
H̄†

m =

(

V†
m

[

Σ†
m 0

]

U†
mUm

[
Σm

0

]

Vm

)−1

V†
m

[

Σ†
m 0

]

U†
m

= V†
m

[
Σ−1

m 0
]
U†

m = Γ(white noise)
m . (30)

A more insightful way to look at the result from Proposition 1 is that there is nothing to be gained

by using the optimal solution if there is no oversampling at the receiver. In contrast to this, using

the optimal ZFEs in FSAMOUR systems leads to a noticeable improvement in performance over

the simple pseudo-inverses as is demonstrated in Sec. 2.2. Finally, note that an alternative to using

the equalizer (27) would be to apply pre-whitening filters followed by equalizers from (29).

2.2 Performance evaluation

In this subsection we compare the performance of the conventional (SSE) AMOUR described in Sec.

1.1 and the FSAMOUR system from Sec. 2 with oversampling ratio q = 2. System parameters were

given by K = 12, M = 4, while J and P were chosen to be the minimum for the guaranteed existence

of channel ZFEs as explained in Sec. 1.1. The performance results were obtained by averaging

over thirty multipath channel realizations. The equivalent channel was modeled as a combination

of a raised cosine (constant part in the transmitter and the receiver) and a randomly chosen short

multipath channel. The resulting half-integer sampled, channel impulse responses h
(2)
m (n) were of
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the eleventh order. The equivalent, integer-spaced channels were obtained by keeping the even

samples and are of order L = 5.

The channel noise, which was originally AWGN, was colored by the square root raised cosine at

the receiver. The signal to noise ratio (SNR) was measured after sampling at the entrance of the

receiver [point xm(n) in Fig. 3(a)]. Notice that SNR does not depend on the oversampling ratio

q as long as the signal and the noise are stationary. The performance curves are shown in Fig. 7.

The acronyms “SSE” and “FSE” represent AMOUR and FSAMOUR systems, while the suffices

“ZF”, “MMSE” and “OPT” correspond to zero-forcing, minimum mean-squared error and optimal

ZFE solutions respectively. There are several important observations that can be made from these

results:

• The overall performance of AMOUR systems is significantly improved by signal oversampling

at the receiver.

• The performance of ZFEs in FSAMOUR systems can be further improved by about 0.4[dB]

by using the optimal equalizers that exploit the redundancy in ZFE design as described in

Sec. 2.1. This is due to the fact that the optimal solution is given by (27) rather than (29).

As explained previously, the same does not hold for AMOUR systems.

• The performance of the optimal ZFEs in FSAMOUR systems is almost identical to the per-

formance of the optimal1 MMSE equalizers. Thus there is practically no loss in performance

as a result of using the optimal ZFE given by (27) instead of the MMSE equalizer (17). The

advantages of using a ZFE become evident by comparing the expressions (27) and (17). As

opposed to the MMSE solution Γ
(mmse)
m , zero-forcing equalizer Γ

(opt)
m does not require the

knowledge of the signal statistics Rss and if the noise is white and stationary, the solution

Γ
(opt)
m is independent of the noise variance, which plays a significant role in the corresponding

MMSE solution (17). More detailed analysis of mentioned advantages can be found in [20].

• Even though the noise was colored, a simple pseudo-inverse happens to yield an almost

identical performance as the MMSE equalizer, and is therefore the optimal ZFE in AMOUR

systems with no oversampling.

In the next section we introduce the modification of the idea of the integral oversampling of the

received signal to a more general case when the amount of oversampling is a rational number.

1The MMSE equalizer is the optimal solution in terms of minimizing the energy of the error signal at the receiver
for the fixed system parameters.
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3 AMOUR with fractional oversampling

While FSAMOUR systems with the integral oversampling can lead to significant improvement in

performance compared to traditional AMOUR systems, the notion of oversampling the received

CDMA signal might be less popular due to very high data rates of the transmitted CDMA signals.

According to the scenario of integral oversampling the data rates at the receiver are at least twice

as high as the rates at the transmitter, which makes them prohibitively high for most sophisticated

equalization techniques. In this section we explore the consequences of sampling the continuous-

time received signal xc(t) in Fig. 3(a) at a rate that is higher than the symbol rate 1/T by a

fractional amount. To be more precise, suppose the amount of oversampling is q/r, where q and

r are coprime integers satisfying q > r. If q = r + 1 for high values of r the data rate at the

receiver becomes almost identical to the one at the transmitter which is rather advantageous from

the implementational point of view. It will soon become evident that the case when q and r share

a common divisor can easily be reduced to the case of coprime factors. This said, it appears that

the discussion from the previous section is redundant since it simply corresponds to fractional

oversampling with r = 1. However, it is instructive to consider the integer case separately since it

is easier to analyze, and provides some important insights.

Consider Fig. 3(a) and suppose xc(t) has been sampled at rate q/r. This situation is shown in

Fig. 8(a). Performing the analysis very similar to the one in Sec. 2, we can easily show that in

this case we have

xm(n) =
∞∑

k=−∞

um(k)h(q)
m (nr − kq). (31)

This is shown in Fig. 8(b), with appropriate modification of the noise from Fig. 8(a) and with

h
(q)
m (n) denoting hc(nT/q), just as it did in the case of integer oversampling.

The structure shown in Fig. 8(b) consisting of an expander by q, filter H
(q)
m (z) and a decimator

by r has been studied extensively in [18, 19, 20]. It has been shown in [20] that without loss of

generality we can assume q and r are coprime in such structures. Namely, if p was a nontrivial

greatest common divisor of q and r such that q = q′ · p and r = r′ · p, with q′ and r′ mutually

coprime, then the structure is equivalent to the one with q replaced by q ′, r replaced by r′ and the

new filter corresponding to the zeroth p-fold polyphase component [14] of H
(q)
m (z).

Now we are ready for the problem of multiuser communications with the rational oversampling

ratio of q/r. The analysis of the fractionally oversampled FSAMOUR systems will turn out to

be somewhat similar to the discussion in Sec. 1.1 and in order to make the presentation more

accessible we have grouped the most important steps into separate subsections. One noticeable

15



difference with respect to the material from Sec. 1.1 is that in this section we will mostly deal with

larger, block matrices. This comes as a consequence of a result on fractionally sampled channel

responses, presented in a recent paper on fractional biorthogonal partners [20].

3.1 Writing the fractionally sampled channel as a block convolution

Combining the elements from Figs. 8(a) and 8(b), we conclude that the discrete-time equivalent

scheme of the FSAMOUR system with the oversampling ratio q/r is shown in Fig. 9(a). It has

been established in [20] that the operation of filtering by H
(q)
m (z) surrounded by an expander and

a decimator as it appears in Fig. 9(a) is equivalent to blocking the signal, passing it through a

q× r matrix transfer function Em(z) and then unblocking it. This equivalent structure is employed

in Fig. 9(b). The unblocking element of darker shade represents the “incomplete” unblocking,

i.e. it converts a sequence of blocks of length P into a higher rate sequence of blocks of length

r. In other words, it can be thought of as the unblocking of a length-P vector sequence into a

scalar sequence, followed by the blocking of the obtained scalar signal into a length-r vector signal.

Here for simplicity we assumed r divides P , however this condition is unnecessary for the above

definition to hold and we return to this point later.

The relation between the filter H
(q)
m (z) and the corresponding matrix Em(z) is rather compli-

cated and is introduced in the following. First, let us write H
(q)
m (z) in terms of its Type-2 q-fold

polyphase components

H(q)
m (z) =

q−1
∑

k=0

Hm,k(z
q)zk. (32)

Next, recall from the Euclid’s algorithm that since q and r are mutually coprime, there exist

Q, R ∈ Z such that

qQ + rR = 1. (33)

Let us define the filters Pm,k(z) and their Type-1 r-fold polyphase components Ek,l(z) as

Pm,k(z)
4
= zkQHm,k(z) =

r−1∑

l=0

Ek,l(z
r)z−l, for 0 ≤ k ≤ q − 1. (34)

Then it can be shown [20] that the equivalent matrix transfer function Em(z) is given by

Em(z) =








E0,0(z) E0,1(z) · · · E0,r−1(z)
E1,0(z) E1,1(z) · · · E1,r−1(z)

...
...

...
Eq−1,0(z) Eq−1,1(z) · · · Eq−1,r−1(z)








. (35)

16



Now consider the block surrounded by a dashed line in Fig. 9(b). This can trivially be redrawn

as in Fig. 9(c). The denoted P̄ × P transfer function Êm(z) is a block pseudo-circulant

Êm(z) =















E0 0 · · · 0 z−1EN z−1EN−1 · · · z−1E1

E1 E0 · · · 0 0 z−1EN · · · z−1E2
...

...
. . .

...
...

...
. . .

...
EN EN−1 · · · E0 0 0 · · · 0

0 EN · · · E1 E0 0 · · · 0
...

...
. . .

...
...

...
...

0 0 · · · EN EN−1 EN−2 · · · E0















. (36)

The q × r blocks En, for 0 ≤ n ≤ N in (36) represent the impulse response of Em(z), while N is

the order of the matrix polynomial and it depends on the choice of r and on the maximum channel

order L. This issue will be revisited shortly. It is implicitly assumed in (36) that q divides P̄ . For

arbitrary values of r and q we can write

P̄ = q · nq + eq and P = r · nr + er, (37)

where nq, eq, nr, er ∈ N and eq < q, er < r. Equation (36) obviously corresponds to eq = er = 0, i.e.

when r divides P and q divides P̄ . For general values of r and q, the block pseudo-circulant Êm(z)

from (36) gets transformed by inserting er additional columns of zeros in each block-row and by

adding eq additional rows at the bottom. In the following we will assume eq = er = 0 since this

leads to essentially no loss of generality. Furthermore, we will assume that nq = nr, or equivalently

that P̄ = qnr, which is a valid assumption since P̄ is a free parameter.

3.2 Eliminating IBI

Next we would like to eliminate the memory dependence in (36) which is responsible for inter-block

interference (IBI). It is apparent from Fig. 9 that this can be achieved by choosing Ĉm such that

its last rN rows are zero. This effectively means that the transmitter is inserting a redundancy of

rN symbols after each block of length P − rN . Let us denote by Ēm the P̄ × (P − Nr) constant

matrix obtained as a result of premultiplying Ĉm by Êm(z). Next, we note that the blocked version

of the equality (6) holds true as well. In other words, Ēm can be block-diagonalized using block-

Vandermonde matrices. Namely, let us choose

Gm =









Iq ρ−1
m,0Iq · · · ρ

−nq+1
m,0 Iq

Iq ρ−1
m,1Iq · · · ρ

−nq+1
m,1 Iq

...
...

...

Iq ρ−1
m,J−1Iq · · · ρ

−nq+1
m,J−1Iq









, for ρm,j ∈ C, (38)
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denote by Θm the following Jr × (P − Nr) matrix, recalling that nr = nq

Θm =









Ir ρ−1
m,0Ir · · · ρ

−(nr−N−1)
m,0 Ir

Ir ρ−1
m,1Ir · · · ρ

−(nr−N−1)
m,1 Ir

...
...

...

Ir ρ−1
m,J−1Ir · · · ρ

−(nr−N−1)
m,J−1 Ir









, (39)

and define the qJ × rJ block-diagonal matrix

Em(ρm)
4
= diag[Em(ρm,0),Em(ρm,1), · · · ,Em(ρm,J−1)]. (40)

Then for any J ∈ N and any set of distinct complex numbers {ρm,j}
J−1
j=0 the following holds

GmĒm = Em(ρm)Θm. (41)

Notice that we used the symbols Gm and Θm to represent different matrices from the ones in Sec.

1.1. This is done for notational simplicity since no confusion is anticipated.

Once we have established the connection with the traditional AMOUR systems, we follow the

steps similar to those in Sec. 1.1 in order to get conditions for MUI cancellation and channel

equalization regardless of the channels hm(n). Given the analogy between the equations (41) and

(6) we conjecture that the block at the receiver in Fig. 9 responsible for MUI elimination should

be given by Gm as in (38). In the following we first clarify this point and then proceed to state the

result on the existence of channel ZFEs.

3.3 MUI cancellation

The interference at the mth receiver coming from the user µ 6= m is proportional to the output

of the concatenation of matrices GmĒµCµ, where Cµ is the nonzero part of the spreading code

matrix Ĉµ and is exactly the same as the one used in (7). Using (41) we see that the MUI term is

proportional to

GmĒµCµ = Eµ(ρm)ΘmCµ = Eµ(ρm)Cµ(ρm), with (42)

Cµ(ρm)
4
=








Cµ(ρm,0)
Cµ(ρm,1)

...
Cµ(ρm,J−1)








, and Cµ(γ)
4
=









C
(0)
µ,0(γ) C

(0)
µ,1(γ) · · · C

(0)
µ,K−1(γ)

C
(1)
µ,0(γ) C

(1)
µ,1(γ) · · · C

(1)
µ,K−1(γ)

...
...

...

C
(r−1)
µ,0 (γ) C

(r−1)
µ,1 (γ) · · · C

(r−1)
µ,K−1(γ)









. (43)

The entries C
(l)
µ,k(γ), for 0 ≤ k ≤ K − 1, 0 ≤ l ≤ r − 1 in (43) represent the lth Type-1 polyphase

components of the kth spreading code used by user µ, evaluated at z = γ. In other words, the kth
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spreading code in Fig. 1(a) can be written as

Cm,k(z) =
r−1∑

l=0

C
(l)
m,k(z

r)z−l.

It follows from (42)-(43) that MUI elimination can be achieved by choosing {ρm,j}
M−1,J−1
m,j=0 such

that

C
(l)
µ,k(ρm,j) = 0, ∀m 6= µ, ∀k ∈ [0, K − 1], ∀j ∈ [0, J − 1], ∀l ∈ [0, r − 1]. (44)

Equations (44) define (M−1)J zeros for each of the r polyphase components of Cm,k(z). In addition

to this, we will choose the nonzero values similarly as in Sec. 1.1 such that the channel equalization

becomes easier. To this end, let us choose

C
(l)
m,k(ρm,j) = Am · δ(l − β) · ρ−α

m,j , (45)

for integers α and β with β < r chosen such that k = αr + β. This brings the total number

of constraints in each of the spreading code polynomials to MJr. Recalling that the last Nr

samples of spreading codes are fixed to be zero, the minimum spreading code length is given by

P = (MJ + N)r.

3.4 Channel equalization

The last step in the receiver design is to eliminate the ISI present in the MUI-free signal. For an

arbitrary choice of integers K and r with r < K we can write

K = r · αr + βr, (46)

with αr, βr ∈ N and βr < r. Let us first assume that K was chosen such that βr = 0 in (46).

Substituting (45) in (43) for µ = m we have

Cm(ρm,j) = Am

[

Ir ρ−1
m,jIr · · · ρ

−(αr−1)
m,j Ir

]

, (47)

which further leads to

GmĒµCµ = Am · Eµ(ρm) ·









Ir ρ−1
m,0Ir · · · ρ

−(αr−1)
m,0 Ir

Ir ρ−1
m,1Ir · · · ρ

−(αr−1)
m,1 Ir

...
...

...

Ir ρ−1
m,J−1Ir · · · ρ

−(αr−1)
m,J−1 Ir









. (48)

19



Recalling the relationship (41) we finally have that

GmĒmCm = Am ·









Iq ρ−1
m,0Iq · · · ρ

−(αr+N−1)
m,0 Iq

Iq ρ−1
m,1Iq · · · ρ

−(αr+N−1)
m,1 Iq

...
...

...

Iq ρ−1
m,J−1Iq · · · ρ

−(αr+N−1)
m,J−1 Iq









︸ ︷︷ ︸

Vm

·Em, (49)

where Em is the (αr + N)q × K north-west submatrix of Ēm. If βr > 0 in (46), this simply leads

to adding the first βr columns of the next logical block to the right end in (47), consequently

augmenting the matrices Vm and Em in (49).

The channel equalization which follows the MUI cancellation amounts to finding a left inverse

of the matrix product Vm · Em appearing on the right hand side of (49). The first matrix in this

product is block-Vandermonde and it is invertible if J ≥ αr + N and if {ρm,j}
J−1
j=0 are distinct (the

latter was assured previously). Therefore we get the value for one of the parameters

J = αr + N. (50)

Notice that since q > r, from (50) and (46) it automatically follows that Vm · Em is a tall matrix,

thus it could have a left inverse. However, these conditions are not sufficient. Another condition

that needs to be satisfied is the following

rank{GmĒmCm} = K ⇒ rank{Em(ρm)} ≥ K. (51)

In other words, in order for the channel hm(n) to be equalizable using ZFEs after oversampling

the received signal by q/r and MUI cancellation, we can allow for the rank of Em(ρm) in (40)

to drop by the maximum amount of r · N , regardless of the choice of signature points {ρm,j}.

Obviously, this cannot be guaranteed regardless of the channel and other system parameters simply

because the matrix polynomial Em(z) could happen to be rank-deficient for all values of z. At

best we can only hope to establish the conditions under which the rank equality (51) stays satisfied

regardless of the choice of signature points. This is different from the conventional AMOUR and

integral FSAMOUR methods described in Secs. 1.1 and 2, where we had two conditions on system

parameters for guaranteed channel equalizability depending on whether the channel was known

(J ≥ K) or unknown (J ≥ K + L). Here we cannot guarantee equalizability even for the known

CSI, if the channel leads to rank-deficient Em(z). Luckily, this occurs with zero probability.2 If

2Moreover, unless Em(z) is rank-deficient, even if it happens to be ill-conditioned for certain values of ρm,j , for
known CSI this can be avoided by the appropriate choice of signature points.
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this is not the case, the channel can be equalized under the same restrictions on the parameters

regardless of the specific channel in question. The following theorem establishes the result, under

one extra assumption on the decimation ratio r.

Theorem 1. Consider the FSAMOUR communication system given by its discrete-time equiv-

alent in Fig. 9(a). Let the maximum order of all the channels {hm(n)}M−1
m=0 be L. Let us choose the

integers r ≥ L + 1 and q > r such that the irreducible ratio q/r closely approximates the desired

amount of oversampling at the receiver. Next, choose an arbitrary αr ≥ r and take the following

values of the parameters:

K = r · αr, J = αr + 1, P = (MJ + 1)r, P̄ = (MJ + 1)q. (52)

1. Multiuser interference (MUI) can be eliminated by blocking the received signal into the blocks

of length P̄ and passing it through the matrix Gm as introduced in (38) with nq = MJ + 1,

as long as the spreading codes {cm,k(n)}K−1
k=0 are chosen according to (44) and (45).

2. Under the above conditions, the channel can either be equalized for an arbitrary choice of the

signature points {ρm,j} or it cannot be equalized regardless of this choice. More precisely, let

Em(z) be the polyphase matrix corresponding to hm(n) as derived in (32)-(35). Under the

above conditions there are two possible scenarios:

• max
z∈C

rank{Em(z)} = r. In this case the system is ZFE-equalizable regardless of {ρm,j}.

• max
z∈C

rank{Em(z)} < r. In this case there is no choice of {ρm,j} that can make the system

ZFE-equalizable.

Comment. The condition r ≥ L + 1 introduced in the statement of the theorem might seem

restrictive at first. However, in most cases it is of special interest to minimize the amount of

oversampling at the receiver and try to optimize the performance under those conditions. This

amounts to keeping q roughly equal to, yet slightly larger than r and choosing r large enough so

that the ratio q/r approaches unity. In such cases r happens to be greater than L + 1 by design.

The condition αr ≥ r is not necessary for the existence of ZFEs. It only ensures the absence of

ZFEs if the rank condition on Em(z) is not satisfied.

Proof. The only result that needs proof in the first part of the theorem is that the order of

Em(z) is N = 1, whenever r ≥ L + 1. If N = 1, all the parameters in (52) are consistent with the

values used so far in Sec. 3. Then the first claim follows directly from the discussion preceding the

theorem. In order to prove that N = 1 we use the following lemma whose proof can be found in

the appendix.
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Lemma 1. Under the conditions of Theorem 1 Em(z) can be written as

Em(z) = Um · Dm(z)·

r[
Em,0(z)
Em,1(z)

]
r

q−r
, (53)

where Em,0(z) and Em,1(z) are polynomial matrices of order N = 1, Um is a unitary matrix and

Dm(z) is a diagonal matrix with advance operators zi on the diagonals.

Having established Lemma 1, the first part of the theorem follows readily since Um ·Dm(z) can

be equalized effortlessly and thus the order of Em(z) is indeed N = 1 for all practical purposes.

For the second part of Theorem 1, we use Lemma 2 which is also proved in the appendix.

Lemma 2. The difference between the maximum and the minimum achievable rank of Em(ρm)

given by (40) is upper bounded by r − 1.

From the proof of Lemma 2 it follows that we can distinguish between two cases:

• If the normal rank of Em(z) is r, then the minimum rank of Em(ρm) over all choices of

signature points is lower bounded by rJ − r + 1 = K + 1 and therefore ZFE is achieved by

finding a left inverse of the product in (49).

• If the normal rank of Em(z) is less than r, then the maximum rank of Em(ρm) is given by

max
ρm,j

rank{Em(ρm)} ≤ (r − 1)J = (r − 1)(αr + 1) = K + (r − αr − 1) < K.

Therefore, regardless of the signature points, ZFE does not exist.

This concludes the proof of Theorem 1. 555

To summarize, in this section we established the algorithm for multiuser communications based

on AMOUR systems with fractional amount of oversampling at the receiver. The proposed form

of the receiver (block labeled “equalization and rate reduction” in Fig. 9) is shown in Fig. 10. As

was the case with the simple AMOUR systems, the receiver is divided into three parts namely Gm,

V
−1
m and Γm. The first block Gm is supposed to eliminate MUI at the receiver. Second block V

−1
m

represents the inverse of Vm defined in (49) and essentially neutralizes the effect of Ĉm and Gm

on the MUI-free signal. Finally, Γm is the block that aims at equalizing the channel which is now

embodied in the tall matrix Vm [see (49)].

Note that even though the notations may be similar as in Sec. 1.1, the building blocks in Fig.

10 are quite different from the corresponding ones in AMOUR systems. The construction of Gm is

described in (38) with the signature points chosen in accordance with the spreading code constraints

(44)-(45). The channel equalizer Γm can be chosen according to one of the several design criteria

described in (17). Instead of H̄m in (17) we should use the corresponding matrix Em. In addition
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to these three conventional solutions, we can choose the optimal zero-forcing equalizer as the one

described in Sec. 2.1. The details of the construction of this solution are omitted since they are

analogous to the derivations in Sec. 2.1.

The conditions for the existence of any ZFE Γ
(zfe)
m are described in the previous theorem. Under

the same conditions there will exist the optimal ZFE Γ
(opt)
m as well. The event that the normal

rank of Em(z) is less than r occurs with zero probability and thus for all practical purposes we can

assume the channel is equalizable regardless of the choice of signature points. Again, for the reasons

of computational benefits, signature points can be chosen to be uniformly distributed on the unit

circle [see (10)]. In the following we demonstrate the advantages of the FSAMOUR systems with

fractional oversampling over the conventional AMOUR systems.

3.5 Performance evaluation

In this section we present the simulation results comparing the performance of the conventional

AMOUR system to the FSAMOUR system with a fractional oversampling ratio. The simulation

resuts are averaged over thirty independently chosen real random channels of order L = 4. The

q-times oversampled channel impulse responses h
(q)
m (n) were also chosen randomly, under the con-

straint that they coinside with AMOUR channels at integers. In other words h
(q)
m (qn) = hm(n).

The channel noise was taken to be colored. However, as opposed to Sec. 2.2, it was modeled as an

auto-regressive process of first order [11] i.e. AR(1) process with the cross-correlation coefficient

equal to 0.8. The SNR was measured at the receiver as explained in Sec. 2.2. The amount of

oversampling at the receiver was chosen to be q/r = 6/5, and the parameter αr = 6. The other

parameters were chosen as in (52). Notice that the advantage of this system over the one described

in Sec. 2 is in the lower data rate at the receiver. Namely, for each 5 symbols of the input data

stream sm(n) the receiver in Fig. 3 needs to deal with 10 symbols, while the receiver in Fig. 9

deals with only 6. This represents not only the reduction in complexity of the receiver, but also

minimizes the additional on-chip RF noise resulting from fast-operating integrated circuits.

The performance curves are shown in Fig. 11. The acronyms “SSE” and “FSE” represent the

AMOUR system with no oversampling and the FSAMOUR system with the oversampling ratio

6/5, while the suffices “ZF”, “MMSE” and “OPT” correspond to the zero-forcing, minimum mean-

squared error and optimal ZFE solutions respectively. The optimal ZFEs are based on optimal

matrix inverses as explained in Sec. 2.1. Comparing these performances we conclude:

• In this case (due to noise coloring and fractional oversampling) the optimal ZFE in both

23



AMOUR and FSAMOUR systems perform significantly better than the conventional ZFE.

This comes in contrast to some of the results in Sec. 2.2.

• The optimal ZFEs in both systems on Fig. 11 perform almost identically to the MMSE

solutions. As explained in Sec. 2.2 the complexity of Γ
(opt)
m is reduced compared to that of

Γ
(mmse)
m and so is the required knowledge of the signal and the noise statistics.

• The FSAMOUR system with the oversampling ratio 6/5 performs better than the corre-

sponding AMOUR system with no oversampling. The price to be paid is in the data rate and

the complexity at the receiver. As expected, the improvement in performance resulting from

oversampling by a ratio 6/5 is not as pronounced as in Sec. 2.2, with a ratio q = 2. This can

be assessed by comparing the gain over the symbol-spaced system in Fig. 11 and Fig. 7).

4 Concluding remarks

The recent development of A Mutually-Orthogonal Usercode-Receiver (AMOUR) for asynchronous

or quasi-synchronous CDMA systems [3, 4] represents a major break-through in the theory of

multiuser communications. The main advantage over some of the other methods lies in the fact

that both the suppression of multiuser interference (MUI) and inter-symbol interference (ISI) within

a single user can be achieved regardless of the multipath channels. For this reason it is very easy

to extend the AMOUR method to the case where these channels are unknown [4]. In this paper

we proposed a modification of the traditional AMOUR system in that the received continuous-

time signal is oversampled by an integral or a rational amount. This idea leads to the concept of

Fractionally-Spaced AMOUR (FSAMOUR) receivers that are derived for both integral and rational

amounts of oversampling. Their performance is compared to the corresponding performance of

the conventional method and significant improvements are observed. An important point often

overlooked in the design of zero-forcing channel equalizers is that sometimes they are not unique.

We exploit this flexibility in the design of AMOUR and FSAMOUR receivers and further improve

the performance of multiuser communication systems.

5 Appendix

Proof of Lemma 1. Without loss of generality we only consider r = L + 1, since the proof for

r > L + 1 follows essentially the same lines. The polyphase components Hm,k(z) of the q-fold

oversampled channel H(q)(z) defined in (32) can be thought of as FIR filters of order L (or less).
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As a special case, note that Hm,0(z) = Hm(z). Next, consider the auxiliary filters Pm,k(z) as in

(34). From (33) it follows not only that q and r are coprime, but at the same time that Q and r

are coprime as well. For this reason the numbers

lk
4
= [kQ mod r]

are distinct for each 0 ≤ k ≤ r − 1. As a consequence, the first r filters

Pm,k(z) = zkQHm,k(z), 0 ≤ k ≤ r − 1

of length L + 1 are delayed by the amounts that are all different relative to the start of blocks of

length r. This combined with the fact that r = L+1 leads us to conclude that the entries of Em(z),

namely Ek,l(z) defined in (35) are all given by

Ek,l(z) = ẽk,l · z
nk,l . (54)

Here ẽk,l are constants, nk,l ≥ 0, nk,l+1 ≥ nk,l and nk,r−1 ≤ nk,0 + 1. Moreover, the index within

the kth row of Em(z) where the exponent nk,l increases by one is different for each of the first r

rows and all the polyphase components Ek,l(z) for k = 0 are constant. It follows that indeed Em(z)

can be written as (53), with Um denoting the unitary matrix corresponding to row permutations

and Dm(z) given by

Dm(z) = diag [zm0 zm1 · · · zmq−1 ] , mk ∈ N

whose purpose is to pull out any common delay elements from each row of Em(z). 555

Proof of Lemma 2. Consider (53). Depending on Um, Em,0(z) can be chosen as

Em,0(z) =










e0,0 e0,1 e0,2 · · · e0,r−1

e1,0 z · e1,1 z · e1,2 · · · z · e1,r−1

e2,0 e2,1 z · e2,2 · · · z · e2,r−1
...

...
...

. . .
...

er−1,0 er−1,1 er−1,2 · · · z · er−1,r−1










. (55)

From (55) it follows that

ord{det [Em,0(z)]} ≤ r − 1. (56)

Therefore, (55) can be rewritten using the Smith-McMillan form for the FIR case [14]

Em,0(z) = Û0(z)Λ0(z)V̂0(z), (57)

where Û0(z) and V̂0(z) are unimodular and Λ0(z) is diagonal with polynomials λi(z) on the

diagonal for 0 ≤ i ≤ r − 1. From (56) it follows that

r−1∑

i=0

ord{λi(z)} ≤ r − 1. (58)
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Note that some of the diagonal polynomials λi(z) can be identically equal to zero, and that will

result in rank{Em,0(γ)} < r regardless of γ. However, if this is not the case it follows from (58)

that by varying z the rank of Em,0(z) can drop by at most r− 1. This concludes the proof. 555
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Ĉm U
V

−1
m

Figure 5: (a) A possible overall structure for the FSAMOUR system. (b) Simplified equivalent
structure for ISI suppression.

33



qJ

e(n)
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