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Abstract— The idea of signal richness has recently been studied
in considerable details, and the conditions on linear time invariant
(LTI) systems to preserve such richness have been established.
In this paper, the concept of richness is extended to practically
useful classes such as bounded signals. The class of LTI systems
studied for the richness preservation problem are generalized to
cases including rectangular systems and infinite impulse response
(IIR) systems. Structured proofs of the newly found necessary
and sufficient conditions are also presented.1

I. I NTRODUCTION

Vectorized signals are often considered to be “rich” if they
satisfy certain fullness properties appropriate for an application
under discussion. In some applications a sequence ofM × 1
vectorsx(n), n ≥ 0 is defined to berich if the matrix

[
x(0) x(1) · · · x(Kx)

]

has rankM for sufficiently largeKx [1]. This property is
important, for example, when we try to identify an unknown
communication channel from output measurements alone us-
ing filter bank precoders [2]. Now, signals are sometimes
preconditioned by linear time invariant transformations before
they are used in such an application [3]. This leads us to
explore the conditions under which the linear precoders will
preserve richness of the vectorized signals. Let the linear time
invariant (LTI) system be characterized by the polynomial
matrix

H(z) =
N∑

k=0

h(k)z−k

so that
y(n) =

N∑

k=0

h(k)x(n− k).

We say the systemH(z) is richness-preserving (RP)if for
any rich inputx(n), the outputy(n) is also rich.

Other types of signal fullness different from but similar to
richness described above can be defined depending on the ap-
plications. Necessary and sufficient conditions for LTI systems
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to preserve similar yet different definitions of fullness can
differ very much. In reference [1], another definition of signal
fullness, namely,strict richnesshas also been considered: a
sequence ofM×1 vectorsx(n) is said to bestrictly rich (SR)
if for any nonnegative integern0, there exists an integerKn0

such that the matrix
[

x(n0) x(n0 + 1) · · · x(n0 + Kn0)
]

has rankM . A system that preserves strict richness is called
a strict-richness preserving (SRP)system.

The necessary and sufficient conditions for LTI systems
to preserve richness and strict richness have been found for
the case ofM ×M FIR systems [1]. In this paper, we will
consider a third definition, namely bounded strict richness, and
find the necessary and sufficient conditions for LTI systems
to preserve bounded strict richness. We also generalize the
richness preservation problem for rectangular systems (i.e.,
P ×M systems) and infinite impulse response (IIR) systems.

The paper is organized as follows. In Section II, previous
results for the richness-preserving problem will be briefly
reviewed. In Section III we will define bounded strict richness
and present the necessary and sufficient conditions for LTI
systems to preserve bounded strict richness. In Sections IV and
V, we will reconsider the richness preservation problem and
generalize the results for rectangular systems and IIR systems,
respectively. The proofs of theorems presented in the Sections
IV and V will be given in Section VI. Conclusions and open
issues will be described in Section VII.

A. Notations

Boldfaced lower case letters represent column vectors, and
boldfaced upper case letters are reserved for matrices. Super-
scripts as inAT andA† denote the transpose and transpose-
conjugate operations, respectively, of a matrix or a vector.[v]i
denotes theith element of vectorv, and ei denotes theith
vector of the standard basis ofCM . [A]i denotes theith row
of matrix A. All the vectors and matrices in this context are
complex-valued.



II. REVIEW OF RECENT RESULTS

In reference [1], conditions on LTI systems to preserve
richness have been presented:
Theorem 1:An N th order,M ×M system

H(z) =
N∑

k=0

h(k)z−k

is an RP systemif and only if either one of the following
conditions is true:

(a) There exist a nonsingularM×M matrix A and constants
g0, g1, · · · , gN of which at least one is nonzero such that
h(k) = gkA.

(b) There exist a nonzero row vectorv† and a set of column
vectorsa0,a1, · · · ,aN such thath(k) = akv† for any k,
and

[
a0 a1 · · · aN

]
has full rankM .

For convenience, we call LTI systems which have the form
described in condition (a)Type-A RP systems, and those
which have the form in condition (b)Type-B RP systems.
As we can observe in the above description, the rank of any
nonzero coefficient matrix of a Type-A RP system is always
M . The rank of any nonzero coefficient matrix of a Type-B
RP system is always unity. There are no systems other than
Type-A and Type-B RP systems that preserve signal richness.

Conditions on LTI systems to preserve strict richness have
also been found [1]:
Theorem 2:An N th order,M ×M system

H(z) =
N∑

k=0

h(k)z−k

is an SRP systemif and only if there exists nonnegative
integer n and an invertibleM × M matrix A such that
H(z) = z−nA.

In view of this theorem, we find that an SRP system is also
RP (Type-A RP, in fact). In the rest of the this paper, we will
extend these existing results in several different directions.

III. B OUNDED STRICT RICHNESS

As described in Section II, an SRP system must also be an
RP system. For RP systems which do not have the form of
an SRP system, strictly rich input sequences can be given to
show that the outputs are not strictly rich [1]. In some of these
counterexamples, the input signals are unbounded in time. This
leads us to think: if we consider only bounded signals, will the
conditions to preserve strict richness be different? A sequence
of M × 1 vectorsx(n) is said to bebounded strictly-rich
(BSR) if x(n) is strictly rich and there exists a constantc > 0
such that

|[x(n)]i| < c,

for all n ≥ 0 and1 ≤ i ≤ M . A system that preserves bounded
strict richness is called abounded-strict-richness preserving

(BSRP) system. One of the main results of this paper is the
following:
Theorem 3:An N th order,M ×M polynomial matrix

H(z) =
N∑

k=0

h(k)z−k

is a bounded-strict-richness preserving (BSRP)system if
and only if it can be expressed asH(z) = g(z)A, whereA
is a nonsingularM × M matrix andg(z) is an N th order
polynomial inz−1 whose zeros are all outside the unit circle.

The proof of Theorem 3 requires the following lemmas.

Lemma 1:A BSRP system is also an RP system.

Proof: We argue that a non-RP system is not a BSRP system.
For a non-RP systemH(z) =

∑N
k=0 h(k)z−k, we can find a

rich inputx(n) which has a finite support such that the output
is non-rich [1]. Supposex(n) is rich and zero forn ≥ L for
some integerL, and the outputy(n) =

∑N
k=0 h(k)x(n − k)

is non-rich. We can construct a new input signal

x′(n) ,
{

x(n mod (N + L)) n ≥ 0
0 n < 0

.

By definition,x′(n) is strictly rich. And sincex(n) has a finite
support, it is bounded and hencex′(n) is also bounded. Now
using the fact thatx(n) = 0 for all n ≥ L andn < 0, we find
the output

y′(n) =
N∑

k=0

h(k)x′(n− k)

=
N∑

k=0

h(k)x((n− k) mod (N + L))

=
N∑

k=0

h(k)x([n mod (N + L)]− k)

= y(n mod (N + L))

is not rich. Hencey′(n) is not bounded strictly-rich though
x′(n) is. SoH(z) is not a BSRP system.

Lemma 2: A Type-B RP system is not a BSRP system.

Proof: SupposeH(z) =
(∑N

k=0 akz−k
)
v†1 is a Type-B

RP system wherev†1 is a nonzero row vector. Without loss
of generality, assume||v1|| = 1. We can findv2,v3, · · ·vM

such that||vk|| = 1 andvT
i vj = 0,∀i 6= j. Let w1 = v1 and

wk = v1 +vk for 2 ≤ k ≤ M . Then we havevT
1 wk = 1,∀k.

Let the inputx(n) = w(n mod M)+1. Clearly it is bounded



and strictly rich. However, for alln ≥ N , we have

y(n) =
N∑

k=0

akvT
1 x(n− k) =

N∑

k=0

ak,

independent fromn. This impliesy(n) is not strictly rich. So
a Type-B RP system is not a BSRP system.

Lemma 3:An N th order Type-A RP systemH(z) = g(z)A
is a BSRP system if and only if all zeros ofg(z) are outside
the unit circle.

Proof: SupposeH(z) = g(z)A is a Type-A RP system. Here
g(z) is anN th order polynomial inz−1 andA is anM ×M

invertible matrix. Supposeg(z) has a zero on or inside the
unit circle, viz., g(α) = 0 for someα satisfying |α| ≤ 1. Let
the inputx(n) = αnA−1e(n mod M)+1. By definition, x(n)
is bounded and strictly rich. Then for alln ≥ N , we have

M∑

i=1

[y(n)]i =
M∑

i=1

eT
i

[
N∑

k=0

gkAx(n− k)

]

=
N∑

k=0

gkαn−k

[
M∑

i=1

eT
i e((n−k) mod M)+1

]

= αng(α) = 0.

This means the row vector
[

1 1 · · · 1
]

is an annihilator
of y(n) for all n ≥ N . Thereforey(n) is not strictly rich. So
H(z) = g(z)A is not a BSRP system ifg(α) = 0 for some
|α| ≤ 1.

On the other hand, if all zeros ofg(z) are outside the unit
circle, viz., g(α) = 0 implies |α| > 1, we will show that
H(z) = g(z)A is a BSRP system. Assume the contrary. Then
there exists a bounded strictly-rich input signalx(n) such that
the output signaly(n) =

∑N
k=0 gkAx(n− k) is not. Without

loss of generality, assumeg0 6= 0 since delays do not affect
the property of BSRP. Observe thatH(z) is FIR and hence
y(n) is bounded sincex(n) is. Soy(n) is not strictly rich.
Then there exists a nonzero row vectorv† and a nonnegative
integern0 such thatv†y(n) = 0 for all n ≥ n0. So we have

0 = v†y(n) =
N∑

k=0

gkv†Ax(n− k)

=
N∑

k=0

gkxn−k

= g0xn +
N∑

k=1

gkxn−k

where we definexn , v†Ax(n). This implies

xn = − 1
g0

(g1xn−1 + · · ·+ gNxn−N ) (1)

for all n ≥ n0. If αk is a zero ofg(z) =
∑N

k=0 gkz−k, then
clearly xn = αn

k is a solution of (1). Ifg(z) has multiple

zeros, then (1) also has solutions of the formniαn
k for some

positive integeri. So xn is a linear combination of terms of
the formniαn

k and can be expressed as

xn =
N1∑

k=1

rk∑

i=1

ck,in
i−1αn

k , n ≥ n0

whereN1 is the number of distinct zeros ofg(z) andrk is the
multiplicity of the zeroαk. Sincex(n) is SRP andv†A is a
nonzero row vector,xn must be nonzero for infinitely many
n. This implies at least one of the coefficientsck,i must be
nonzero. Soxn is necessarily unbounded asn goes to infinity.
This contradicts the BSR assumption onx(n).

Proof of Theorem 3:From Lemmas 1, 2, and 3, the proof of
Theorem 3 is immediately complete.

IV. RECTANGULAR SYSTEMS

In Section II only M × M systems are considered for
the richness-preservation problem. In this section, we will
generalize these results toP ×M systems whereP and M

might be different.
Theorem 4:An N th order,P ×M system

H(z) =
N∑

k=0

h(k)z−k

is an RP systemif and only if either one of the following
conditions is true:

(a) There exist aright invertible P × M matrix A and
constantsg0, g1, · · · , gN of which at least one is nonzero
such thath(k) = gkA.

(b) There exist a nonzero1×M vectorv† and a set ofP ×1
vectorsa0,a1, · · · ,aN such thath(k) = akv† for any k,
and

[
a0 a1 · · · aN

]
has rankP .

A P × M matrix A is said to be right invertible if there
exists anM×P matrixB such thatAB = IP . It is equivalent
to saying that rank(A) = P or to saying that theP rows of the
matrix A are linearly independent. Note that right invertibility
implies P ≤ M . Thus, according to Theorem 4, there are no
Type-A RP systems whose number of outputs is greater than
the number of inputs. This fits out intuition that a lower-rank
input cannot turn into a higher-rank output.

This is, however, not the case for Type-B RP systems.
According to the description in the theorem, even when
P > M , there still exist systems that satisfy condition (b).
However, it is necessary that the order of the systemN be
greater than or equal to the size of the outputsP .

Theorem 5:An N th order,P ×M system

H(z) =
N∑

k=0

h(k)z−k



is a strict-richness preserving (SRP) system if
and only if there exist a nonnegative integern
and a right invertible P × M matrix A such that
H(z) = z−nA.

The proofs of Theorems 4 and 5 will be presented in Section
VI.

V. I NFINITE IMPULSE RESPONSESYSTEMS

In Theorem 1 reviewed in Section II, only FIR systems
were considered. In this section we generalize the results for
IIR systems.
Theorem 6:A P ×M system

H(z) =
∞∑

k=0

h(k)z−k

is an RP systemif and only if either one of the following
conditions is true:

(a) There exist aright invertible P × M matrix A and a
sequence of scalars{gk}∞k=0 of which at least one scalar
is nonzero such thath(k) = gkA.

(b) There exist a nonzero1×M vectorv† and aP × 1 rich
sequencea(n) such thath(k) = a(k)v† for any k.

In view of the theorem, the conditions for IIR systems
to preserve richness look exactly the same as those for FIR
systems. However, it takes extra effort to prove this (See
Lemmas 5 and 8 in Section VI). This will be done in Section
VI.

Since conditions (a) and (b) described in Theorem 1 are
special cases of those in Theorems 4 and 6, we can extend
the definitions of Type-A RP and Type-B RP systems to those
which have the forms in conditions (a) and (b) in Theorem 6,
respectively.

VI. PROOFS OFTHEOREMS4, 5, AND 6

Theorems 4, 5, and 6 can be proved by the following
lemmas. Many of them are generalized from the lemmas in
[1] which we have used to prove the case for FIRM × M

systems.
Lemma 4: A P × M systemH(z) is RP if and only if
z−kAH(z)B is RP, wherek is any nonnegative integer,A is
a nonsingularP × P matrix, andB is a nonsingularM ×M

matrix.
Proof: This lemma becomes obvious when we recognize that
invertible row operations and delays on input and output
signals do not alter the property of richness.

Lemma 5:Suppose aP ×M systemH(z) =
∑N

k=0 h(k)z−k

is RP, whereN is possibly infinite. Then there existP × P

diagonal matricesDk and aP ×M constant matrixA (not

necessarily right invertible), each row of which is nonzero,
such thath(k) = DkA for all k.
Proof: If N is a finite integer, the proof can be easily obtained
by extending the proof of Lemma 6 in [1]. IfN is infinity,
we need to show that for anyi, 1 ≤ i ≤ P , the ith rows
of all coefficient matricesh(k) are proportional to the same
nonzero row vector which is theith row of A. Focusing on
the ith rows ofh(k)’s, we use

bT
k =

[
b1k b2k · · · bMk

]

to denote theith row of h(k) for simplicity. Using Lemma 4
and setting theM × M matrix B to appropriate values, we
can assumebT

0 = eT
1 without loss of generality. Now we want

to argue thatbT
k is proportional toeT

1 for all k ≥ 1. That is,
bjk = 0 for all k > 0 andj > 1. Assume the contrary and let
l be the smallest integer such thatbT

l violates this property
(i.e., not proportional toeT

1 ). So bjl 6= 0 for somej > 1 and
bjk = 0 for all j andk satisfying0 ≤ k < l and2 ≤ j ≤ M .

Now we construct an inputx(n) as follows:

x(0) = ej

x(k) = 0 for 1 ≤ k ≤ l − 1

x(l) = −bjle1

x(k) = ek−l+1 + ake1 for all l + 1 ≤ k ≤ l + M − 1

x(k) = ake1 for k ≥ l + M

whereak, k ≥ l + 1 are coefficients to be determined later.
Note thatx(n) is rich regardless of the values ofak ’s. Now
the ith entries of the output signal can be found as follows:

[y(0)]i = eT
1 ej = 0

[y(k)]i = eT
1 0 + 0T 0 + · · ·+ 0T 0 + 0T ej

= 0 for 1 ≤ k ≤ l − 1

[y(l)]i = bT
0 x(l) + · · ·+ bT

l x(0)

= eT
1 (−bjle1) + bjl = 0

[y(k)]i = bT
0 x(k) +

k−1∑
m=1

bT
mx(k −m)

= eT
1 (ake1) +

k−1∑
m=1

bT
mx(k −m)

= ak +
k−1∑
m=1

bT
mx(k −m)

= 0 for all k ≥ l + 1

if we chooseak = −∑k−1
m=1 bT

mx(k −m) recursively, for all
k ≥ l + 1. Note thatx(k −m), 1 ≤ m ≤ k − 1, depend on
the values ofan, n ≤ k − 1.

So y(n) is not rich thoughx(n) is rich. This contradicts
the assumption thatH(z) is RP. Thus theith rows of all



coefficient matricesh(k) should be proportional to the same
nonzero1 × M vector, sayaT

i . Suppose[h(k)]i = dkiaT
i .

Now simply assign Dk = diag(dk1, · · · , dkP ) and
A =

[
a1 a2 · · ·aP

]T
, then the proof of the lemma is

complete.

Lemma 6:For aP ×M RP systemH(z) =
∑∞

k=0 h(k)z−k,
the ranks of all nonzero coefficient matrices must be the
same. We call this value thecoefficient rankof an RP system.

Lemma 7: The coefficient rank of aP × M RP system
H(z) =

∑∞
k=0 h(k)z−k can only be either unity ofP .

Proofs of Lemmas 6 and 7 can be obtained by slightly
modifying the proofs of Lemmas 9, 10, and 11 in [1].

Lemma 8: Consider a P × M RP system H(z) =∑∞
k=0 h(k)z−k. If the coefficient rank ofH(z) is P , it must

have the form of a Type-A RP system. If the coefficient rank of
H(z) is unity, it must have the form of a Type-B RP system.
Proof: If the coefficient rank ofH(z) is P , by Lemma 5
h(k) = DkA for all k, where Dk are diagonal matrices.
Since rank(h(k)) = P for all nonzeroh(k), we have rank(A)
= P . SupposeaT

1 ,aT
2 , ...,aT

P are rows ofA. They are linearly
independent. For convenience, letdk be a P × 1 vector
whose entries are diagonal entries ofDk. We argue that all
vectors dk =

[
dk1 dk2 · · · dkP

]T
are in the same

direction. Assume the contrary and supposedk and dl are
not proportional to each other:∃i, j such thatdkidlj 6= dlidkj .
Recall that[h(k)]i denotes theith row of matrixh(k). Now we
have[h(k)]i = dkiaT

i , [h(k)]j = dkjaT
j , [h(l)]i = dliaT

i , and
[h(l)]j = dljaT

j . By Lemma 4 we know thatH′(z) , KH(z)
is also an RP system whereK is chosen as an invertible
matrix which adds theith row of H(z) into the jth row of
it. This implies [h′(k)]j = dkiaT

i + dkjaT
j and [h′(l)]j =

dliaT
i +dljaT

j . They are in different directions sinceai andaj

are linearly independent anddkidlj 6= dlidkj . This makes the
RP systemH′(z) violate Lemma 5. So alldk must be in the
same direction and henceh(k) = DkA are all proportional to
the same right invertible matrix. SoH(z) must have the form
of a Type-A RP system.

If the coefficient rank ofH(z) is unity, we can conclude
H(z) must have the form of a Type-B RP system by slightly
modifying the proof presented in Section VI-F in [1].
Lemma 9: A P × M system with the formH(z) =∑∞

k=0 gkAz−k is RP if rank(A) = P and somegk is nonzero.

Lemma 10: A P × M system with the form
H(z) =

∑∞
k=0 a(k)v†z−k is RP if a(n) is rich and v†

is nonzero.

Proofs of Lemmas 9 and 10 can be obtained by slightly
modifying the proofs presented in Section VI-B in [1].
Lemma 11:An FIR P ×M SRP system is also RP.

Lemma 12:An FIR P ×M Type A RP system is SRP if and
only if it is a constant right invertible matrix with a possible
delay.

Lemma 13:An FIR P ×M Type-B RP matricesB(z) do not
preserve strict richness.

The proofs of Lemmas 9, 10, and 11 can be obtained by
slightly modifying the proofs of Lemmas 5, 12, and 13 in
[1].

Finally, Theorems 4 and 6 can be proved by using Lemmas
6, 7, and 8 (necessary conditions) and Lemmas 9 and 10 (suf-
ficient conditions). The proof of Theorem 5 can be obtained
from Lemmas 11, 12, and 13.

VII. C ONCLUDING REMARKS AND OPEN ISSUES

In this paper we introduced the idea bounded strictly-
rich signals. The conditions for FIR LTI systems to preserve
this property have been found. It is worthy to note that a
minor change in the definition of strict richness constitutes
a significant difference on the conditions to preserve such
richness.

We also generalized the richness-preservation problem for
rectangular systems and IIR systems. It remains to investigate
conditions on infinite impulse response (IIR) systems that
preserve strict richness and bounded strict richness.

In the literature on adaptive filtering [4] and control theory
[5], a class of signals called the persistently exciting class is
often defined. The connection between such signals and the
“rich” signals defined herein is discussed in [1]. It will be
interesting to extend the results of this paper for the case of
persistently exciting signals.
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