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Abstract— The idea of signal richness has recently been studied to preserve similar yet different definitions of fullness can
in considerable details, and the conditions on linear time invariant  differ very much. In reference [1], another definition of signal
(LT]) systems to preserve such richness have been establishedy nass  namelystrict richnesshas also been considered: a

In this paper, the concept of richness is extended to practically . . . .
useful classes such as bounded signals. The class of LTI system§€dUence ob x 1 vectorsx(n) is said to bestrictly rich (SR)

studied for the richness preservation problem are generalized to if for any nonnegative integety, there exists an integék,,,
cases including rectangular systems and infinite impulse responsesuch that the matrix

(IIR) systems. Structured proofs of the newly found necessary

and sufficient conditions are also presente&l. [ X(no) X(no + 1) X(no + Kno) ]

I. INTRODUCTION has rank)M. A system that preserves strict richness is called

Vectorized signals are often considered to be “rich” if the§ Strict-richness preserving (SRP)system.

satisfy certain fullness properties appropriate for an applicationThe necessary and sufficient conditions for LTI systems
under discussion. In some applications a sequenck/of 1 {0 preserve richness and strict richness have been found for

vectorsx(n),n > 0 is defined to baich if the matrix the case ofM x M FIR systems [1]. In this paper, we will
consider a third definition, namely bounded strict richness, and
[ x(0) x(1) - x(K.) ] find the necessary and sufficient conditions for LTI systems

has rank) for sufficiently large K, [1]. This property is to preserve bounded strict richness. We also generalize the
important, for example, when we try to identify an unknowfichness preservation problem for rectangular systems (i.e.,
communication channel from output measurements alone &% M systems) and infinite impulse response (lIR) systems.
ing filter bank precoders [2]. Now, signals are sometimes The paper is organized as follows. In Section Il, previous
preconditioned by linear time invariant transformations befofgsults for the richness-preserving problem will be briefly
they are used in such an application [3]. This leads us figviewed. In Section Ill we will define bounded strict richness
explore the conditions under which the linear precoders wand present the necessary and sufficient conditions for LTI
preserve richness of the vectorized signals. Let the linear tif¢stems to preserve bounded strict richness. In Sections IV and
invariant (LT|) system be characterized by the po|yn0mié{, we will reconsider the richness pl’eservation prOblem and

matrix generalize the results for rectangular systems and IIR systems,
H N (k) respectively. The proofs of theorems presented in the Sections
(2) = kzo (k)= IV and V will be given in Section VI. Conclusions and open

issues will be described in Section VII.
so that

M=

h(k)x(n — k). A. Notations
Boldfaced lower case letters represent column vectors, and
We say the systeriil(z) is richness-preserving (RP)if for  pogtaced upper case letters are reserved for matrices. Super-
any rich inputx(n), the outputy(n) is also rich. scripts as inA” and At denote the transpose and transpose-
Other types of signal fullness different from but similar Qonjugate operations, respectively, of a matrix or a vedtdr.
richness described above can be defined depending on the @iotes theth element of vecton, ande; denotes theith
plications. Necessary and sufficient conditions for LTI systemys.or of the standard basis 6% . [A], denotes theth row
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y(n) =

=

=0



Il. REVIEW OF RECENTRESULTS (BSRP) system. One of the main results of this paper is the

In reference [1], conditions on LTI systems to preseni®llowing:
richness have been presented: Theorem 3:An Nth order,M x M polynomial matrix

Theorem 1:An Nth order,M x M system

N
N H(z) = Y h(k)z""
H(z) = Zh(k)z_k k=0
h=0 is a bounded-strict-richness preserving (BSRP)systemif
and only if it can be expressed 8 (z) = g(z)A, where A
is a nonsingularM x M matrix andg(z) is an Nth order
polynomial inz~! whose zeros are all outside the unit circle.

is an RP systenif and only if either one of the following
conditions is true:
(a) There exist a nonsingulavr/ x M matrix A and constants

go, 91, - ,gn Of which at least one is nonzero such that .
h(k) = grA.

(b) There exist a nonzero row vectei and a set of column The proof of Theorem 3 requires the following lemmas.
vectorsag, aj, - - - ,ay such thath(k) = a;v' for any &,
and[ agp a; --- ay | has full rank).

Lemma 1:A BSRP system is also an RP system.

For convenience, we call LTI systems which have the forfroof: We argue that a non-RP system is not a BSRP system.
described in condition (afype-A RP systems, and thoseFor a non-RP systerfl(z) = fozo h(k)z~*, we can find a
which have the form in condition (bJype-B RP systems. rich inputx(n) which has a finite support such that the output
As we can observe in the above description, the rank of aisynon-rich [1]. Suppos&(n) is rich and zero fom > L for
nonzero coefficient matrix of a Type-A RP system is alwaysome integer’, and the outpuy (n) = Z,]CV:O h(k)x(n — k)

M. The rank of any nonzero coefficient matrix of a Type-Bs non-rich. We can construct a new input signal

RP system is always unity. There are no systems other than

Type-A and Type-B RP systems that preserve signal richness.
Conditions on LTI systems to preserve strict richness have

also been found [1]: By definition,x’(n) is strictly rich. And sincex(n) has a finite
Theorem 2An Nth order, M x M system support, it is bounded and heng&n) is also bounded. Now

N L using the fact thak(n) = 0 for all » > L andn < 0, we find
H(z) = Z h(k)2 the output
k=0

is an SRP systenif and only if there exists nonnegative

1oy s [ x(n mod (N+L)) n=0
x(n) {0 n <0

integer n and an invertibleM x M matrix A such that , ol ,
H(Z) — ,"MA. n y (n) - kZOh(k)X (n - k)
In view of this theorem, we find that an SRP system is also N
RP (Type-A RP, in fact). In the rest of the this paper, we will - Zh(k)x((n — k) mod (N + L))
extend these existing results in several different directions. k=0
N
[1l. BOUNDED STRICT RICHNESS _ Zh(kj)x([n mod (N + L)] — k)
As described in Section Il, an SRP system must also be an k=0
RP system. For RP systems which do not have the form of = y(n mod (N + L))

an SRP system, strictly rich input sequences can be given to _ L _ _

show that the outputs are not strictly rich [1]. In some of theé%/ ”Ot'”Ch- Hencey (n) is not bounded strictly-rich though
counterexamples, the input signals are unbounded in time. TKi§") iS- SOH(2) is not a BSRP system. .
Iead; ys to think: if we cor_mdgr only bounded signals, will thfemma 2:A Type-B RP system is not a BSRP system.
conditions to preserve strict richness be different? A sequence

of M x 1 vectorsx(n) is said to bebounded strictly-rich  proof: SupposeH(z) = (Z;ICV:O amw) VI is a Type-B
(BSR) if x(n) is strictly rich and there exists a constant 0

RP system wheres| is a nonzero row vector. Without loss
such that

of generality, assum@v;|| = 1. We can findvsy, vs, - vy
such that|vy|| = 1 andv!v,; = 0,Vi # j. Letw; = v; and
foralln > 0 andl < i < M. A system that preserves boundedvy = v1+ vy, for 2 < k < M. Then we haver{ w, = 1, Vk.
strict richness is called bounded-strict-richness preserving Let the inputx(n) = w,, mod )41+ Clearly it is bounded

Ix(n)l;] <«



and strictly rich. However, for ath > N, we have

N N
y(n) = Z apvix(n —k) = Z ay,
k=0 k=0

independent fromn. This impliesy(n) is not strictly rich. So
a Type-B RP system is not a BSRP system. |

Lemma 3:An Nth order Type-A RP systerH(z) = g(z)A
is a BSRP system if and only if all zeros gfz) are outside
the unit circle.

zeros, then (1) also has solutions of the foufa for some
positive integeri. So x,, is a linear combination of terms of
the formn’a? and can be expressed as

N1 71

Ty = Z ch’m"_laz, n > ng

k=1 i=1
where N, is the number of distinct zeros ¢fz) andr, is the
multiplicity of the zeroay,. Sincex(n) is SRP andv’A is a
nonzero row vectorg,, must be nonzero for infinitely many
n. This implies at least one of the coefficientg; must be

Proof: Supposdl(z) = g(z)A is a Type-A RP system. Here NONZero. Sa,, is necessarily unbounded agjoes to infinity.

g(z) is an Nth order polynomial in-=! and A is anM x M

This contradicts the BSR assumption »n). [ |

invertible matrix. Supposeg(z) has a zero on or inside theProof of Theorem 3From Lemmas 1, 2, and 3, the proof of

unit circle, viz,, g(a) = 0 for someq satisfying|a| < 1. Let

the inputx(n) = a”A~'e(, mod a)+1. By definition, x(n)

is bounded and strictly rich. Then for all > N, we have
M

Syl = > ef [Z grAX(n — k)]
k=0

i=1 i=1

N M
= ) g™ " [Ze?e((nk) mod M)+1‘|
k=0 =1

= a"g(a)=0.

This means the row vectdr1 1 --- 1 | is an annihilator
of y(n) for all n > N. Thereforey(n) is not strictly rich. So
H(z) = g(2)A is not a BSRP system i§(«) = 0 for some
laf < 1.

On the other hand, if all zeros @f(z) are outside the unit
circle, viz, g(a) = 0 implies |a] > 1, we will show that

Theorem 3 is immediately complete. [ ]

IV. RECTANGULAR SYSTEMS

In Section Il only M x M systems are considered for
the richness-preservation problem. In this section, we will
generalize these results # x M systems wherg” and M
might be different.

Theorem 4:An Nth order,P x M system

N
H(z) = > h(k)z"*
k=0

is an RP systenif and only if either one of the following

conditions is true:

(a) There exist aright invertible P x M matrix A and
constantsgyg, g1, - - - , gy Of which at least one is nonzero
such thath(k) = grA.

H(z) = g(2)A is a BSRP system. Assume the contrary. Thelyy There exist a nonzerbx M vectorv' and a set of? x 1

there exists a bounded strictly-rich input sigméh) such that
the output signay(n) = S5, g Ax(n — k) is not. Without

loss of generality, assumg # 0 since delays do not affect

the property of BSRP. Observe thHk(z) is FIR and hence
y(n) is bounded sincex(n) is. Soy(n) is not strictly rich.
Then there exists a nonzero row vectdrand a nonnegative
integern, such thatvy(n) = 0 for all n > ny. So we have

N
0=vly(n) = ngvTAx(n —k)
k=0
N
= Z%%—k
k=0
N
= goTn+ ngxnfk
k=1

where we definer,, £ vi Ax(n). This implies
1
Tn = 7970 (glxn—l + -+ gN:Cn—N) (1)

for all n > ng. If oy, is a zero ofg(z) = Yor_, grz ", then
clearly z,, = af is a solution of (1). Ifg(z) has multiple

vectorsag, ay, - - - ,ay such thath(k) = a,v' for any &,
and[ ag a; --- ay | hasrankP. ]

A P x M matrix A is said to be right invertible if there
exists anM x P matrix B such thatAB = Ip. It is equivalent
to saying that ranfA) = P or to saying that thé> rows of the
matrix A are linearly independent. Note that right invertibility
implies P < M. Thus, according to Theorem 4, there are no
Type-A RP systems whose number of outputs is greater than
the number of inputs. This fits out intuition that a lower-rank
input cannot turn into a higher-rank output.

This is, however, not the case for Type-B RP systems.
According to the description in the theorem, even when
P > M, there still exist systems that satisfy condition (b).
However, it is necessary that the order of the syst¥nbe
greater than or equal to the size of the outpits

Theorem 5:An Nth order, P x M system

N
H(z) =Y h(k)z"*
k=0



is a strict-richness preserving (SRP) system if
and only if there exist a nonnegative integen
and a right invertible P x M matrix A such that
H(z) = z7™A. [ |

necessarily right invertible), each row of which is nonzero,
such thath(k) = D, A for all k.

Proof: If N is a finite integer, the proof can be easily obtained
by extending the proof of Lemma 6 in [1]. IV is infinity,

The proofs of Theorems 4 and 5 will be presented in Sectiore need to show that for any 1 < ¢ < P, theith rows

VI.

V. INFINITE IMPULSE RESPONSESYSTEMS

In Theorem 1 reviewed in Section Il, only FIR systems
were considered. In this section we generalize the results for

IIR systems.
Theorem 6:A P x M system

H(z) = h(k)z"*
k=0

is an RP systenif and only if either one of the following
conditions is true:

(a) There exist aright invertible P x M matrix A and a

sequence of scalafg }7° , of which at least one scalar

is nonzero such thdi(k) = g, A.
(b) There exist a nonzerd x M vectorv and aP x 1 rich
sequencea(n) such thath(k) = a(k)v' for anyk. m

of all coefficient matricesh(k) are proportional to the same
nonzero row vector which is théh row of A. Focusing on
the ith rows ofh(k)’s, we use

bl = [ bix bo bark |

to denote theth row of h(k) for simplicity. Using Lemma 4
and setting thelM x M matrix B to appropriate values, we
can assumb] = ef without loss of generality. Now we want
to argue thab? is proportional toe! for all £ > 1. That is,
bjrx =0 for all £ > 0 andj > 1. Assume the contrary and let
| be the smallest integer such that violates this property
(i.e., not proportional t@f). Sob;; # 0 for some;j > 1 and
b = 0 for all j andk satisfying0 < k <land2 < j < M.
Now we construct an input(n) as follows:

= e
Ofor1<k<i-1

—bjlel

In view of the theorem, the conditions for IIR systems x(k
to preserve richness look exactly the same as those for FII?((k
systems. However, it takes extra effort to prove this (See
Lemmas 5 and 8 in Section VI). This will be done in Sectiowhereay,k > [ + 1 are coefficients to be determined later.
VI Note thatx(n) is rich regardless of the values of's. Now

Since conditions (a) and (b) described in Theorem 1 aifee ith entries of the output signal can be found as follows:
special cases of those in Theorems 4 and 6, we can extend
the definitions of Type-A RP and Type-B RP systems to those
which have the forms in conditions (a) and (b) in Theorem 6,

€Lr_i+1 + arey foralll+1<k<Ii+M-1
age; fork>1+M

)
)
(1)
)
)

elTej =0
e{0+0"0+---+0"0+0"¢,

respectively. Ofor1<k<i-1
[y(D]; b x(l) + -+ b/ x(0)
VI. PROOFS OFTHEOREMS4, 5,AND 6 = e (—bjie1) +b =0

Theorems 4, 5, and 6 can be proved by the following

k—1
bl'x(k) + b? x(k —m)
lemmas. Many of them are generalized from the lemmas in 0 mz::l "

[1] which we have used to prove the case for HIR x M k—1
systems. = ef (are1)+ Y_ bhx(k—m)
m=1

Lemma 4:A P x M systemH(z) is RP if and only if

2~*AH(z)B is RP, wherek is any nonnegative integeA is

a nonsingularP x P matrix, andB is a nonsingulat\/ x M

matrix.

Proof: This lemma becomes obvious when we recognize that

invertible row operations and delays on input and output

signals do not alter the property of richness. if we choosea;, = — an;ll bl x(k — m) recursively, for all
k > 1+ 1. Note thatx(k — m),1 < m < k — 1, depend on

k—1
a + Z bl x(k —m)

m=1

Oforall k>1+1

Lemma 5:Suppose & x M systemH(z) = Zﬁzo h(k)z=*
is RP, whereN is possibly infinite. Then there exig® x P
diagonal matrice®d; and aP x M constant matrixA (not

the values ofa,,,n < k — 1.
So y(n) is not rich thoughx(n) is rich. This contradicts
the assumption thaH(z) is RP. Thus theith rows of all



coefficient matrices(k) should be proportional to the same Proofs of Lemmas 9 and 10 can be obtained by slightly

nonzerol x M vector, sayal. Supposeh(k)]; = di;al. modifying the proofs presented in Section VI-B in [1].
Now simply assign D, = diagdki, - ,drp) and Lemma 11:An FIR P x M SRP system is also RP.

A = [ a; a; ---ap ]T, then the proof of the lemma is

complete. m Lemma 12An FIR P x M Type A RP system is SRP if and

only if it is a constant right invertible matrix with a possible

Lemma 6:For aP x M RP systemH(z) = S5  h(k)z~*, delay.

the ranks of all nonzero coefficient matrices must be the

same. We call this value theoefficient rankof an RP system. Lemma 13An FIR P x M Type-B RP matrice®(z) do not
preserve strict richness.

Lemma 7:The coefficient rank of aP x M RP system

H(z) = 332, h(k)z—* can only be either unity oP. The proofs of Lemmas 9, 10, and 11 can be obtained by
slightly modifying the proofs of Lemmas 5, 12, and 13 in

Proofs of Lemmas 6 and 7 can be obtained by slightl}l-

modifying the proofs of Lemmas 9, 10, and 11 in [1].
Finally, Theorems 4 and 6 can be proved by using Lemmas

Lemma 8: Consider a P x M RP systemH(z) = 6, 7,and8 (necessary conditions) and Lemmas 9 and 10 (suf-
S h(k)z"*. If the coefficient rank off(z) is P, it must ficient conditions). The proof of Theorem 5 can be obtained

have the form of a Type-A RP system. If the coefficient rank §fom Lemmas 11, 12, and 13.
H(z) is unity, it must have the form of a Type-B RP system.
Proof: If the coefficient rank ofH(z) is P, by Lemma 5
h(k) = DyA for all k, where D, are diagonal matrices.
Since rankh(k)) = P for all nonzeroh(k), we have rankd)

= P. Suppose],al, ...,aL are rows ofA. They are linearly
independent. For convenience, ldi be a P x 1 vector

whose entries are diagonal entriesIof,. We argue that all
vectorsd, = [ dp di2 -+ dpp ]T are in the same
direction. Assume the contrary and suppake and d; are

VII. CONCLUDING REMARKS AND OPEN ISSUES

In this paper we introduced the idea bounded strictly-
rich signals. The conditions for FIR LTI systems to preserve
this property have been found. It is worthy to note that a
minor change in the definition of strict richness constitutes
a significant difference on the conditions to preserve such
richness.

We also generalized the richness-preservation problem for

. rectangular systems and IIR systems. It remains to investigate
not proportional to each othef, j such thatdy;di; # didy;. . .g Y e Y g
_ . conditions on infinite impulse response (lIR) systems that
Recall thafh(k)], denotes theth row of matrixh(k). Now we S o
L T T preserve strict richness and bounded strict richness.
have[h(k)|, = di:a, , [h(k)]. = di,ja;, [b(])], = dia; , and . A
‘o g J 77 A In the literature on adaptive filtering [4] and control theory
[h(l)]; = d;;a; . By Lemma 4 we know thaH’(z) = KH(z) : . " .
. J J . ) 7 [5], a class of signals called the persistently exciting class is
is also an RP system wheil is chosen as an invertible ) . .
. . } ) ) often defined. The connection between such signals and the
matrix which adds theth row of H(z) into the jth row of . ., _. ' L . )
it This implies M/ (k doal + doal and (1 rich” signals defined herein is discussed in [1]. It will be
it. This implies [h'(k)] kia; + dgja; and [ (D), interesting to extend the results of this paper for the case of

J
di;a; +di;a; . They are in different directions sineg anda; persistently exciting signals.

are linearly independent antl;d;; # d;;di;. This makes the
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