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Abstract—In the traditional transmitting beamforming radar
system, the transmitting antennas send coherent waveforms
which form a highly focused beam. In the multiple-input multiple-
output (MIMO) radar system, the transmitter sends nonco-
herent (possibly orthogonal) broad (possibly omnidirectional)
waveforms. These waveforms can be extracted at the receiver by
a matched filterbank. The extracted signals can be used to obtain
more diversity or to improve the spatial resolution for clutter.
This paper focuses on space-time adaptive processing (STAP) for
MIMO radar systems which improves the spatial resolution for
clutter.

With a slight modification, STAP methods developed originally
for the single-input multiple-output (SIMO) radar (conventional
radar) can also be used in MIMO radar. However, in the MIMO
radar, the rank of the jammer-and-clutter subspace becomes
very large, especially the jammer subspace. It affects both the
complexity and the convergence of the STAP algorithm. In this
paper, the clutter space and its rank in the MIMO radar are
explored. By using the geometry of the problem rather than data,
the clutter subspace can be represented using prolate spheroidal
wave functions (PSWF). A new STAP algorithm is also proposed.
It computes the clutter space using the PSWF and utilizes
the block diagonal property of the jammer covariance matrix.
Because of fully utilizing the geometry and the structure of the
covariance matrix, the method has very good SINR performance
and low computational complexity. 1

Index Terms—Space-Time Adaptive Processing (STAP),
MIMO Radar, Prolate Spheroidal Wave Function, Clutter Sub-
spaces.

I. INTRODUCTION

Recently, the concept of multiple-input multiple-output
(MIMO) radars has drawn considerable attention [1]-[13].
MIMO radars emit orthogonal waveforms [1]-[10] or nonco-
herent [11]-[13] waveforms instead of transmitting coherent
waveforms which form a focused beam in traditional trans-
mitter based beamforming. In the MIMO radar receiver, a
matched filterbank is used to extract the orthogonal waveform
components. There are two different kinds of approaches
for using the noncoherent waveforms. First, increased spa-
tial diversity can be obtained [4], [5]. In this scenario, the
transmitting antenna elements are far enough from each other
compared to the distance from the target. Therefore the target
radar cross sections (RCS) are independent random variables
for different transmitting paths. When the orthogonal compo-
nents are transmitted from different antennas, each orthogonal
waveform will carry independent information about the target.
This spatial diversity can be utilized to perform better detection
[4], [5]. Second, a better spatial resolution for clutter can be

1Work supported in parts by the ONR grant N00014-06-1-0011, and the
California Institute of Technology.

obtained. In this scenario, the distances between transmitting
antennas are small enough compared to the distance between
the target and the radar station. Therefore the target RCS
is identical for all transmitting paths. The phase differences
caused by different transmitting antennas along with the phase
differences caused by different receiving antennas can form a
new virtual array steering vector. With judiciously designed
antenna positions, one can create a very long array steering
vector with a small number of antennas. Thus the spatial
resolution for clutter can be dramatically increased at a small
cost [1], [2]. In this paper, we focus on this second advantage.

The adaptive techniques for processing the data from air-
borne antenna arrays are called space-time adaptive processing
(STAP) techniques. The basic theory of STAP for the tra-
ditional single-input multiple-output (SIMO) radar has been
well developed [32], [33]. There have been many algorithms
proposed in [27]-[33] and the references therein for improving
the complexity and convergence of the STAP in the SIMO
radar. With a slight modification, these methods can also
be applied to the MIMO radar case. The MIMO extension
of STAP can be found in [2]. The MIMO radar STAP for
multipath clutter mitigation can be found in [10]. However, in
the MIMO radar, the space-time adaptive processing (STAP)
becomes even more challenging because of the extra dimen-
sion created by the orthogonal waveforms. On one hand, the
extra dimension increases the rank of the jammer and clutter
subspace, especially the jammer subspace. This makes the
STAP more complex. On the other hand, the extra degrees
of freedom created by the MIMO radar allows us to filter out
more clutter subspace with little effect on SINR.

In this paper, we explore the clutter subspace and its rank
in MIMO radar. Using the geometry of the MIMO radar and
the prolate spheroidal wave function (PSWF), a method for
computing the clutter subspace is developed. Then we develop
a STAP algorithm which computes the clutter subspace using
the geometry of the problem rather than data and utilizes
the block-diagonal structure of the jammer covariance matrix.
Because of fully utilizing the geometry and the structure
of the covariance matrix, our method has very good SINR
performance and significantly lower computational complexity
compared to fully adaptive methods (Section V-B).

In practice, the clutter subspace might change because of
effects such as the internal clutter motion (ICM), velocity mis-
alignment, array manifold mismatch, and channel mismatch
[32]. In this paper, we consider an “ideal model”, which does
not take these effects into account. When this model is not
valid, the performance of the algorithm will degrade. One way
to overcome this might be to estimate the clutter subspace by
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using a combination of both the assumed geometry and the
received data. Another way might be to develop a more robust
algorithm against the clutter subspace mismatch. These ideas
will be explored in the future.

The rest of the paper is organized as follows. In Section
II, the concept of MIMO radar will be briefly reviewed. In
Section III, we formulate the STAP approach for MIMO radar.
In Section IV, we explore the clutter subspace and its rank
in the MIMO radar. Using prolate spheroidal wave functions
(PSWF), we construct a data-independent basis for clutter
signals. In Section V, we propose a new STAP method for
MIMO radar. This method utilizes the technique proposed
in Section IV to find the clutter subspace and estimates the
jammer-plus-noise covariance matrix separately. Finally, the
beamformer is calculated by using matrix inversion lemma. As
we will see later, this method has very satisfactory SINR per-
formance. In Section VI, we compare the SINR performance
of different STAP methods based on numerical simulations.
Finally, Section VII concludes the paper.

Notations. Matrices are denoted by capital letters in bold-
face (e.g., A). Vectors are denoted by lowercase letters in
boldface (e.g., x). Superscript † denotes transpose conjugation.
The notation diag(A,A, · · · ,A) denotes a block diagonal
matrix whose diagonal blocks are A. The notation �a� is
defined as the smallest integer larger than a.

II. REVIEW OF THE MIMO RADAR

In this section, we briefly review the MIMO radar idea.
More detailed reviews can be found in [1], [2], [6]. We will
focus on using MIMO radar to increase the degrees of free-
dom. Fig. 1 illustrates a MIMO radar system. The transmitting

Transmitter
M antennas

Receiver
N antennas

dT
2( ) 1( ) 0( )

dR
MF MF…

…

Fig. 1. Illustration of a MIMO radar system with M = 3 and N = 4.

antennas emit orthogonal waveforms φk(τ). At each receiving
antenna, these orthogonal waveforms can be extracted by
M matched filters, where M is the number of transmitting
antennas. Therefore there are a total of NM extracted signals,
where N is the number of receiving antennas. The signals
reflected by the target at direction θ can be expressed as

ρte
j 2π

λ (ndR sin θ+mdT sin θ), (1)

for n = 0, 1, · · · , N − 1, m = 0, 1, · · · ,M − 1. Here ρt is
the amplitude of the signal reflected by the target, dR is the
spacing between the receiving antennas, and dT is the spacing
between the transmit antennas. The phase differences are
created by both transmitting and receiving antenna locations.

Define fs � (dR/λ) sin θ and γ � dT /dR. Equation (1) can
be further simplified as

ρte
j2πfs(n+γm).

If we choose γ = N , the set {n+γm} = {0, 1, · · · , NM−1}.
Thus the NM signals in (1) can be viewed as the signals
received by a virtual array with NM elements [2] as shown
in Fig. 2. It is as if we have a receiving array of NM

Virtual array

Fig. 2. The virtual array corresponding to the MIMO radar in Fig. 1.

elements. Thus NM degrees of freedom can be obtained
with only N +M physical array elements. One can view the
antenna array as a way to sample the electromagnetic wave in
the spatial domain. The MIMO radar idea allows “sampling”
in both transmitter and receiver and creates a total of NM
“samples”. Taking advantage of these extra samples in spatial
domain, a better spatial resolution can be obtained.

III. STAP IN MIMO RADAR

In this section, we formulate the STAP problem in MIMO
radar. The MIMO extension for STAP first appeared in [2]. We
will focus on the idea of using the extra degrees of freedom
to increase the spatial resolution for clutter.

A. Signal Model

Fig. 3 shows the geometry of the MIMO radar STAP with
uniform linear arrays (ULA), where

1) dT is the spacing of the transmitting antennas,
2) dR is the spacing of the receiver antennas,
3) M is the number of transmitting antennas,
4) N is the number of the receiving antennas,
5) T is the radar pulse period,
6) l indicates the index of radar pulse (slow time),
7) τ represents the time within the pulse (fast time),
8) vt is the target speed toward the radar station, and
9) v is the speed of the radar station.

Notice that the model assumes the two antenna arrays are
linear and parallel. The transmitter and the receiver are close
enough so that they share the same angle variable θ. The
radar station movement is assumed to be parallel to the linear
antenna array. This assumption has been made in most of
the airborne ground moving target indicator (GMTI) systems.
Each array is composed of omnidirectional elements. The
transmitted signals of the mth antenna can be expressed as

xm(lT + τ) =
√
Eφm(τ)ej2πf(lT+τ),

for m = 1, 2, · · · ,M − 1, where φm(τ) is the baseband pulse
waveform, f is the carrier frequency, and E is the transmitted
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Fig. 3. This figure illustrates a MIMO radar system with M transmitting antennas and N receiving antennas. The radar station is moving with speed v.

energy for the pulse. The demodulated received signal of the
nth antenna can be expressed as

yn(lT + τ +
2r
c

) ≈
M−1∑
m=0

ρtφm(τ)ej
2π
λ (sin θt(2vT l+dRn+dTm)+2vtTl)

+
Nc−1∑
i=0

M−1∑
m=0

ρiφm(τ)ej
2π
λ (sin θi(2vT l+dRn+dTm))

+y(J)
n (lT + τ +

2r
c

) + y(w)
n (lT + τ +

2r
c

), (2)

where

1) r is the distance of the range bin of interest,
2) c is the speed of light,
3) ρt is the amplitude of the signal reflected by the target,
4) ρi is the amplitude of the signal reflected by the ith

clutter,
5) θt is the looking direction of the target,
6) θi is the looking direction of the ith clutter,
7) Nc is the number of clutter signals,
8) y

(J)
n is the jammer signal in the nth antenna output, and

9) y
(w)
n is the white noise in the nth antenna output.

For convenience, all of the parameters used in the signal model
are summarized in Table I. The first term in (2) represents
the signal reflected by the target. The second term is the
signal reflected by the clutter. The last two terms represent
the jammer signal and white noise. We assume there is no
internal clutter motion (ICM) or antenna array misalignment
[32]. The phase differences in the reflected signals are caused
by the Doppler shift, the differences of the receiving antenna
locations, and the differences of the transmitting antenna
locations. In the MIMO radar, the transmitting waveforms
φm(τ) satisfy orthogonality:∫

φm(τ)φ∗k(τ)dτ = δmk. (3)

The sufficient statistics can be extracted by a bank of matched
filters as shown in Fig. 3. The extracted signals can be

TABLE I
LIST OF THE PARAMETERS USED IN THE SIGNAL MODEL

dT spacing of the transmitting antennas
dR spacing of the receiving antennas
M number of the transmitting antennas
N number of the receiving antennas
T radar pulse period
l index of radar pulse (slow time)
τ time within the pulse (fast time)
vt target speed toward the radar station
xm transmitted signal in the mth antenna
φm baseband pulse waveforms
yn demodulated received signal in the nth antenna
vt target speed toward the radar station
v speed of the radar station
r distance of the range bin of interest
c speed of light
ρt amplitude of the signal reflected by the target
ρi amplitude of the signal reflected by the ith clutter
θt looking direction of the target
θi looking direction of the ith clutter
Nc number of clutter signals

y
(J)
n jammer signal in the nth antenna output

y
(w)
n white noise in the nth antenna output

expressed as

yn,m,l �
∫
yn(lT + τ +

2r
c

)φ∗m(τ)dτ =

ρte
j 2π

λ (sin θt(2vT l+dRn+dTm)+2vtTl) + (4)
Nc−1∑
i=0

ρie
j 2π

λ (sin θi(2vT l+dRn+dTm)) + y
(J)
n,m,l + y

(w)
n,m,l,

for n = 0, 1, · · · , N − 1, m = 0, 1, · · · ,M − 1, and
l = 0, 1, · · · , L−1, where y(J)

n,m,l is the corresponding jammer

signal, y(w)
n,m,l is the corresponding white noise, and L is

the number of the pulses in a coherent processing interval
(CPI). To simplify the above equation, we define the following
normalized spatial and Doppler frequencies:

fs � dR
λ

sin θt, fs,i � dR
λ

sin θi

fD � 2(v sin θt + vt)
λ

T. (5)
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One can observe that the normalized Doppler frequency of
the target is a function of both target looking direction and
speed. Throughout this paper we shall make the assumption
dR = λ/2 so that spatial aliasing is avoided. Using the above
definition we can rewrite the extracted signal in (4) as

yn,m,l = ρte
j2πfs(n+γm)ej2πfDl + (6)

Nc−1∑
i=0

ρie
j2πfs,i(n+γm+βl) + y

(J)
n,m,l + y

(w)
n,m,l,

for n = 0, 1, · · · , N − 1, m = 0, 1, · · · ,M − 1, and l =
0, 1, · · · , L− 1, where

γ � dT /dR, and β � 2vT/dR. (7)

B. Fully adaptive MIMO-STAP

The goal of space-time adaptive processing (STAP) is to find
a linear combination of the extracted signals so that the SINR
can be maximized. Thus the target signal can be extracted from
the interferences, clutter, and noise to perform the detection.
Stacking the MIMO STAP signals in (6), we obtain the NML
vector

y =
(
y0,0,0 y1,0,0 · · · yN−1,M−1,L−1

)T
. (8)

Then the linear combination can be expressed as w†y, where
w is the weight vector for the linear combination. The SINR
maximization can be obtained by minimizing the total variance
under the constraint that the target response is unity. It can be
expressed as the following optimization problem:

min
w

w†Rw

subject to w†s(fs, fD) = 1, (9)

where R � E[yy†], and s(fs, fD) is the size-NML MIMO
space-time steering vector which consists of the elements

ej2πfs(n+γm)ej2πfDl, (10)

for n = 0, 1, · · · , N − 1, m = 0, 1, · · · ,M − 1, and
l = 0, 1, · · · , L−1. This w is called minimum variance distor-
tionless response (MVDR) beamformer [20]. The covariance
matrix R can be estimated by using the neighboring range bin
cells. In practice, in order to prevent self-nulling, a target-free
covariance matrix can be estimated by using guard cells [32].
The well-known solution to the above problem is [20]

w =
R−1s(fs, fD)

s(fs, fD)†R−1s(fs, fD)
. (11)

However, the covariance matrix R is NML × NML. It is
much larger than in the SIMO case because of the extra
dimension. The complexity of the inversion of such a large
matrix is high. The estimation of such a large covariance
matrix also converges slowly. To overcome these problems,
partially adaptive techniques can be applied. The methods
described in Section VI are examples of such partially adaptive
techniques. In SIMO radar literature such partially adaptive
methods are commonly used [32], [33].

C. Comparison with SIMO system

In the traditional transmit beamforming, or single-input-
multiple-output (SIMO) radar, the transmitted waveforms are
coherent and can be expressed as

φm(τ) = φ(τ)wTm

for m = 1, 2, · · · ,M − 1, where {wTm} are the transmit
beamforming weights. The sufficient statistics can be extracted
by a single matched filter for every receiving antenna. The
extracted signal can be expressed as

yn,l �
∫
yn(lT + τ +

2r
c

)φ∗(τ)dτ =

ρte
j2πfsnej2πfDl

M−1∑
m=0

wTme
j2πfsγm + (12)

Nc−1∑
i=0

ρie
j2πfs,i(n+βl)

M−1∑
m=0

wTme
j2πfs,iγm + yJn,l + y

(w)
n,l ,

for n = 0, 1, · · · , N − 1, and l = 0, 1, · · · , L − 1, where
y
(J)
n,l is the corresponding jammer signal, and y

(w)
n,l is the

corresponding white noise. Comparing the MIMO signals in
(6) and the SIMO signals in (12), one can see that a linear
combination with respect to m has been performed on the
SIMO signal in the target term and the clutter term. The
MIMO radar, however, leaves all degrees of freedom to the
receiver. Note that in the receiver, one can perform the same
linear combination with respect to m on the MIMO signal in
(6) to create the SIMO signal in (12). The only difference
is that the transmitting power for the SIMO signal is less
because of the focused beam used in the transmitter. For
the SIMO radar, the number of degrees of freedom is M in
the transmitter and NL in the receiver. The total number of
degrees of freedom is M+NL. However, for the MIMO radar,
the number of degrees of freedom is NML which is much
larger than M +NL. These extra degrees of freedom can be
used to obtain a better spatial resolution for clutter.

The MIMO radar transmits omnidirectional orthogonal
waveforms from each antenna element. Therefore it illumi-
nates all angles. The benefit of SIMO radar is that it transmits
focused beams which saves transmitting power. Therefore,
for a particular angle of interest, the SIMO radar enjoys a
processing gain of M compared to the MIMO radar. However,
for some applications like scanning or imaging, it is necessary
to illuminate all angles. In this case, the benefit of a focused
beam no longer exists because both systems need to consume
the same energy for illuminating all angles. The SIMO system
will need to steer the focused transmit beam to illuminate all
angles.

A second point is that for the computation of the MIMO
beamformer in (11), the matrix inversion R−1 needs to be
computed only once and it can be applied for all angles.
The transmitting array in a MIMO radar does not have a
focused beam. So, all the ground points within a range bin
are uniformly illuminated. The clutter covariance seen by the
receiving antenna array is, therefore, the same for all angles.
In the SIMO case, the matrix inversions need to be computed
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for different angles because the clutter signal changes as the
beam is steered through all angles.

D. Virtual Array

Observing the MIMO space-time steering vector defined in
(10), one can view the first term ej2πfs(n+γm) as a sampled
version of the sinusoidal function ej2πfsx. Recall that γ is
defined in (6) as the ratio of the antenna spacing of the
transmitter and receiver. To obtain a good spatial frequency
resolution, these signals should be critically sampled and have
long enough duration. One can choose γ = N because
it maximizes the time duration while maintaining critical
sampling [2] as shown in Fig. 2. Sorting the sample points
n+ γm for n = 0, 1, · · · , N − 1, and m = 0, 1, · · · ,M − 1,
we obtain the sorted sample points k = 0, 1, · · · , NM − 1.
Thus the target response in (10) can be rewritten as

ej2πfskej2πfDl

for k = 0, 1, · · · , NM − 1, and l = 0, 1, · · · , L− 1. It is as if
we have a virtual receiving array with NM antennas. How-
ever, the resolution is actually obtained by only M antennas in
the transmitter and N antennas in the receiver. Fig. 4 compares
the SINR performance of the MIMO system and the SIMO
system in the array looking direction of zero degree, that is,
fs = 0. The optimal space-time beamformer described in (11)
is used. The parameter L equals 16, and β equals 1.5 in this
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Fig. 4. The SINR at looking direction zero as a function of the Doppler
frequencies for different SIMO and MIMO systems.

example. In all plots it is assumed that the energy transmitted
by any single antenna element to illuminate all angles is fixed.
The SINR drops near zero Doppler frequency because it is
not easy to distinguish the slowly moving target from the still
ground clutter. The MIMO system with γ = 1 has a slightly
better performance than the SIMO system with the same
antenna structure. For the virtual array structure where γ = N ,
the MIMO system has a very good SINR performance and it
is close to the performance of the SIMO system with NM
antennas because they have the same resolution for the target
signal and the clutter signals. The small difference comes from

the fact that the SIMO system with NM antennas has a better
spatial resolution for the jammer signals. This example shows
that the choice of γ is very crucial in the MIMO radar. With
the choice γ = 10 = N , the MIMO radar with only 15 antenna
elements has about the same performance as the SIMO radar
with 51 array elements. This example also shows that the
MIMO radar system has a much better spatial resolution for
clutter compared to the traditional SIMO system with same
number of physical antenna elements.

IV. CLUTTER SUBSPACE IN MIMO RADAR

In this section, we explore the clutter subspace and its rank
in the MIMO radar system. The covariance matrix R in (9) can
be expressed as R = Rt + Rc + RJ + σ2I, where Rt is the
covariance matrix of the target signal, Rc is the covariance
matrix of the clutter, RJ is the covariance matrix of the
jammer, and σ2 is the variance of the white noise. The clutter
subspace is defined as the range space of Rc and the clutter
rank is defined as the rank of Rc. In the space-time adaptive
processing (STAP) literature, it is a well-known fact that the
clutter subspace usually has a small rank. It was first pointed
out by Klemm in [18], that the clutter rank is approximately
N+L, where N is the number of receiving antennas and L is
the number of pulses in a coherent processing interval (CPI).
In [16] and [17], a rule for estimating the clutter rank was
proposed. The estimated rank is approximately

N + β(L− 1), (13)

where β = 2vT/dR. This is called Brennan’s rule. In [15],
this rule has been extended to the case with arbitrary arrays.
Taking advantage of the low rank property, the STAP can be
performed in a lower dimensional space so that the complexity
and the convergence can be significantly improved [26]-[33].
This result will now be extended to the MIMO radar. These
techniques are often called partially adaptive methods or
subspace methods.

A. Clutter rank in MIMO radar

We first study the clutter term in (6) which is expressed as

y
(c)
n,m,l =

Nc−1∑
i=0

ρie
j2πfs,i(n+γm+βl),

for n = 0, 1, · · · , N − 1, m = 0, 1, · · · ,M − 1, and l =
0, 1, · · · , L − 1. Note that −0.5 < fs,i < 0.5 because dR =
λ/2. Define ci,n,m,l = ej2πfs,i(n+γm+βl) and

ci =
(
ci,0,0,0, ci,1,0,0, · · · , ci,N−1,M−1,L−1

)T
. (14)

By stacking the signals {y(c)
n,m,l} into a vector, one can obtain

y(c) =
Nc−1∑
i=0

ρici.

Assume that ρi are zero-mean independent random variables
with variance σ2

c,i. The clutter covariance matrix can be
expressed as

Rc = E[y(c)y(c)†] =
Nc−1∑
i=0

σ2
c,icic

†
i .
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Therefore, span(Rc) = span(C), where

C �
(

c0, c1, · · · , cNc−1

)
.

The vector ci consists of the samples of ej2πfs,ix at points
{n+ γm+ βl}, where γ and β are defined in (7). In general,
ci is a nonuniformly sampled version of the bandlimited
sinusoidal waveform ej2πfs,ix. If γ and β are both integers,
the sampled points {n+ γm+ βl} can only be integers in

{0, 1, · · · , N + γ(M − 1) + β(L− 1)}.
If N+γ(M−1)+β(L−1) ≤ NML, there will be repetitions
in the sample points. In other words, some of the row vectors
in C will be exactly the same and there will be at most N +
γ(M −1)+β(L−1) distinct row vectors in C. Therefore the
rank of C is less than N + γ(M − 1) + β(L− 1). So is the
rank of Rc. We summarize this fact as the following theorem:

Theorem 1: If γ and β are both integers, then rank(Rc) ≤
min(N + γ(M − 1) + β(L− 1), Nc, NML).���

Usually Nc and NML are much larger than N +γ(M −1)+
β(L − 1). Therefore N + γ(M − 1) + β(L − 1) is a good
estimation of the clutter rank. This result can be viewed as an
extension of Brennan’s rule [16], given in (13), to the MIMO
radar case.

Now we focus on the general case where γ and β are
real numbers. The vector ci in (14) can be viewed as a
nonuniformly sampled version of the truncated sinusoidal
function

c(x; fs,i) �
{
ej2πfs,ix, 0 ≤ x ≤ X
0, otherwise,

(15)

where X � N − 1 + γ(M − 1) + β(L − 1). Furthermore,
−0.5 ≤ fs,i ≤ 0.5 because dR is often selected as λ/2 in
(5) to avoid aliasing. Therefore, the energy of these signals
is mostly confined to a certain time-frequency region. Fig.
5 shows an example of such a signal. Such signals can be
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Fig. 5. Example of the signal c(x; fs,i). (a) Real part. (b) Magnitude
response of Fourier transform.

well approximated by linear combinations of �2WX + 1�
orthogonal functions [19], where W is the one sided band-
width and X is the duration of the time-limited functions.
In the next section, more details on this will be discussed

using prolate spheroidal wave functions (PSWF). In this case,
we have W = 0.5 and 2WX + 1 = N + γ(M − 1) +
β(L−1). The vectors ci can be also approximated by a linear
combination of the nonuniformly sampled versions of these
�N + γ(M − 1) + β(L − 1)� orthogonal functions. Thus, in
the case where γ and β are nonintegers, we can conclude that
only �N + γ(M − 1) + β(L− 1)� eigenvalues of the matrix
Rc are significant. In other words,

rank(Rc) ≈ �N + γ(M − 1) + β(L− 1)�. (16)

Note that the definition of this approximate rank is actually the
number of the dominant eigenvalues. This notation has been
widely used in the STAP literature [32], [33]. In the SIMO
radar case, using Brennan’s rule, the ratio of the clutter rank
and the total dimension of the space-time steering vector can
be approximated as

N + β(L− 1)
NL

=
1
L

+
β(L− 1)
NL

.

In the MIMO radar case with γ = N , the corresponding ratio
becomes

N +N(M − 1) + β(L− 1)
NML

=
1
L

+
β(L− 1)
NML

.

One can observe that the clutter rank now becomes a smaller
portion of the total dimension because of the extra dimension
introduced by the MIMO radar. Thus the MIMO radar receiver
can null out the clutter subspace with little effect on SINR.
Therefore a better spatial resolution for clutter can be obtained.

The result can be further generalized for the array
with arbitrary linear antenna deployment. Let xT,m,m =
0, 1, · · · ,M − 1 be the transmitting antenna locations,
xR,n, n = 0, 1, · · · , N − 1 be the receiving antenna locations,
and v be the speed of the radar station. Without loss of
generality, we set xT,0 = 0 and xR,0 = 0. Then the clutter
signals can be expressed as

y
(c)
n,m,l =

Nc−1∑
i=0

ρie
j 2π

λ sin θi((xR,n+xT,m+2vT l)),

for n = 0, 1, · · · , N − 1, m = 0, 1, · · · ,M − 1, and l =
0, 1, · · · , L − 1, where θi is the looking-direction of the ith
clutter. The term

ej
2π
λ sin θi(xR,n+xT,m+2vT l)

can also be viewed as a nonuniform sampled version of the
function ej

2π
λ sin θix. Using the same argument we have made

in the uniform linear array (ULA) case, one can obtain

rank(Rc) ≈ �1 +
2
λ

(xR,N−1 + xT,M−1 + 2vT (L− 1))�.

The quantity xR,N−1 +xT,M−1 +2vT (L−1) can be regarded
as the total aperture of the space-time virtual array. One can
see that the number of dominant eigenvalues is proportional
to the ratio of the total aperture of the space-time virtual array
and the wavelength.
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B. Data independent estimation of the clutter subspace with
PSWF

The clutter rank can be estimated by using (16) and the
parameters N , M , L, β and γ. However, the clutter subspace
is often estimated by using data samples instead of using these
parameters [26]-[33]. In this section, we propose a method
which estimates the clutter subspace using the geometry of the
problem rather than the received signal. The main advantage
of this method is that it is data independent. The clutter
subspace obtained by this method can be used to improve
the convergence of the STAP. Experiments also show that the
estimated subspace is very accurate in the ideal case (without
ICM and array misalignment).

In Fig. 5, one can see that the signal in (15) is time-limited
and most of its energy is concentrated on −0.5 ≤ fs ≤ 0.5.
To approximate the subspace which contains such signals, we
find the basis functions which are time-limited and concentrate
their energy on the corresponding bandwidth. Such basis
functions are the solutions of the following integral equation
[19]

μψ(x) =
∫ X

0

sinc(2W (x− ζ))ψ(ζ)dζ,

where sinc(x) � sinπx
πx and μ is a scalar to be solved. This

integral equation has infinite number of solutions ψi(x) and
μi for i = 0, 1, · · · ,∞. The solution ψi(x) is called prolate
spheroidal wave function (PSWF). By the maximum principle
[36], the solution satisfies

ψ0(x) = arg max
‖ψ‖=1

∫ X

0

∫ X

0

ψ∗(x)sinc(2W (x− ζ))ψ(ζ)dζdx

ψi(x) = arg max
‖ψ‖=1

∫ X

0

∫ X

0

ψ∗(x)sinc(2W (x− ζ))ψ(ζ)dζdx

subject to
∫ X

0

ψ(x)ψ∗
k(x)dx = 0, for k = 0, 1, · · · , i− 1,

for i = 1, 2, · · · ,∞. The function ψi(x) is orthogonal to the
previous basis components ψk(x), for k < i while concentrat-
ing most of its energy on the bandwidth [−W,W ]. Moreover,
only the first �2WX + 1� eigenvalues μi are significant [19].
Therefore, the time-band-limited function c(x; fs,i) in (15)
can be well approximated by linear combinations of ψi(x)
for i = 0, 1, · · · , �2WX + 1�. In this case, W = 0.5
and 2WX + 1 = N + γ(M − 1) + β(L − 1). Thus the
nonuniformly sampled versions of c(x; fs,i), namely ci,n,m,l,
can be approximated by the linear combination:

ci,n,m,l � ej2πfs,i(n+γm+βl) ≈
rc−1∑
k=0

αi,kψk(n+ γm+ βl),

for some {αi,k} where

rc � �N + γ(M − 1) + β(L− 1)�. (17)

Stacking the above elements into vectors, we have

ci ≈
rc−1∑
k=0

αi,kuk,

where uk is a vector which consists of the elements ψk(n +
γm+ βl). Finally, we have

span(Rc) = span(C) ≈ span(Uc), (18)

where Uc �
(

u0 u1 · · · urc−1

)
. Note that although

the functions {ψk(x)} are orthogonal, the vectors {uk} are
in general not orthogonal. This is because of the fact that
{uk} are obtained by nonuniform sampling which destroys
orthogonality. In practice, the PSWF ψi(x) can be computed
off-line and stored in the memory. When the parameters
change, one can obtain the vectors uk by resampling the
PSWF ψk(n + γm + βl) to form the new clutter subspace.
In this way, we can obtain the clutter subspace by using the
geometry of the problem.

Performing the Gram-Schmidt procedure on the basis {uk},
we obtain the orthonormal basis {qk}. The clutter power in
each orthonormal basis element can be expressed as q†

kRcqk.
Fig. 6 shows the clutter power in the orthogonalized basis
elements. In this example, N = 10, M = 5, L = 16, γ = 10,
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Fig. 6. Plot of the clutter power distributed in each of the orthogonal basis
elements.

and β = 1.5. Note that there are a total of NML = 800 basis
elements but we only show the first 200 on the plot. The clutter
covariance matrix Rc is generated using the model described
in [15]. The eigenvalues of Rc are also shown in Fig. 6 for
comparison. The estimated clutter rank is �N + γ(M − 1) +
β(L − 1)� = 73. One can see that the subspace obtained by
the proposed method captures almost all clutter power. The
clutter power decays to less than −200 dB for the basis index
exceeding 90.

Compared to the eigen decomposition method, the subspace
obtained by our method is larger. This is because of the fact
that the clutter spatial bandwidth has been overestimated in
this example. More specifically, we have assumed the worst
case situation that the clutter spatial frequencies range from
−0.5 to 0.5. In actual fact however, the range is only from
−0.35 to 0.35. This comes about because of the specific
geometry assumed in this example: the altitude is 9km, the
range of interest is 12.728km, and a flat ground model is used.
Therefore the rank of the subspace is overestimated. It may
seem that our method loses some efficiency compared to the
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eigen decomposition. However, note that the eigen decom-
position requires perfect information of the clutter covariance
matrix Rc while our method requires no data. In this example,
we assume the perfect Rc is known. In practice, Rc has to
be estimated from the received signals and it might not be
accurate if the number of samples is not large enough. Note
that, unlike the eigen decomposition method, the proposed
method based on PSWF does not require the knowledge of
Rc.

V. NEW STAP METHOD FOR MIMO RADAR

In this section, we introduce a new STAP method for MIMO
radar which uses the clutter subspace estimation method de-
scribed in the last section. Because the clutter subspace can be
obtained by using the parameter information, the performance
and complexity can both be improved. Recall that the optimal
MVDR beamformer (11) requires knowledge of the covariance
matrix R. In practice, this has to be estimated from data. For
example, it can be estimated as

R̂ =
1
|B|

∑
k∈B

yky
†
k, (19)

where yk is the MIMO-STAP signal vector defined in (8) for
the kth range bin, and B is a set which contains the neighbor
range bin cells of the range bin of interest. However, some
nearest cells around the range bin of interest are excluded
from B in order to avoid including the target signals [32].
There are two advantages of using the target-free covariance
matrix R in (11). First, it is more robust to steering vector
mismatch. If there is mismatch in the steering vector s(fs, fD)
in (9), the target signal is no longer protected by the constraint.
Therefore the target signal is suppressed as interference. This
effect is called self-nulling and it can be prevented by using
a target-free covariance matrix. More discussion about self-
nulling and robust beamforming can be found in [21], [22] and
the references therein. Second, using the target-free covariance
matrix, the beamformer in (11) converges faster than the
beamformer using the total covariance matrix. The famous
rapid convergence theorem proposed by Reed et al. [25] states
that a SINR loss of 3 dB can be obtained by using the number
of target-free snapshots equal to twice the size of the covari-
ance matrix. Note that the imprecise physical model which
causes steering vector mismatch does not just create the self-
nulling problem. It also affects the clutter subspace. Therefore
it affects the accuracy of the clutter subspace estimation in
Section IV-B.

A. The proposed method

The target-free covariance matrix can be expressed as R =
RJ + Rc + σ2I, where RJ is the covariance matrix of the
jammer signals, Rc is the covariance matrix of the clutter
signals, and σ2 is the variance of the white noise. By (18),
there exists a rc×rc matrix Ac so that Rc ≈ UcAcU†

c. Thus
the covariance matrix can be approximated by

R ≈ RJ + σ2I︸ ︷︷ ︸
call this Rv

+UcAcU†
c. (20)

We assume the jammer signals y(J)
n,m,l in (6) are statistically

independent in different pulses and different orthogonal wave-
form components [32]. Therefore they satisfy

E[y(J)
n,m,l · y(J)†

n′,m′,l′ ] =
{
rJ,n,n′ , m = m′, l = l′

0, otherwise,

for n, n′ = 0, 1, · · · , N , m,m′ = 0, 1, · · · ,M , and l, l′ =
0, 1, · · · , L. Using this fact, the jammer-plus-noise covariance
matrix Rv defined in (20) can be expressed as

Rv = diag(Rvs,Rvs, · · · ,Rvs), (21)

where Rvs is an N × N matrix with elements [Rvs]n,n′ =
rJ,n,n′ +σ2 for n, n′ = 0, 1, · · · , N . Therefore the covariance
matrix R in (20) consists of a low-rank clutter covariance
matrix and a block-diagonal jammer-pulse-noise. By using the
matrix inversion lemma [37], one can obtain

R−1 ≈ R−1
v −R−1

v Uc(A−1
c + U†

cR
−1
v Uc)−1U†

cR
−1
v . (22)

The inverse of the block-diagonal matrix R−1
v is simply

R−1
v = diag(R−1

vs ,R
−1
vs , · · · ,R−1

vs ) and the multiplication of
the block-diagonal matrix with another matrix is simple.

B. Complexity of the new method

The complexity of directly inverting the NML × NML
covariance matrix R is O(N3M3L3). Taking advantage of
the block-diagonal matrix and the low rank matrix, in (22),
the complexity for computing R−1

v is only O(N3) and the
complexity for computing A−1

c and (Ac + U†
cR

−1
v Uc)−1 is

only O(r3c ), where rc is defined in (17). The overall complex-
ity for computing (22) is thus reduced from O(N3M3L3) to
O(rcN2M2L2). This is the complexity of the multiplication
of an (NML× rc) matrix by a (rc ×NML) matrix.

C. Estimation of the covariance matrices

In (22), the matrix Uc can be obtained by the nonuniform
sampling of the PSWF as described in the last section. The
jammer-pulse-noise covariance matrix Rv and the matrix Ac

both require further estimation from the received signals.
Because of the block-diagonal structure, one can estimate the
covariance matrix Rv by estimating its submatrix Rvs defined
in (21). The matrix Rvs can be estimated when there are
no clutter and target signals. For this, the radar transmitter
operates in passive mode so that the receiver can collect the
signals with only jammer signals and white noise [33]. The
submatrix Rvs can be estimated as

R̂vs =
1
Kv

Kv−1∑
k=0

rkr
†
k, (23)

where rk is an N × 1 vector which represents the target-free
and clutter-free signals received by N receiving antennas. By
(20), one can express Ac as

Ac = (U†
cUc)−1U†

c(R−Rv)Uc(U†
cUc)−1.

Therefore, one can estimate Ac by using

Âc =
1
K

K−1∑
k=0

xkx
†
k − (U†

cUc)−1U†
cR̂vUc(U†

cUc)−1, (24)



9

where xk = (U†
cUc)−1U†

cyk and yk is the NML×1 MIMO-
STAP signal vector defined in (8). Substituting (23), (24) and
(22) into the MIMO-STAP beamformer in (11), we obtain

w ∝
(R̂−1

v − R̂−1
v Uc(Â−1

c + U†
cR̂

−1
v Uc)−1U†

cR̂
−1
v )s(fs, fd)

(25)
D. Zero-forcing method

Instead of estimating Ac and computing the MVDR by
(25), one can directly “null out” the entire clutter subspace
as described next. Assume that the clutter-to-noise ratio is
very large and therefore all of the eigenvalues of Ac approach
infinity. We obtain A−1

c ≈ 0. Substituting it into (25), one can
obtain the MIMO-STAP beamformer as

w ∝ (R̂−1
v − R̂−1

v Uc(U†
cR̂

−1
v Uc)−1U†

cR̂
−1
v )s(fs, fd) (26)

Thus we obtain a “zero-forcing” beamformer which nulls out
the entire clutter subspace. The advantage of this zero-forcing
method is that it is no longer necessary to estimate Ac. In
this method, we only need to estimate Rvs. The method is
independent of the range bin. The matrix R−1 computed by
this method can be used for all range bins. Because there are
lots of extra dimensions in MIMO radars, dropping the entire
clutter subspace will reduce only a small portion of the total
dimension. Therefore it will not affect the SINR performance
significantly, as we shall demonstrate. Thus this method can
be very effective in MIMO radars.

E. Comparison with other methods

In the sample matrix inversion (SMI) method [32], the
covariance matrix is estimated to be the quantity R̂ in (19) and
R̂−1 is directly used in (11) to obtain the MVDR beamformer.
However, some important information about the covariance
matrix is unused in the SMI method. This information includes
the parameters γ and β, the structure of the clutter covariance
matrix, and the block diagonal structure of the jammer covari-
ance matrix.

Our method in (25) utilizes this information. We first
estimate the clutter subspace by using parameters γ and β
in (18). Because the jammer matrix is block diagonal and the
clutter matrix has low rank with known subspace, by using
the matrix inversion lemma, we could break the inversion of
a large matrix R into the inversions of some smaller matri-
ces. Therefore the computational complexity was significantly
reduced. Moreover, by using the structure, fewer parameters
need to be estimated. In our method, only the rc × rc matrix
A and the N × N matrix Rvs need to be estimated rather
than the the NML × NML matrix R in the SMI method.
Therefore our method also converges much faster.

In subspace methods [27]-[33], the clutter and the jammer
subspace are both estimated simultaneously using the STAP
signals rather than from problem geometry. Therefore the
parameters γ and β and the block diagonal structure of the
jammer covariance matrix are not fully utilized. In [26], the
target-free and clutter-free covariance matrix are also estimated
using (23). The jammer and clutter are filtered out in two
separate stages. Therefore the block diagonal property of the

jammer covariance matrix has been used in [26]. However,
the clutter subspace structure has not been fully utilized in
this method.

VI. NUMERICAL EXAMPLES

In this section, we compare the SINR performance of our
methods and other existing methods. In the example, the
parameters are M = 5, N = 10, L = 16, β = 1.5 and
γ = 10. The altitude is 9km and the range of interest is
12.728km. For this altitude and range, the clutter is generated
by using the model in [15]. The clutter to noise ratio (CNR) is
40 dB. There are two jammers at 20◦ and −30◦ degree. The
jammer to noise ratio (JNR) for each jammer equals 50 dB.
The SINR is normalized so that the maximum SINR equals
0 dB. The jammers are modelled as point sources which emit
independent white Gaussian signals. The clutter is modelled
using discrete points as described in (2). The clutter points are
equally spaced on the range bin and the RCS for each clutter is
modelled as identical independent Gaussian random variables.
In general, the variance of ρi will vary along the ground, as
we move within one range bin. However, for simplicity we
assume this variance is fixed. The number of clutter points
Nc is ten thousand. The clutter points for different range bins
are also independent. The following methods are compared:

1) Sample matrix inversion (SMI) method [32]. This
method estimates the covariance matrix R using (19)
and directly substitutes it into (11).

2) Loaded sample matrix inversion (LSMI) method [24],
[23]. Before substituting R̂ into (11), a diagonal loading
R̂← R̂+ δI is performed. In this example, δ is chosen
as ten times the white noise level.

3) Principal component (PC) method. [32]. This method
uses a KLT filterbank to extract the jammer-plus-clutter
subspace. Then the space-time beamforming can be
performed in this subspace.

4) Separate jammer and clutter cancellation method [26]
(abbreviated as SJCC below). This method also utilizes
the jammer-plus-noise covariance matrix Rvs which can
be estimated as in (23). The covariance matrix can be
used to filter out the jammer and form a spatial beam.
Then the clutter can be further filtered out by space-time
filtering [26]. In this example, a diagonal loading is used
for the space-time filtering with a loading factor which
equals ten times the white noise level.

5) The new zero-forcing (ZF) method. This method directly
nulls out the clutter subspace as described in (26).

6) The new minimum variance method. This method esti-
mates R̂vs and Âc and uses (25). In this example, a
diagonal loading is used for Âc with a loading factor
which equals ten times the white noise level.

7) MVDR with perfectly known R. This method is unreal-
izable because the perfect R is always unavailable. It is
shown in the figure because it serves as an upper bound
on the SINR performance.

Fig. 7 shows the comparison of the SINR for fs = 0 as a
function of the Doppler frequencies. The SINR is defined as

SINR � |w
†s(fs, fD)|2
w†Rw

,
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where R is the target-free covariance matrix. To compare these
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Fig. 7. The SINR performance of different STAP methods at looking
direction zero as a function of the Doppler frequency.

methods, we fix the number of samples K and the number
of jammer-plus-noise samples Kv . In all of the methods
except the SMI method, 300 samples and 20 jammer-plus-
noise samples are used. We use 2000 samples instead of 300
samples in the SMI method because the estimated covariance
matrix in (19) with 300 samples is not full-rank and therefore
can not be inverted. The spatial beampatterns and space-time
beampatterns for the target at fs = 0 and fD = 0.25 for four
of these methods are shown in Fig. 8 and Fig. 9 respectively.
The spatial beampattern is defined as

ML−1∑
k=0

|w†
(1:N)+kMLs(fs)|2,

where s(fs) is the spatial steering vector(
1 ej2πfs · · · ej2πfs(N−1)

)T
,

and w(1:N)+kML represents N successive elements of w
starting from kML+1. The space-time beampattern is defined
as

|w†s(fs, fD)|,
where s(fs, fD) is the space-time steering vector defined in
(10). The spatial beampattern represents the jammer and noise
rejection and the space-time beampattern represents the clutter
rejection. In Fig. 8, one can see the jammer notches at the
corresponding jammer arrival angles −30◦ and 20◦. In Fig. 9,
one can also observe the clutter notch in the beampatterns. In
Fig. 7, lacking use of the covariance matrix structure, the SMI
method requires a lot of samples to obtain good performance.
It uses 2000 samples but the proposed minimum variance
method which has a comparable performance uses only 300
samples. The PC method and LSMI method utilize the fact
that the jammer-plus-clutter covariance matrix has low rank.
Therefore they require fewer samples than the SMI method.
The performance of these two are about the same. The SJCC
method further utilizes the fact that the jammer covariance

−0.5 0 0.5
−90

−80

−70

−60

−50

−40

−30

Normalized spatial frequency f
s

S
pa

tia
l b

ea
m

pa
tte

rn
 (

dB
)

 

 

Our method ZF, K
v
 = 20

PC, K = 300
SJCC, K

v
=20, K=300

MVDR, perfect R

Fig. 8. Spatial beampatterns for four STAP methods.

matrix is block diagonal and estimates the jammer-plus-noise
covariance matrix. Therefore the SINR performance is slightly
better than the LSMI and PC methods. Our methods not
only utilize the low rank property and the block diagonal
property but also the geometry of the problem. Therefore
our methods have better SINR performance than the SJCC
method. The proposed zero-forcing (ZF) method has about
the same performance as the minimum variance method. It
converges to a satisfactory SINR with very few clutter-free
samples. According to (16), the clutter rank in this example
is approximately

�N + γ(M − 1) + β(L− 1)� = 73.

Thanks to the MIMO radar, the dimension of the space-time
steering vector is MNL = 800. The clutter rank is just a small
portion of the total dimension. This is the reason why the ZF
method, which directly nulls out the entire clutter space, works
so well.

VII. CONCLUSIONS

In this paper, we first studied the clutter subspace and its
rank in MIMO radars using the geometry of the system. We
derived an extension of Brennan’s rule for estimating the di-
mension of the clutter subspace in MIMO Radar systems. This
rule is given in (16). An algorithm for computing the clutter
subspace using nonuniform sampled PSWF was described.
Then we proposed a space-time adaptive processing method
in MIMO radars. This method utilizes the knowledge of the
geometry of the problem, the structure of the clutter space,
and the block diagonal structure of the jammer covariance
matrix. Using the fact that the jammer matrix is block diagonal
and the clutter matrix has low rank with known subspace,
we showed how to break the inversion of a large matrix
R into the inversions of smaller matrices using the matrix
inversion lemma. Therefore the new method has much lower
computational complexity. Moreover, we can directly null out
the entire clutter space for large clutter. In our ZF method,
only the N × N jammer-plus-noise matrix Rvs needs to be
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Fig. 9. Space-time beampatterns for four methods: (a) The proposed zero-forcing method, (b) Principal component (PC) method [32], (c) Separate jammer
and clutter cancellation method (SJCC) [26] and (d) Sample matrix inversion (SMI) method [32].

estimated instead of the the NML×NML matrix R in the
SMI method, where N is the number of receiving antennas, M
is the number of transmitting antennas, and L is the number
of pulses in a coherent processing interval. Therefore, for a
given number of data samples, the new method has better
performance. In Section VI, we provided an example where
the number of training samples was reduced by a factor of
100 with no appreciable loss in performance compared to the
SMI method.

In practice, the clutter subspace might change because of
effects such as the internal clutter motion (ICM), velocity mis-
alignment, array manifold mismatch, and channel mismatch
[32]. In this paper, we considered an “ideal model”, which
does not take these effects into account. When this model is
not valid, the performance of the algorithm will degrade. One
way to overcome this might be to estimate the clutter subspace
by using a combination of both the assumed geometry and the
received data. Another way might be to develop a more robust
algorithm against the clutter subspace mismatch. These ideas
will be explored in the future.
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