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ABSTRACT

The discrete multitone modulation (DMT) systems have been
widely used in various applications. The DMT system can
be considered as a dual of a subband coder, obtained by us-
ing the synthesis bank as the transmitter and analysis bank
as the receiver. In designing optimal subband coders, the
objective is to minimize output quantization noise, whereas
in the problem of designing optimal DMT system, the ob-
jective function to be minimized is the transmitted power.
In this paper we will show that the design of optimal DMT
systems can be formulated as a hypothetical design problem
of optimal subband coders. The solution of optimal DMT
system can be obtained using existing design methods for
optimal biorthogonal subband coders.

1. INTRODUCTION

The discrete multitone modulation (DMT) systems have been
shown to be a very useful for transmission over frequency
selective channels [1][2][3]. Recently there has been con-
siderable interest in the design of optimal DMT systems
[4][5]. Fig. 1 shows an -band DMT system over a fre-
quency selective channel with additive channel noise

. The transmitting and receiving filters are respective-
ly and , and the DMT system is denoted by

. The inputs of the transmitter
are modulation symbols, e.g., PAM or QAM symbols. Each
symbol of the -th band contains bits. The average bit
rate is . We say the DMT system is per-
fect if the outputs , for
in the absence of channel noise . In this case, there is
no inter- and intra-band ISI. When there is channel noise,

, where the noise of the -
th band comes entirely from the channel noise . For a
given average bit rate, the optimal DMT system minimizes
the transmitted power , i.e., the variance of the transmitted
signal as indicated in Fig. 1.
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The -band DMT system can be viewed as a dual of
an -band subband coder (Fig. 2) by interchanging the
analysis and synthesis bank. The filter bank with analysis
filters and synthesis filters , denoted by

, is said to be biorthogonal or have perfect
reconstruction (PR) property if

where denotes -fold decimation. When there is
quantization noise, the output , where

comes entirely from the quantization noise . A
PR filter bank is called orthonormal if .
For a given class of filter banks, the optimal solution is one
that minimizes the output noise variance .

In the context of optimal subband coder design, great
advance has been made recently [6][7][8][9][10]. It has
been shown that, for the class of orthonormal filter banks,
the Principle Component Filter Bank (PCFB) minimizes the
output noise variance . For the design of biorthogonal fil-
ter banks, the structure of cascading orthonormal (ParaUni-
tary) filter banks with pre- and post-filters (PPU structure)
is proposed in [11] to minimize the output noise. Recently,
Moulin et. al. show that [10] there is no loss of generali-
ty in assuming the PPU structure in the design of optimal
biorthogonal filter banks. More recently, it is shown that
PCFB is also optimal for designing DMT with orthonormal
transmitter [5].

In this paper, we will formulate the design problem of
optimal DMT systems and point out the duality in the de-
sign of optimal DMT systems and optimal biorthogonal fil-
ter banks. We will show that the design of optimal perfect
DMT systems can be converted to the design problem of a
hypothetical subband coder and hence can be solved using
existing techniques for designing optimal biorthogonal filter
banks in most cases.

2. THE DMT SYSTEM

In this section, we will formulate the problem of designing
optimal DMT system for a given channel and channel



Figure 1: An -band DMT system over a frequency selective channel with additive channel noise .

Figure 2: An -band subband coder.

noise . For simplicity, we assume are PAM sym-
bols. Each of the symbols of the -th band carries

bits. The average bit rate is . In this
case, the probability of symbol error of the -band is relat-
ed to , the variance of -th band symbols and the -th
output noise variance by

where , for . Given a fixed
probability of error for all bands, we have

(1)

where

Transmitted power. Assuming the input modulation sym-
bols are white and uncorrelated, which can always be
done with proper interleaving. The transmitted power is
given by

(2)

where is the energy of the -th trans-
mitting filter. On the other hand, the output noise of the -th

band is , where
is the power spectrum of the channel noise . Using (1)
and the above expression for , we obtain the following
expression for the transmitted power

(3)

3. OPTIMAL BIORTHOGONAL SUBBAND
CODERS

An -band filter bank is as shown
in Fig. 2. The quantization noises are usually as-
sumed to be wide sense stationary random processes that
are white, zero mean and uncorrelated. The variance of the
output quantization noise is given by

where is the energy of the -th syn-
thesis filter. The variance of the -th quantization noise

is related to the variance of the -th subband signal
by a distortion function,

where is the number of bits allocated to the -th subband.
An example of the distortion function is in
the high bit rate case. The variance of the -th subband
signal is given by ,
where is the input power spectrum. Therefore,

(4)

Principle Component Filter Banks (PCFB). In recen-
t years, great advance has been made in the study of opti-
mal orthonormal filter banks or the so-called Principle Com-
ponent Filter Banks (PCFB) [6][8][9], . The developmen-
t is based on the majorization theorem. Given 2 ordered



sequences and with and
, we say majorizes if

with equality when .
Consider a class of filter banks . The class can be the

collection of FIR filter banks or the set of ideal filter banks.
A filter bank in the class is a PCFB for the given in-
put if the set formed by its subband
variances majorizes the set formed by the sub-
band variances of any other filter bank in the class .
The PCFB, when it exists, minimizes the output quantiza-
tion noise in (4). This result does not require that be
white and uncorrelated. Also the PCFB is optimal for any
given bit allocation. In particular, it is optimal under opti-
mal bit allocation.

Prefilters for Orthonormal Filter Banks. To minimize
the quantization noise or to maximize the coding gain, [11]
considers a class of biorthogonal filter banks by cascading
orthonormal or paraunitary (PU) filter banks with pre- and
post filters (Fig. 3). This will be called PPU structure. The

Figure 3: An -band filter bank with pre-filter and
post filter .

analysis and synthesis filters of the biorthogonal filter banks
are of the form

(5)

where form an orthonormal filter bank.
Under high bit rate assumption and opti-
mal bit allocation, it is shown that [11] the optimal prefilter

should be the half whitening filter for the input pow-
er spectrum , i.e.,

Furthermore, should be the PCFB for
the input power spectrum . That is, the design
problem decouples as 2 problems: the problem of design-
ing a half whitening filter for and the problem of
designing the PCFB for .

Optimal Biorthogonal Filter Banks. More recently,
Moulin et. al. [10] shows that it is not a loss of generality
assuming the PPU structure in designing optimal biorthog-
onal subband coders. It is shown in [10] that, for the ob-
jective function in (4), we can consider filter banks that is
the cascade of an orthonormal (paraunitary) filter bank with
pre-filter and post filter as in Fig. 3. The
problem of designing optimal biorthogonal filter banks can
be decoupled as the problem of designing a half whitening
filter and a PCFB. Without assuming optimal bit allocation,
this is true in most cases [10]. Only in some pathological
cases, the function is subject to the following condi-
tions: is strictly positive, strictly convex, and
is concave. The high bit rate model is an
example that satisfies the above assumptions.

4. OPTIMAL BIORTHOGONAL DMT SYSTEM

It is known that, when the channel is ideal we can ob-
tain a perfect -band DMT from an -band filter bank by
using the synthesis bank and analysis bank of an -band
PR filter bank as the transmitter and receiver. In particu-
lar, given a PR filter bank the DMT
system with transmitting filters
and receiving filters is perfect. For frequency selec-
tive channels, the connection can be made more general as
follows:

Theorem 1 A filter bank is biorthog-
onal if and only if the DMT system

is perfect over a possibly non ideal channel .

For every PR filter bank , there is an
associated perfect DMT .

Orthonormal Transmitter. In an orthonormal filter bank
with synthesis filters , the analysis filters are simply

. Consider the DMT system with transmitting fil-
ters , where are the synthesis filters of
an orthonormal filter bank . The receiving
filters, by Theorem 1, are given by . For
the class of DMT system with orthonormal transmitters, the
design problem can be converted to the problem of design-
ing an optimal orthonormal filter bank for an appropriate-
ly defined power spectrum [4]. More recently, it has been
shown that the design of the optimal DMT system of this
class can be further formulated as a PCFB design problem.
The optimal DMT system with orthonormal transmitter can
be obtained by choosing the associated orthonormal filter
bank to be the PCFB for the input
power spectrum . In the following we



consider the more general DMT systems, where the associ-
ated PR filter banks are biorthogonal, not restricted to the
orthonormal case.

DMT with PPU structure. Here we consider the case
that the associated PR filter bank of the DMT system is of
the PPU structure in Sec. 3. To be more specific, the trans-
mitting filters and receiving filters are given
by,

(6)

where forms an orthonormal filter bank.
It can be shown that [12] the problem of designing optimal
DMT of this class (referred to as the DMT systems of the
PPU class) also decouples as in the design of optimal sub-
band coders with PPU structure. This result is summarized
in the following theorem.

Theorem 2 Consider the DMT system of the PPU class
with transmitting and receiving filters as given in (6). The
optimal prefilter is a half whitening filter for the
power spectrum . That is,

The associated orthonormal filter bank

should be the PCFB for the power spectrum .

This result holds for any given bit allocation. Note that,
in the design of optimal filter banks with a PPU structure,
we need to assume that the quantization noise are
white and uncorrelated. In the DMT design problem, we
can always perform appropriate interleaving so that the in-
put modulation symbols are white and uncorrelated.

Optimal DMT. For the design of the optimal DMT sys-
tems for the most general class, let us consider the DMT
system

where and are the analysis and synthesis fil-
ters of a biorthogonal filter bank . By
Theorem 1, we know there is no loss of generality in such a
construction. The transmitted power in (3) can be rewritten
as

(7)

For the above objective function, we can convert it to the
following hypothetical filter bank design problem: consider
the -band filter bank in Fig. 2 with input power spectrum

. Suppose the distortion function
is replaced by ; the variance of quantization noise

is

Then the output quantization noise is given exactly by
(7)! Note that in the design of optimal biorthogonal fil-
ter banks, the problem decouples as prefilter design and
PCFB design in most cases without making assumptions
on . This means that, except in pathological cases,
we can solve the design problem of optimal perfect DMT
systems in the same manner using the design method for
optimal biorthogonal filter banks .
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