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ABSTRACT

Suppose we wish to analyze a noisy signal using a �lter bank
(FB) and apply noise suppression schemes such as Wiener
�lters in the subbands of the FB. This paper formalizes and
studies the problem of �nding the best FB for this purpose.
The best FB depends on the class of allowed FB's, the type
of subband processing, and the statistics of the input signal
and additive noise. Recently we have shown the optimal-
ity of the so{called principal component �lter bank (PCFB)
for several signal processing problems. In particular, the
PCFB is the optimum orthonormal FB for many schemes
for suppression of white noise. With colored noise however,
the optimization is considerably more involved, and PCFB
optimality is much more restricted. Here we present sev-
eral results on the colored noise suppression problem. We
develop an algorithm to �nd the exact globally optimum
unconstrained orthonormal FB for piecewise constant input
signal and noise spectra. This thus allows approximation of
the optimum FB for any spectra to any desired accuracy.
We examine the role of PCFB's in the optimization.

1. PROBLEM FORMULATION

Figure 1 shows an M band uniform �lter bank (FB) used
for noise reduction. The FB input x(n) is the sum of a
pure signal s(n) and noise �(n), both wide sense stationary
(WSS) random processes with given power spectral densi-
ties (psd's). The noise �(n) is zero mean and uncorrelated
to s(n). We only study uniform orthonormal FB's, i.e.,
those as in Fig. 1 where Hi(e

j!) = F �

i (e
j!) and the output

is identical to the input in absence of subband processing.
The subband noise suppression systems we consider are

memoryless multipliers ki which may or may not depend on
their input statistics. The error signal e(n) = y(n) � s(n)
between the true and desired FB output is then wide sense
cyclostationary with period M . Equivalently, the subband

errors v
(e)
i (n) = kiv

(x)
i (n) � v

(s)
i (n) are jointly WSS. Due

to FB orthonormality, the average of the variances of the

v
(e)
i (n) is the mean square value of the error e(n) aver-
aged over its period of cyclostationarity M . We wish to
choose a FB minimizing this mean square error over
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all possible FB's in the given class C of uniform orthonormal
M band FB's, for the given input signal and noise psd's.

Let �2i ; �
2
i respectively be the variances of v

(s)
i (n); v

(�)
i (n).

Thus v� = (�20 ; �
2
1 ; : : : ; �

2
M�1)

T , v� = (�20 ; �
2
1 ; : : : ; �

2
M�1)

T

are respectively the signal and noise subband variance vec-
tors. In many cases, computing the subband error variances
shows that the minimization objective has the form

f(v�;v�) =
1

M

M�1X
i=0

fi(�
2
i ; �

2
i ); (1)

where fi depends on the speci�c choice of ki. Examples are:
ki choice process type fi(x; y)

�2i =(�
2
i + �2i ) 0th order Wiener xy=(x+ y)�

1 if �2i � �2i
0 otherwise

hard threshold min(x; y)

constant FB independent x j1� kij2 + y jkij2
All these fi are veri�able to be concave on R2

+ (the non-
negative quadrant of R2, i.e., f(x; y) : x; y � 0g). Thus the
objective (1), as a function of the vector v = (vT� ;v

T
� )

T , is

concave on R2M
+ . This is crucial to our methods of �nding

the best FB, i.e., the choice of v minimizing (1).

2. EARLIER WORK, OVERVIEW OF RESULTS

Suppose the noise is white, i.e., has constant psd. Then
all entries �2i of v� equal the input noise variance, inde-
pendent of the FB; so the objective depends only on v� .
Let the signal spectrum be constant on each interval Ik =

[ 2�k
M

; 2�(k+1)
M

) for integer k. Then the standard contiguous

stacked brickwall M band FB (whose k-th �lter Hk(e
j!) isp

M on Ik and zero on [0; 2�)nIk) yields white subband sig-
nal component processes totally uncorrelated to each other.
It is intuitively very appealing to believe that this FB is
the best possible one, i.e., is optimum in the class Cu of un-
constrained orthonormal M band FB's (FB's whose �lters
have no constraints besides those imposed by orthonormal-
ity). This is indeed true: This FB is a principal component

�lter bank (PCFB) [1, 2, 8, 9, 10] for the assumed signal
psd, and its optimality follows from our recent work [1, 2].
This can be summarized as follows:

Fact 1. [7, 5] Let us be given a set D whose convex hull
(denoted by co(D)) is compact, and a function g that is
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Fig. 1: Filter bank used for noise suppression.
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concave on co(D). The minimum of g over D can be found
by minimizing g over the set E of extreme points of co(D).
(We always have E � D.) In particular if co(D) is a poly-

tope, i.e., a (compact) convex set with �nitely many extreme
points, then this is simply a �nite search over these points.

Fact 2. [1, 2] Given a class C of uniform orthonormal M
band FB's and the psd of the WSS input, let S be the set
of subband variance vectors obtained by passing the input
through each FB in C. A PCFB for C for the given input psd
exists i� co(S) is a polytope whose set of extreme points is
the set of all permutations of a single vector v�. Under this
condition, v� corresponds to the PCFB (its permutations
represent the permutations of the subbands of the PCFB).

Facts 1 and 2 imply that the PCFB minimizes all con-
cave functions of the subband variance vector. PCFB con-
struction for given input psd is well studied for the uncon-
strained class Cu [10], the transform coder class and any
two{channel FB class [2]. Thus, the problem of Section 1
has been solved for these classes when the noise is white.

Now let the noise be colored, and let both the signal and

noise psd's be constant on each interval Ik = [ 2�k
MN

; 2�(k+1)
MN

)
for integers k, for some �xed integer N . If N = 1, again it
is intuitively appealing to believe that the usual contiguous
stacked brickwall FB is optimal. We prove this fact, and
further show how to �nd the best FB for any N .

When N = 1, the usual brickwall FB is a common

PCFB for both the signal and noise. Even for FB classes
such as Cu , where individual PCFB's for the signal and
noise always exist, existence of common PCFB's is not al-
ways ensured: It depends on the psd's. However, the result
suggests that perhaps such a common PCFB is always op-
timal if it exists. This happens to be true for a particular

FB class, namely the class of transform coders [3]. However,
for general FB classes it is true only for certain restricted
families of input psd's { examples being (a) the earlier men-
tioned case of piecewise constant psd's, for the FB class Cu ;
and (b) the case when the noise is white, for any FB class
(all FB's are PCFB's for a white input, no matter what
the FB class). The potential suboptimality of the common
PCFB is another corollary of the results of this paper.

3. THE MAIN RESULT

3.1. Statement of the result

Theorem 1. Consider optimization of FB's in the class
Cu of unconstrained uniform orthonormalM band FB's, for

the noise suppression systems of Section 1. The minimiza-
tion objective f is given to be a concave function of the
vector v = (vT� ;v

T
� )

T of signal and noise subband vari-
ances. Let Sv denote the `search space' de�ned as the set of
all possible values of v (corresponding to all FB's in Cu , for
the given input psd's). Let Ev be the set of extreme points
of co(Sv) (the convex hull of Sv). From Fact 1, it su�ces to
minimize f over the set Ev. Suppose the input signal and

noise psd's are constant on all intervals ( 2�k
MN

; 2�(k+1)
MN

) for
all integers k for some �xed positive integer N . Then,

1. Sv is a polytope, i.e., Sv = co(Sv) and Ev is �-
nite. Further, let F be the set of all brickwall FB's
in Cu having all �lter band edges at integer multiples
of 2�

MN
. Then F has jFj = (M !)N FB's, and for each

point of Ev there is a FB in F corresponding to it.

2. The size of F is exponential in N , but the number of
FB's in F actually corresponding to points in Ev is
only polynomial in N , i.e., jEvj � KMN2M�3. How-
ever, both jFj and jEv j are super{exponential in M ,
as KM = 4(2M � 3)(M !(M !� 1)=2)2M�3.

3. The number of arithmetic operations needed to ex-
tract from F the FB's corresponding to points in Ev is
also polynomial in N , though it is super{exponential
in M . It does not exceed CMN2M�2 if M > 2 and
DN logN if M = 2, where CM = G(M !)4M�5 and
G;D are constants.

The result is proved in full in [3]. Here in Section 3.3,
we present the full proof except for the justi�cation of a
technical lemma it needs. Section 3.4 elaborates on the
algorithm that extracts from F the FB's corresponding to
extreme points of Sv (implied by item (3) of the theorem).

3.2. Discussion on Theorem 1

Result appealing but not obvious: FB's in F are brickwall
with nonoverlapping �lter responses having shapes similar
to the input psd's (piecewise constant with the same allowed
discontinuities). That the best FB can always be chosen to
be in F is hence very appealing. However it is certainly not
obvious; e.g. it is not true if the objective is not concave.

Bounds on jEvj: Items (1) and (2) of Theorem 1 set on
the size of Ev, the bounds (M !)N (= jFj) and KMN2M�3,
respectively the stronger for the casesM � N and N �M .

Common PCFB's and the N = 1 case: Theorem 1 holds
whether or not a common signal and noise PCFB for Cu exists
for the given psd's. If it exists, it also corresponds to points



of Ev (often it too is in F). However it need not always be
optimal, as Ev could in general have other points too (see [3]
for a speci�c instance of suboptimality). If N = 1 however,
all M ! elements of F are permutations of the same FB,
namely the usual contiguous{stacked brickwall FB, which
is hence always optimal. This result was noted in Section 2.

Approximating optimum FB's for arbitrary spectra: Most
spectra can be approximated by the piecewise constant ones
in the premise of Theorem 1, to any desired accuracy by
su�ciently increasing M and/or N . Thus Theorem 1 in
principle allows approximation of the optimum FB in Cu for
any input spectra to any desired accuracy. However the
complexity of the algorithm for this is polynomial in N but
super{exponential inM . Thus, we have good algorithms for
low M (especially M = 2, where the complexity is of order
N logN). For su�ciently large M , we get good enough
approximations of the true spectra by taking N = 1. The
earlier remark then gives at no cost, the optimum FB in
Cu , i.e., the usual contiguous{stacked brickwall FB.

3.3. Proof of Theorem 1

Let Hi(e
j!); i = 0; 1; : : : ;M � 1 be the analysis �lters of

a M -channel orthonormal FB (i.e., a FB from Cu ). For
l = 0; 1; : : : ; N � 1, de�ne M �M matrices Gl whose ik-th
entries (i; k = 0; 1; : : : ;M � 1) are

glik
4

=
N

2�

Z 2�(l+Nk+1)
MN

2�(l+Nk)
MN

��Hi(e
j!)
��2 d!: (2)

Let the constant values of the input signal and noise psd's

Ds(e
j!) andD�(e

j!) on the interval ( 2�k
MN

; 2�(k+1)
MN

) be ak; bk
respectively. Let �2i ; �

2
i respectively be the signal and noise

variances in the i-th subband. Then

�2i =
1

2�

Z 2�

0

��Hi(e
j!)
��2Ds(e

j!) d! =
1

N

M�1X
k=0

N�1X
l=0

glikal+Nk:

Likewise, N�2i =
PM�1

k=0

PN�1

l=0
glikbl+Nk. Let G be the set

of ordered sets G = (G0;G1; : : : ;GN�1) corresponding to
all FB's in Cu . From the computed �2i ; �

2
i , the variance

vector v 2 Sv corresponding to G 2 G is then

v = L(G) =

N�1X
l=0

�
Glal

Glbl

�
; (3)

where al = (al; al+N ; : : : ; al+(M�1)N )
T ; and bl is similarly

de�ned using the bk. Thus Sv is the image of G under a
linear map L. Hence we study G. Integrating over appro-

priate intervals the relations
PM�1

i=0

��Hi(e
j!)
��2 = M andPM�1

k=0

���Hi(e
j(!+ 2�k

M
))

���2 =M (which hold for all ! for any

orthonormal M band FB [10]) gives

0 � glik � 1;

M�1X
i=0

glik =

M�1X
k=0

glik = 1 (4)

for all i; k; l for which glik are de�ned. This is by de�nition
the statement that Gl is doubly stochastic for all l =

+ = =

Fig. 2: Minkowski sum in two dimensions

0; 1; : : : ; N �1. Let Q;P respectively be the sets of all M �
M doubly stochastic matrices and permutation matrices.
We have thus shown that G � QN = Q�Q� : : :�Q.

Claim: G = QN , which (by Birkho�'s theorem [2, 5])
is a polytope with PN as its set of extreme points. Also,
FB's in the set F (de�ned in stating Theorem 1) correspond
directly (one{to{one) with points in PN .

We refer to [3] for a proof of this claim, which involves
building a brickwall FB in Cu corresponding to any given
G 2 QN . Once the claim is established, we have then
proved item (1) in the statement of Theorem 1: Recall
that Sv is the image of G under a linear map L of (3).
The linear image of a polytope D is a polytope R whose
extreme points are all images of some extreme points of D.
The claim above thus means that there is a FB in F for
every extreme point of Sv. From the correspondence be-
tween F and PN , F has jFj =

��PN
�� = jPjN = (M !)N FB's

(counting separately all permutations of each FB in F {
else we must divide the number by M !).

Proof of items 2,3 of Theorem 1 statement: For any
�xed l = 0; 1; : : : ; N � 1, as Gl can be any element of Q,
the set of possible values of xl =

�
Glal

Glbl

�
is itself a poly-

tope T l (as it is a linear image of Q). It lies on a 2M � 2
dimensional hyperplane in R2M , as the �rst and lastM en-
tries of xl have sums independent of Gl 2 Q (respectively
the sums of entries of al;bl). The extreme points of T l cor-
respond to the M ! possible choices of Gl 2 P. From (3),

Sv =
�P

l
xl : xl 2 T l

	
, which is known as the Minkowski

sum [4],[6] of the polytopes T l. Theorem 2.1.10 and Corol-
lary 2.1.11 of [4] bound the number of extreme points of the
Minkowski sum of k polytopes of dimension d with not more
than p extreme points each. Theorem 2.3.70 and Proposi-
tion 2.3.9 of [4], with their proofs, outline algorithms to �nd
the extreme points of this Minkowski sum, thus bounding
the number of arithmetic operations needed for the same.
Applying these bounds with k = N , d = 2M�2 and p = M !
yields items 2,3 of the statement of Theorem 1. 555

3.4. The Minkowski sum algorithm

As seen above, the Minkowski sum of a �nite number of sets
Ti � Rd is the set fP

i
xi : xi 2 Tig. Such sums have been

well studied in computational geometry, e.g. in context of
robot motion planning algorithms [6] when d = 2; 3. Fig-
ure 2 illustrates the Minkowski sum of two polygons in R2.
This section describes the principles of the algorithms of [4]
used above to compute Minkowski sums of polytopes, and
illustrates their role in Theorem 1 using the case of M = 2.

It is not hard to see that the Minkowski sum S of k
polytopes is a polytope, in fact, speci�cally it is the convex
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Fig. 3: Showing Minkowski sum algorithm.

hull of the (�nite) Minkowski sum V of the sets of extreme
points of the individual polytopes. (See Fig. 2 for an il-
lustration.) However, if the summand polytopes of S have
<= p extreme points each, then in general V has pk points.
Not all of these are extreme, the true number of extreme
points is only polynomial in p; k. The key idea in �nding
these extreme points is the following:

Fact 3. [7] A point v = (v0; v1; : : : ; vd�1) in a polytope
P � Rd is an extreme point of P i� there is a linear function
f on Rd (i.e., f of form f(v) =

P
i
aivi for real constants

ai) which is maximized over P uniquely by v.

Any such linear f is always maximized over P by at
least one extreme point of P , and by a slight perturbation
of f (i.e., of the ai) we can ensure uniqueness of the maxi-
mum. Further if S is a Minkowski sum, then its de�nition
and the linearity of f imply that v is a maximum of f over
S i� it is obtainable by choosing from each summand poly-
tope a vector maximizing f over that summand, and adding
the chosen vectors. So we choose all possible f that have
a unique maximum over each summand polytope, and for
each f , add these maxima to obtain an extreme point of S.
Many f yield the same extreme point (there are in�nitely
many f but �nitely many extreme points), so we need a
scheme to select a set of f that will yield all the extreme
points. A formal description and analysis of complexity of
such a scheme can be found in [4], using the concept of a
normal fan of a polytope. Here we merely illustrate the
process as applied in Theorem 1 for M = 2.

When M = 2, Section 3.3 shows that the search space
Sv is the Minkowski sum of N two{dimensional polytopes,
each with two vertices; i.e., of N line segments in R2.
Adding a constant vector to each element in a summand
polytope has the same e�ect on the Minkowski sum. So
without losing generality we can do this for each segment
and assume the origin to be one endpoint. Let the other
endpoints of the segments be vi; i = 0; 1; : : : ; N�1. The lin-
ear functions on R2 are (upto scale factor) the projections
along the various lines through the origin. Thus, for each
such line, we sum all the vi with a positive projection (i.e.,
lying on one of the two half{planes associated with the line)
to get an extreme point of the Minkowski sum. We then ro-
tate the selected line about the origin until it crosses over a
point vi, upon which the computed extreme point changes,
i.e., is incremented by �vi depending on whether vi moved
from the left to the right half plane or vice-verca. We do
this operation until the line completes a full 360 degree ro-
tation. Figure 3 shows the process for N = 3 line segments.
As the dotted line rotates anticlockwise from its position in
the �gure, we obtain all 6 vertices of the Minkowski sum in
anticlockwise order starting from the vertex a+ b+ c.

If the vertex vectors vi are sorted in increasing order of

angle with respect to a given �xed direction, then the num-
ber of arithmetic operations required by the above process
is linear in the size of this sorted list. Also the process
gives the exact number of extreme points in the Minkowski
sum, namely twice the total number of nonparallel line seg-
ments being added, in general equal to 2N (improving the
bound 4N of Theorem 1). The order of complexity of the
algorithm is reported as linear in N in [4], and more pre-
cisely asN logN in Theorem 1, which includes sorting of the
vi. The general complexity bound for all M (Theorem 1,
item 3) implies an order of N2 for M = 2, the reason why
this could be improved is because in R2 there is a canonical
way to sweep in sequence through all the linear functions f .

4. CONCLUSION

We have developed an algorithm to �nd the optimum or-
thonormalM band FB for noise suppression when both the
signal and noise spectra are piecewise constant with discon-
tinuities at rational multiples of 2�

MN
. The algorithm can

be used to approximate the optimum solution for arbitrary
spectra if M and/or N is large. For large M , it su�ces to
assume N = 1, in which case the usual contiguous{stacked
brickwall FB is optimal.
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