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Abstract.1 It has recently been claimed that a class
of filter banks called the principal component filter
banks (PCFB) is optimal for digital communication
using discrete multitone modulation. In this paper we
revisit this result and examine the origin of this op-
timality. We provide illustrative examples comparing
the PCFB with traditional filters. We also provide a
rigorous proof of the claim that the bit rate is maxi-
mized by the PCFB.

I. INTRODUCTION

Principal component filter banks (PCFB) were first
introduced for progressive data transmission in [12].
Their usefulness for various applications has been ob-
served by many authors in the signal processing com-
munity (see references cited in [2]). The optimality of
the PCFB for many applications has been proved in
[2], [3], and its role in the design of discrete multitone
systems has been a topic of recent interest [8], [16].

It has recently been claimed that the PCFB is opti-
mal for digital communication using discrete multitone
modulation (DMT). In this paper we revisit this result
and examine the origin of this optimality. We provide
illustrative examples comparing the PCFB with tradi-
tional filters. A rigorous proof of the bit rate optimality
of the PCFB is presented in Sec. VI.

Multirate DSP notations. The building block ↓ M
in the figures denotes a decimator with input/output
relation y(n) = x(Mn). The building block ↑ M de-
notes an expander with input/output relation

y(n) =
{
x(n/M) n = multiple of M
0 otherwise.

The expander followed by a filter yields an interpo-
lated version of x(n). We use the notations [x(n)]↓M

and [X(z)]↓M to denote the decimated version x(Mn)
and its z-transform. Similary the expanded version is
denoted by [x(n)]↑M , and its z-transform X(zM ) by
[X(z)]↑M . It can be shown that the Fourier transform
of x(Mn) is a superposition of X(ejω/M ) and M − 1

1Work supported in part by the ONR grant N00014-99-1-
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shifted versions [14]. In general the filters are allowed
to be ideal (e.g., brickwall lowpass, etc.). So the z-
transforms do not necessarily exist. The notation H(z)
should be regarded as an abbreviation for the Fourier
transform H(ejω).

II. THE DMT SYSTEM

Figure 1 shows the essentials of discrete multitone com-
munication [1,4,5,6,13]. Here xk(n) are bk-bit symbols
obtained from a PAM or QAM constellation [9]. To-
gether these signals represent

∑
k bk = b bits, and are

obtained from a b-bit block of a binary data stream
[4]. The symbols xk(n) are interpolated M -fold by the
filters Fk(z). The outputs of Fk(z) can be regarded as
modulated versions of the symbols. These are packed
into M adjacent frequency bands (passbands of the fil-
ters) and added to obtain the composite signal x(n).
Typically the filters cover different uniform regions of
frequency 0 ≤ ω ≤ 2π. The composite signal x(n) is
then sent through the channel which is represented by
a transfer function C(z) and additive noise e(n) with
power spectrum or psd See(ejω).
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Figure 1. The discrete multitone communication system.

In actual practice the channel is a continuous-time sys-
tem preceded by D/A conversion and followed by A/D
conversion. We have replaced this with discrete equiv-
alents C(z) and e(n).

The received signal y(n) is a distorted and noisy
version of x(n). The receiving filter bank {Hk(z)} sep-
arates this signal into the components yk(n) which are
distorted and noisy versions of the symbols xk(n). The



task at this point is to correctly detect the value of
xk(n) from yk(n). There is a probability of error in this
detection which depends on the signal and noise levels.
Ignoring noise for a moment, the path between xk(n)
and ym(n) is actually a linear time invariant system
with transfer function Fk(z)C(z)Hm(z)

∣∣
↓M

. If this is
zero for k �= m we say that there is no interchannel
interference. If this quantity is unity for k = m we say
that there is no intrachannel interference. Thus all ISI
is eliminated if

Fk(z)C(z)Hm(z)
∣∣∣
↓M

= δ(k −m) (1)

The filter bank {Fk, Hm} is said to be biorthogonal if

Fk(z)Hm(z)
∣∣∣
↓M

= δ(k −m) (2)

In order to obtain the ISI free condition, we can start
from a biorthogonal filter bank and then insert the
zero-forcing equalizer 1/C(z) at the receiver, so that
the effective receiving filters are Hk(z)/C(z). In prac-
tice there are ways to satisfy this condition approx-
imately with the use of time domain equalizers and
cyclic prefixes [5] or their generalizations [8]. For the
purpose of noise calculation, the model for the noise
qk(n) at the detector input can therefore be taken as
in Fig. 2. The input q(n) in Fig. 2 can be regarded as
the effective channel noise. The quantity

Sqq(ejω) ∆=
See(ejω)
|C(ejω)|2 (3)

will be referred to as the effective noise psd.
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Figure 2. A model for noise at detector input.

Orthonormal DMT systems. In this paper we con-
sider orthonormal DMT systems which use orthonor-
mal filter banks. The filter bank {Hk} is said to be
orthonormal if

H∗
k(ejω)Hm(ejω)

∣∣∣
↓M

= δ(k −m) (4)

In this case, the transmitting filters are chosen as
Fk(ejω) = H∗

k(ejω) to satisfy biorthogonality. Setting
k = m, the orthonormality (4) yields

|Hk(ejω)|2↓M = 1 (5)

This means that the impulse response gk(n) of the
magnitude square |Hk(ejω)|2 is Nyquist(M), that is,
gk(Mn) = δ(n). It can be shown that an orthonormal
filter bank satisfies the power complementary property∑

k

|Hk(ejω)|2 =
∑

k

|Fk(ejω)|2 = M (6)

From this it follows that∑
k

σ2
qk

= Mσ2
q (7)

regardless of how the filters {Hk} are chosen.

III. THE AVERAGE TRANSMITTED POWER

For simplicity we assume that xk(n) are PAM symbols
[9]. Assuming that xk(n) is a random variable with
2bk equiprobable levels, its variance represents the av-
erage power Pk in the symbol xk(n). The Gaussian
channel noise e(n) is filtered through Hk(z)/C(z) and
decimated by M. Let σ2

qk
be the variance of the noise

qk(n). Then the probability of error in detecting the
symbol xk(n) is [9]

Pe(k) = 2(1 − 2−bk)Q
(√

3Pk

(22bk − 1)σ2
qk

)
(8)

where Q(v)∆=
∫ ∞

v
e−u2/2du/

√
2π (area of the normal-

ized Gaussian tail). Since the Q-function can be in-
verted for any nonnegative argument, we can invert
(8) to obtain

Pk = β
(
Pe(k), bk

)
× σ2

qk
(9)

where the exact nature of the function β(., .) is not of
immediate interest. This expression says that if the
probability of error has to be Pe(k) or less at the bit
rate bk, then the power in xk(n) has to be at least as
large as Pk. The power complementary property (6) of
orthonormal filter bank implies that the average vari-
ance or power of x(n) in Fig. 1 is given by

P =
∑

k

Pk/M

regardless of the exact choice of the filters. So the
average transmitted power is

P =
1
M

M−1∑
k=0

Pk =
1
M

M−1∑
k=0

β
(
Pe(k), bk

)
× σ2

qk
(10)

Let us assume that the bit rates bk and probabilites of
error Pe(k) are fixed. For this desired combination of
{bk} and {Pe(k)}, the total power required depends on
the distribution of noise variances {σ2

qk
}. This distri-

bution in turn can be adjusted by choice of the filters



Hk(ejω). The question therefore is, how to choose an
orthonormal filter bank {Hk} such that the noise vari-
ances in Fig. 2 are adjusted in order to minimize the
transmitted power (10)? We proceed to examine this
optimization under the assumption that the effective
noise psd Sqq(ejω), the error probabilities Pe(k), and
bk are fixed.

IV. OPTIMAL CHOICE OF DMT FILTER BANK

Figure 3(a) shows an example of the effective noise
psd S(f) in terms of the continuous-time frequency
variable f. This is assumed bandlimited to 1 MHz.
The units for S(f) are in mW/Hz, and a dB plot
would show 10 log10 S(f) in dBm/Hz as in the figure.
Using a sampling rate of 2 MHz, the digital version
See(ejω)/|C(ejω)|2 of the psd S(f) is as shown in Fig.
3(b) where c = 2 ∗ 10−4 (due to the factor 1/T in
the Fourier transform after sampling). These are not
very unrealistic numbers for typical twisted pair tele-
phone channels for which DMT modulation is a pop-
ular choice. The two bumps (each assumed 10 KHz
wide) can be regarded as oversimplified versions of the
effects of bridged taps (first bump) and AM noise (sec-
ond bump) [11]. The rapid decay of channel gain is
not depicted in this example.

Consider a two channel DMT system (M = 2). One
choice of the orthonormal filter bank, called the brick-
wall stacking, is shown in Fig. 3(c). With the effective
psd Sqq(ejω) as in Fig. 3(b) we can now calculate the
variances σ2

qk
. Let us pick some values for the remain-

ing parameters.

1. Error probabilities Pe(0) = Pe(1) = 10−9.

2. b0 = 6 and b1 = 2. These are the bits in the PAM
constellations. It makes sense to use smaller value
for b1 because there is more noise in the region
covered by H1(ejω). Since the average of bk’s is 4,
the average bit rate for 2 MHz sampling rate is
8 Mbits/sec.

The average power P needed to meet these require-
ments can be calculated from (10) and the result turns
out to be 56 mW. Instead of using the brickwall filter
bank suppose we use the filter bank shown in Fig. 3(d)
and (e). We still have two channels (M = 2) but each
filter now has two passband regions. It can be verified
that this filter bank still satisfies orthonormality (4).
We can recalculate the variances σ2

qk
now and compute

the average power. The result is 5.67 mW. Thus

savings in total power = 56/5.67 ≈ 9.9

or about 10 dB. In summary, the modified filter bank
achieves the bit rate of 8 Mb/s and error probability
of 10−9 using almost 10 dB less power!

The difference between the two filter banks in the
example is that the variances σ2

qk
(whose sum is fixed

by orthonormality) are distributed differently depend-
ing on the shape of the effective noise psd Sqq(ejω). The
natural question then is: given an effective noise psd
and an arbitrary M , how do we choose the orthonor-
mal filter bank {Hk(ejω)} to minimize the transmit-
ted power for fixed specifications? The answer is that
{Hk(ejω)} should be chosen as a principal component
filter bank for the effective noise psd.
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Figure 3. Demonstrating the effectiveness of good choice

of filter banks in the DMT system.

V. PRINCIPAL COMPONENT FILTER BANKS

To define a PCFB first consider two sets of M non-
negative numbers {an} and {bn}. We say that {an}
majorizes {bn} if, after reordering such that an ≥ an+1

and bn ≥ bn+1, we have

P∑
n=0

an ≥
P∑

n=0

bn

for 0 ≤ P ≤ M − 1, with equality for P = M − 1.
Thus all the partial sums in {an} dominate those in



{bn}. Consider a given class C of M -band uniform or-
thonormal filter banks. This class can be the class Ctc

of transform coders (filter lengths ≤ M), or the class
Cideal of ideal filter banks (filters allowed to have in-
finite order, like brickwall filters). Or it could be a
practically attractive class like the FIR class Cfir with
filter orders bounded by a fixed integer. Given a class
C and an input power spectrum Sqq(ejω) we say that a
filter bank F in C is a principal component filter bank
or PCFB if the set {c2k} of its subband variances ma-
jorizes the set {d2

k} of subband variances of all other
filter banks in the class. That is, with c2n ≥ c2n+1 and
d2

n ≥ d2
n+1,

c20 ≥ d2
0, c20 + c21 ≥ d2

0 + d2
1, . . .

and so forth. The equality
∑M−1

k=0 c2k =
∑M−1

k=0 d2
k fol-

lows automatically from orthonormality. It was proved
in [2], [3] that any concave function φ of the subband
variance vector

v = [σ2
q0

σ2
q1

. . . σ2
qM−1

]T (11)

is minimized by a PCFB when one exists. Similarly,
any convex function is maximized. According to the
PCFB definition, any permutation of the filters still
remains a PCFB. So the correct permutation has to be
chosen to find the optimum PCFB. In all discussions,
this step will be taken for granted.

Whenever we say that the PCFB is optimal for a
problem, the implicit assumption is that the class of
filter banks searched is such that a PCFB exists. It is
possible that PCFBs do not exist for certain classes,
e.g., the cosine modulated class [2].

Examples

1. Consider the transform coder class Ctc where the
filters Hk(z) are FIR with length ≤ M . The DFT
filter bank traditionally used in DMT systems is
an example belonging to this class. The M × M
KLT matrix of the filter bank input q(n) can be
used to define the PCFB.

2. For the ideal filter bank class Cideal, there is a sys-
tematic method to construct a PCFB by designing
a sequence of compaction filters [15].2 For exam-
ple, the filter bank defined by the two filters in Fig.
3(d) and (e) is a PCFB for the power spectrum in
Fig. 3(b).

3. For a monotone decreasing or increasing psd, the
traditional brickwall filter bank is also the PCFB
[15]. For power spectra with more variation (sev-
eral bumps and dips) the PCFB is significantly dif-
ferent. The twisted pair channel for ADSL down-
stream service is a candidate with such an effective

2Software can be obtained from Sony Akkarakaran
(sony@systems.caltech.edu).

noise spectrum See(ejω)/|C(ejω)|2. The complex
nature of this psd arises because of bridged taps,
next and fext noises, and AM interference [11].

VI. PCFB OPTIMALITY FOR DMT

From Eq. (10) we see that the total transmitted power
P is a concave function of the noise variance vector
(11). This shows that the orthonormal filter bank
{Hk(ejω)} which minimizes total power for fixed er-
ror probabilities and bit rates is indeed a PCFB for
the effective noise psd See(ejω)/|C(ejω)|2.

Maximizing Total Bit Rate. Returning to the error
probability expression (8) let us now invert it to obtain
a formula for the bit rate bk. This is tricky because of
the way bk occurs in two places. The factor (1− 2−bk)
however is a weak function of bk in the sense that it
varies from 0.5 to 1 as bk changes from one to infinity.
Replacing (1−2−bk) with unity in Eq. (8), we can find
bk and obtain b =

∑
k bk. The result is

b = 0.5
M−1∑
k=0

log2

(
1 +

3
[Q−1(Pe(k)/2)]2

Pk

σ2
qk

)
(12)

The number of bits per second achieved by the DMT
system without channel coding is proportional to this.
Since function log2(1+ a

x ) is convex in x (for a, x > 0),
this b is convex in the variance vector (11). Thus the
PCFB for See(ejω)/|C(ejω)|2 maximizes total bit rate.
Without the approximation 1 − 2−bk ≈ 1 the closed
form expression (12) is not possible, but the convexity
of b can be proved in a more elaborate way as shown
below.

VI.1. Proof Of Convexity of Bit Rate

Consider Eqn. (8) and delete all dependence on k for
simplicity. Without using the approximation 1−2−b ≈
1 we will show that b is convex in σ2

q . First notice that

σ2
q

3P
= g(b) =

[
Q−1

(
Pe

2(1 − 2−b)

)]−2
1

22b − 1

As b increases from bmin = − log2(1 − Pe) to ∞, the
quantity g(b) decreases from ∞ to zero. We will show
that g(b) is convex for bmin < b < ∞. Since the inverse
of a decreasing convex function is convex (Sec. VI.2),
this will prove that b = g−1(σ2

q/3P ) is convex in σ2
q .

For convenience define

h(b) =
[
Q−1

(
Pe/[2(1 − 2−b)]

)]2

Then g(b) = 1/[h(b)(22b − 1)], and −dg(b)/db becomes

h′(b)
h2(b)(22b − 1)

+
2 loge 2

h(b)(22b − 1)
+

2 loge 2
h(b)(22b − 1)2



where the primes denote derivatives with respect to
b. We know g(b) is convex if the second derivative is
nonnegative. So it is sufficient to show that −g′(b) is
decreasing. Both 1/h(b) and 1/(22b − 1) are positive
and decreasing in bmin < b < ∞, and so h′(b) ≥ 0 as
well. It is therefore sufficient to show that h′(b)/h(b)
decreases. Since Q(b) =

∫ ∞
b

e−u2/2du/
√

2π, it follows
that dQ(b)/db = −e−b2/2/

√
2π. Similarly, the function

b = Q−1(v) has derivative db/dv = −
√

2πe[Q−1(v)]2/2.
Using these we verify that

h′(b)
h(b)

=
4
√

2π(loge 2)Q(x)ex2/2

Pe
×

(Q(x) − (Pe/2)
x

)

where x
∆=Q−1[(Pe/2)/(1−2−b)]. Now the range bmin <

b < ∞ translates to 0 < x < Q−1(Pe/2). In this range
[Q(x) − (Pe/2)]/x is decreasing. So it is sufficient to
show that Q(x)ex2/2 is decreasing in x, or its deriva-
tive is negative. This is equivalent to showing that√

2πQ(x) < e−x2/2/x. Now

√
2πQ(x) =

∫ ∞

x

e−y2/2dy = −
∫ ∞

x

d(e−y2/2)
y

Using integration by parts this becomes

√
2πQ(x) =

e−x2/2

x
−

∫ ∞

x

e−y2/2

y2
dy <

e−x2/2

x

indeed. ���

VI.2. Decreasing Convex Functions

To verify that the inverse of a decreasing convex func-
tion is convex, let y = f(x) be an invertible convex
function (in some range x ∈ R). We have

f(µx0 + (1 − µ)x1) ≤ µf(x0) + (1 − µ)f(x1)

for 0 ≤ µ ≤ 1. Substituting y0 = f(x0) and x0 =
f−1(y0), and similarly for y1, we get

f(µf−1(y0) + (1 − µ)f−1(y1)) ≤ µy0 + (1 − µ)y1

If f(.) is a decreasing function, then this implies

µf−1(y0) + (1 − µ)f−1(y1) ≥ f−1
(
µy0 + (1 − µ)y1

)
proving that f−1(y) is convex as well. ���

VII. CONCLUDING REMARKS

Even though the paper shows that the PCFB is attrac-
tive for DMT, the gap between DFT and ideal PCFB is
less impressive for large values of M such as M = 512
typically used in DMT practice. Moreover the DMT
systems based on fixed filter banks such as the DFT

or cosine modulated filter banks [5, 10] are attractive
because of the efficiency with which they can be imple-
mented. A PCFB solution in general may not lead to
such an efficient implementation. Moreover the PCFB
depends on the channel and therefore needs to be com-
puted for the given channel, and then approximated
with digital filters. The main attraction of the PCFB
is that it yields a useful bound for performance com-
parisons for fixed number of bands M . In spirit the role
of a PCFB is similar to that of the KLT in transform
coding. If the performance gap between a practical
system and the PCFB solution is small in a particular
application, this gives the assurance that we are not
very far from optimality.
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