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ABSTRACT

Principal component �lter banks (PCFB's) sequentially com-
press most of the input signal energy into the �rst few sub-
bands, and are mathematically de�ned using the notion of
majorization. In a series of recent works, we have exploited
connections between majorization and convexity theory to
provide a uni�ed explanation of PCFB optimality for nu-
merous signal processing problems, involving compression,
noise suppression and progressive transmission. However
PCFB's are known to exist for all input spectra only for
three special classes of orthonormal �lter banks (FB's): Any
class of two c hannelFB's, the transform coder class and the
unconstrained class. This paper uses the developed theory
to describe techniques to examine existence of PCFB's. We
prove that the classes of DFT and cosine{modulated FB's
do not have PCFB's for large families of input spectra. This
result is new and quite di�erent from most known facts on
nonexistence of PCFB's, which usually involve very speci�c
examples and proofs with numerical optimizations.

1. INTRODUCTION

A generic �lter bank (FB) based signal processing scheme
is shown in Fig. 1. It uses a uniform M -channel FB and M
subband processors Pi, and is aimed at producing a certain
desired signal d(n) at the FB output. For example for signal
compression, d(n) is the FB input x(n), and the processors
Pi are quantizers. For noise suppression, x(n) = s(n)+�(n)
where �(n) is additive noise, and d(n) is the pure signal
s(n). Here the Pi could for instance be Wiener �lters.
We assume that x(n) is a zero mean CWSS(M) random
process (wide sense cyclostationary with period M) with
a given second order statistics i.e. power spectral density
(psd) matrix of its M -fold blocked version. The FB op-
timization problem involves �nding the best FB from
a given class C of uniform M-channel orthonormal
FB's, for use in the system of Fig. 1.

The class C here could be for example the class Ctof
transform coders (in which all �lters have order < M),
or that of FIR FB's (where all �lters have order < N for
some �xed N), or the class Cuof unconstrained FB's (where
the �lters have no constraints besides those imposed by or-
thonormality). By `best FB' we mean one that minimizes a
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well-de�ned objective on the class C. This is usually the ex-
pected mean square value of the error e(n) = d(n)�y(n) be-
tween the desired and actual FB output. In many systems
as in Fig. 1, the Pi and the statistical assumptions on d(n)
and x(n) are such that this error e(n) is also CWSS(M).

Equivalently, the subband errors v
(e)
i (n) = v

(d)
i (n)�v

(y)
i (n)

(errors between the true and desired outputs of the proces-
sors Pi) are jointly wide sense stationary (WSS). By FB
orthonormality, the average mean square value of e(n) is
the average of the variances of the subband errors.

The best FB from the class C depends on C, the input
psd and the subband processors Pi (i.e. the task for which
the system is being used). In many situations it turns out to
be the principal c omponent FB (PCFB) for the class C and
the given input psd. PCFB's will be reviewed in Section 2.
The optimality of PCFB's for compression and progressive
transmission has been observed to varying degrees in the
past by a number of authors [3],[2],[1],[6]. More recently,
we have shown [4] the precise connection between FB opti-
mality and the principal component property: The PCFB
is optimal whenever the minimization objective is a c on-

cave function of the vector of subband variances of the FB.
This result explains many known optimality properties of
PCFB's, and also proves their optimality for various noise
suppression schemes, which had not been noticed earlier.

PCFB's are known to exist for all input spectra only
for three special classes of FB's: Any class of two c hannel
FB's, the transform coder class Ctand the unconstrained
class Cu. This paper shows techniques to examine existence
of PCFB's. We prove that the classes of DFT and cosine{
modulated FB's do not have PCFB's for large families of in-
put spectra. This result is quite di�erent from most known
facts on nonexistence of PCFB's, which usually involve very
speci�c examples and proofs with numerical optimizations.

2. REVIEW OF PCFB OPTIMALITY

This section briey reviews the main results of [4],[5].
De�nition: Majorization. Let a = (a0; a1; : : : ; aM�1)

T

and b = (b0; b1; : : : ; bM�1)
T be two vectors in RM . Then

a is de�ned to majorize b if the entries of these vectors,
rearranged so that a0 � a1 � : : : � aM�1 and b0 � b1 �
: : : � bM�1, obey the property that

PX
i=0

ai �

PX
i=0

bi for all P = 0; 1; : : : ;M � 1, (1)
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with equality holding when P = M � 1. Evidently in this
case, any permutation of a majorizes any permutation of b.

De�nition: PCFB's. Let C be the given class of orthonor-
mal uniform M -channel FB's, and let Sxx(e

j!) be the psd
matrix of the M -fold blocked version of the FB input x(n).
A FB in C is said to be a principal component �lter
bank (PCFB) for the class C for the input psd Sxx(e

j!),
if its subband variance vector (�20 ; �

2
1 ; : : : ; �

2
M�1)

T (where

�2i is the variance of the subband signal v
(x)
i (n) in Fig. 1)

majorizes the subband variance vector of every FB in the
class C. Alternatively, a PCFB may be de�ned as a FB min-
imizing over all FB's in C, the mean-square error caused by
dropping the P weakest (lowest variance) subbands, for any
P = 0; 1; : : : ;M . (Thus it is optimal for progressive trans-
mission in this sense.) Note that in the de�nition (1) of
majorization, the equality for P = M � 1 is satis�ed au-
tomatically for any two subband variance vectors a and b,
due to orthonormality of the FB.

De�nition: Search{space. The optimization search{space
is de�ned as the set S of all subband variance vectors cor-
responding to all FB's in the given class C. So S is fully
speci�ed given C and the input psd matrix Sxx(e

j!).

Theorem 1: PCFB's and polytopes. A PCFB for the
class C for input psd Sxx(e

j!) exists if and only if the convex
hull co(S) of the search{space S is a polytope whose corners
consist of all permutations of a single vector v�. Under this
condition, v� is the subband variance vector of the PCFB.

Theorem 2: Optimality of corners of polytopes. Let
f be a function whose domain P is a convex polytope. If
f is concave on P , at least one of the corners of P attains
the minimum of f over P . Further if f is strictly concave,
its minimum over P has to be at a corner of P .

Theorem 3: Optimality of PCFB's. The PCFB for
the class C (if it exists) is the optimum FB in C whenever
the minimization objective is a concave function on the do-
main co(S). Further if this function is strictly concave, the
optimum FB is necessarily a PCFB.

Recall that the convex hull of a set is the set of all
possible convex combinations using elements of the set. A
polytope is the convex hull of a �nite set of points. The set
of c orners (or extreme points) of any compact convex set
D can be de�ned as the minimal subset of D having D as
its convex hull. A polytope is a compact convex set with a
�nite number of corners. Theorem 3 follows directly from
Theorems 1,2 which are proved in [4]. Theorem 3 shows
PCFB optimality for numerous signal processing problems.
Recall that with our problem formulation, the minimization
objective is the average of the variances of the subband error

signals v
(e)
i (n) (Section 1). These variances are often given

by E[jv
(e)
i (n)j2] = hi(�

2
i ), where hi is a function depending

only on the subband processing (and not on the FB), and
�2i is the subband signal variance. Thus the objective takes
the form

g(�20 ; �
2
1 ; : : : ; �

2
M�1) =

1

M

M�1X
i=0

hi(�
2
i ); (2)

i.e. it is purely a function of the subband variance vector.

If in addition the hi are concave on [0;1) then g is concave
on co(S). This happens in several problems involving com-
pression and noise suppression, as explained in [4]. Thus
for all these problems, a PCFB for the input is optimum.

3. ON EXISTENCE OF PCFB'S

For any class of 2-channel FB's, the PCFB is simply a FB
maximizing the larger of its two subband variances (thereby
minimizing the other). For the class Ctof all M -channel or-
thogonal transform coders, the PCFB is the input KLT.
This is by de�nition the unitary matrix K diagonalizing
the autocorrelation matrix R of the M -fold blocked version
of the FB input x(n) in Fig. 1 (i.e such that KRKy is diag-
onal). For the class Cuof all (unconstrained) M -channel or-
thonormal FB's, the PCFB can be constructed by a proce-
dure from [1]. It involves diagonalization of the psd matrix
Sxx(e

j!) (rather than R) and an ordering of the resulting
subband spectra at each frequency !. For both the classes
Ctand Cu, existence of the PCFB can basically be traced to
the fact that the vector of eigenvalues of a Hermitian ma-
trix majorizes the vector of its diagonal elements [9]. Thus
for these classes, PCFB's exist for all input spectra.

Existence of a PCFB for a class C implies a very strong
condition on the search{space S of all subband variance
vectors of the FB's in C. The convex hull co(S) has to be
a polytope whose corners are all permutations of a single
vector. It is possible to achieve this condition arti�cially by
de�ning the class C to consist of all FB's producing subband
variance vectors lying in such a polytope. The reason this
is arti�cial is because the resulting class C depends on the
input psd. Also, for very special input spectra it is possible
that PCFB's exist for many more FB classes too, eg. for
a white input, every FB in C is a PCFB, no matter what
the class C. However it is quite plausible (though it has not
been proved) that the only natural FB classes C for which
PCFB's exist for all input psd's are Ct, Cuand the 2-channel
classes.

The basic method of proving nonexistence of PCFB's
for a given class C is the following: If a PCFB exists, it
simultaneously optimizes over C, several functions of the
subband variances. Thus a PCFB will not exist if we can
�nd two such functions that no single FB in C can simul-
taneously optimize. This method is used in [7],[8] for cer-
tain classes of FIR FB's, for a �xed input psd. The two
functions used are the largest subband variance and the
coding gain, both maximized by a PCFB if it exists. How-
ever all optimizations are numerical in [7],[8]. For the DFT
and cosine{modulated classes, the functions we use are the
largest and the least subband variances. The de�nition (1)
of majorization shows that the PCFB maximizes the former
and minimizes the latter.

4. DFT AND COSINE-MODULATED CLASSES

De�nition. The class Cdft ofM -channel orthonormalDFT
FB's is the one with all FB's as in Fig. 1 where the anal-

ysis �lters are related by Hk(e
j!) = P (ej(!�

2�k
M

)) for some
�lter P (ej!) called the prototype. For example, any P (ej!)
which has an aliasfree(M) support and has constant mag-
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nitude on its support (and is thus Nyquist(M)) produces a
FB in Cdft .
De�nition. The class Ccmfb of M -channel orthonormal
cosine-modulated FB's (CMFB's) is the one containing
all FB's as in Fig. 1 where

Hl(e
j!) = P (ej(!�

l�

M
� �

2M
)) + P (ej(!+

l�

M
+ �

2M
)) (3)

for some �lter P (ej!) called the prototype. Any P (ej!) hav-
ing an aliasfree(2M) support and with constant magnitude
on its support, is a valid prototype.

Theorem 4: PCFB nonexistence for DFT class. There
are families of input psd's such that theM -channel FB class
Cdft de�ned above (M > 2) does not have a PCFB.

Proof : Fig. 2 shows an input psd, two valid proto-

types P (j)(ej!), and the zeroth analysis �lters H
(j)
0 (ej!) =

P (j)(ej!), j = 1; 2 in the DFT FB's corresponding to these
prototypes. The value of the input psd at any point in the

support of H
(1)
0 (ej!) exceeds its value at any point outside

this support. ThusH
(1)
0 (ej!) maximizes its output variance

among all Nyquist(M) �lters, i.e. it is the compaction �l-

ter [1] for the input psd. Since all �lters in any M -channel

orthonormal FB are Nyquist(M), the �lter H
(1)
0 (ej!) pro-

duces the maximum subband variance achievable by any

such FB, and hence by any FB in Cdft . Likewise, H
(2)
0 (ej!)

minimizes its output variance over all Nyquist(M) �lters.
Thus it yields the minimum subband variance achievable by
any orthonormal FB, and hence by any FB in Cdft . Now a
PCFB simultaneously maximizes the largest and minimizes
the least subband variance. Hence if a PCFB for Cdft exists,

it must contain both �lters H
(j)
0 (ej!), j = 1; 2. This is im-

possible because these �lters are not obtainable from each
other by shift of an integer multiple of 2�

M
, and hence a FB

containing both of them cannot be in the class Cdft .

Theorem 5: PCFB nonexistence for the cosine{
modulated class. There are families of input psd's such
that the M -channel FB class Ccmfb de�ned above (M > 2)
does not have a PCFB.

This is proved by exactly the same argument used for
the class Cdft (Theorem 4), for the input psd, prototypes

P (j)(ej!) and corresponding zeroth analysis �ltersH
(j)
0 (ej!),

j = 1; 2 shown in Fig. 3. The only di�erence is that we no

longer have H
(j)
0 (ej!) = P (j)(ej!). Also it takes more ef-

fort to show that no FB in Ccmfb can contain both �lters
H

(j)
0 (ej!), j = 1; 2. We do this by showing the following

stronger result:

Result. A CMFB having H
(1)
0 (ej!) of Fig. 3 as one of its

�lters is necessarily the CMFB produced by P (1)(ej!) of
Fig. 3 as prototype.

Proof : De�ne Q(ej!) = P (ej(!�
�

2M
)). Then from (3),

the l-th �lter (0 � l �M � 1) becomes

Hl(e
j!) = Q(ej(!�

l�

M
)) +Q(ej(!+

(l+1)�
M

)) (4)

Now suppose the k-th �lter is the ideal brickwall lowpass
�lter supported on [� �

M
; �
M
], i.e.

Hk(e
j!) = B(ej!)

4
=

�
s for ! 2 [� �

M
; �
M
]

0 for ! 2 [��; �]n[� �
M
; �
M
]

(5)

The problem is to examine the nature of the other �lters
Hl(e

j!), l 6= k. We do this by breaking the frequency band
[��; �] into contiguous bands of length �

M
. We will show

that solutions Q(ej!) satisfying (5) are in�nite in number.1

If 0 < k < M � 1, none of these Q(ej!) are valid CMFB

prototypes. If k = 0 or k = M � 1, all of them are valid,
and all generate the same CMFB.

To begin, note from (5) that 2k+1 and M are coprime.
To see this, equate the Fourier series coe�cients of both
sides of (5), using (4) for the left side. With qn denoting
the Fourier series of Q(ej!), this yields

qne
j k�n
M

�
1 + e

�j
(2k+1)�n

M

�
=

sin(n�
M
)

n�
(6)

Suppose 2k + 1 = n1g and M = n2g for positive integers
n1; n2; g. Then n1 is odd, and the left side of (6) is zero for
n = n2. But the right side is zero only if n is a nonzero
multiple of M . Hence n2 is a multiple of M , and so g = 1,
i.e. 2k + 1 and M have no common factor. Next, de�ne

Ai(e
j!) =

�
Q(ej(!+

i�

M
)) for ! 2 [0; �

M
]

0 for ! 2 [��; �]n[0; �
M
]

(7)

Observe Ai = Ai+2M for all integers i. Also, the Ai fully
determine the �lters Hl(e

j!), i.e. for 0 � l �M � 1,

Ai�l(e
j!) + Ai+l+1(e

j!) = Hl(e
j(!+ i�

M
)); ! 2 [0;

�

M
] (8)

We now use the known Hk(e
j!) of (5) to attempt to solve

for the Ai. Indeed, de�ning

C(ej!) =

�
s for ! 2 [0; �

M
]

0 for ! 2 [��; �]n[0; �
M
]

(9)

we see using (8) that (5) is equivalent to

Ai�k + Ai+k+1 =

�
C for i 2 f0; 1g (mod 2M)
0 for all other i

(10)

where we have dropped the argument ej! for convenience.
Initializing i = 0 and A�k = A+C, we can solve the above
system to �nd all Ai uniquely in terms of A and C. We
do this by recursively writing Ai+k+1 in terms of Ai�k and
incrementing i by 2k + 1. The values are assigned in the
sequence

(A�k = A+ C); �A;+A;�A; : : : ; (A�1�k = �A);

A+ C; �A� C;A+ C; : : : ; (A�k = A+ C):(11)

Since 2k + 1 and M are coprime, this process yields all Ai

and they satisfy (10) for all i. Since 2k + 1 is odd,

Ai 2

�
fA;A+ Cg for i = �k mod 2

f�A;�A� Cg for i = �1� k mod 2
(12)

Hence from (8) we see that the Hl(e
j!) are in fact brickwall

�lters that are una�ected by A, and further

Hl(e
j!) = �

l
i 2 f0;+s;�sg for ! 2 [

i�

M
;
(i+ 1)�

M
] (13)

1Nonuniqueness of Q(ej!) is easily seen: The �lters Hl(e
j!)

of (4) do not c hangeif Q(ej!) is replaced by Q(ej!)+Q0(ej!M )

for any Q0(ej!) satisfying Q0(ej!) +Q0(ej(!��)) = 0.
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Also, summing (10) over i shows that
P2M�1

i=0
Ai = C,

hence from (8) we see that
P2M�1

i=0
�li = 2s. Thus if �li = �s

for some i, then the total support of Hl(e
j!) exceeds 2�

M
,��Hl(e

j!)
��2 is not Nyquist(M) and hence Hl(e

j!) cannot be
a �lter in an orthonormal FB. So for the prototype to be
valid, the Ai must be such that �li 6= �s for all i; l.

Now suppose Ai1 = �A � C, Ai2 = A for 0 � i1; i2 �
2M � 1. Then from (12), ji1 � i2j is odd, so it equals 2l+1
for some integer l such that 0 � l � M � 1. Then (8),(13)
show that �lmin(i1;i2)+l

= �s. So either Ai 6= �A � C for
all i, or Ai1 = �A � C and Ai 6= A for all i. From the
sequence (11), the former happens if and only if (�1�k)+
(2k+1) = �k mod 2M , i.e. k = 0, while the latter happens
i� (�k) + (2k + 1) = �1� k mod 2M , i.e. k = M � 1. We
have already seen that A does not a�ect the �lters Hl(e

j!).
Now if k = 0, we take A = 0 in (11) and get A0 = C;A1 =
: : : = A2M�1 = 0, which by de�nition (7) of Ai means
that Q(ej!) = C(ej!). On the other hand if k = M � 1,
we take A = �C and get AM = C;A0 = : : : = AM�1 =
AM+1 = : : : = A2M�1 = 0, which means that Q(ej!) =

C(ej(!��)). Both these c hoices of Q(ej!) generate in two
di�erent orders, the same set of �lters Hl(e

j!).

5. CONCLUDING REMARKS

We have shown that the M -channel (M > 2) DFT and
cosine-modulated FB classes do not have PCFB's for a large
family of input spectra. The result is proved by choosing
the spectra such that no single FB in the class can simulta-
neously maximize its largest and minimize its least subband
variance. Unlike earlier proofs of PCFB nonexistence, this
does not need any numerical optimizations. The nonexis-
tence of PCFB for a class of FB's implies that no single FB
in the class can simultaneously minimize all concave ob-
jectives. It also means that �nding the optimum FB in the
class for a given concave objective is likely to be analytically
intractable.
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