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Abstract.1 Discrete multitone modulation is an at-
tractive method for communication over a non flat
channel with possibly colored noise. The uniform DFT
filter bank and cosine modulated filter bank have in the
past been used in this system because of low complex-
ity. We show in this paper that principal component
filter banks, which are known to be optimal for data
compression and denoising applications, are also opti-
mal for a number of criteria in DMT communication.

1. INTRODUCTION
Figure 1 shows a maximally decimated analysis/syn-
thesis system traditionally used in subband coding and
more recently in signal denoising (all notations are as in
[18]). A dual of this system called the transmultiplexer
circuit is shown in Fig. 2. This is commonly used for
conversion between time domain and frequency domain
multiplexing. More recently this system has found ap-
plication in the digital implementation of multicarrier
systems, more popularly known as the DMT (discrete
multitone) modulation systems. In this paper we will
primarily be concerned with this application. Either
of the systems shown in the two figures is said to be a
biorthogonal system if the filters are such that

Hk(ejω)Fm(ejω)
∣∣∣
↓M

= δ(k −m)

This is equivalent to the perfect reconstruction prop-
erty, that is, x̂(n) = x(n) for all n in Fig. 1, and

yk(n) = xk(n)

for all k, n in Fig. 2. The set of M filters {Fk(z)}
is said to be orthonormal if Fk(ejω)F ∗

m(ejω)|↓M =
δ(k −m) (equivalently the polyphase matrix is parau-
nitary [18]). In this case biorthogonality or perfect
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reconstruction is achieved by the choosing Hk(ejω) =
F ∗

k (ejω).
The use of filter bank theory in the optimization of

DMT systems has been of some interest in the past
[10], [11]. In this paper we will show using the results
of [3] that the principal component filter bank, which is
known to be optimal for several problems involving the
subband coder, will also be optimal in many respects
for the DMT communications system.
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Figure 1. The subband coder system.
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Figure 2. The digital transmultiplexer.

2. PRINCIPAL COMPONENT FILTER BANKS

The optimality of principal component filter banks
(PCFBs) in the context of progressive transmission and
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subband coding was observed to various degrees by a
number of authors [2,12,15,17, 19]. To define a PCFB
first consider two sets of M nonnegative numbers {an}
and {bn}. We say that {an} majorizes {bn} if, after
reordering such that an ≥ an+1 and bn ≥ bn+1, we
have

P∑
n=0

an ≥
P∑

n=0

bn

for 0 ≤ P ≤ M − 1, with equality for P = M − 1.
Thus all the partial sums in {an} dominate those in
{bn}. Consider a given class C of M -band uniform or-
thonormal filter banks. This class can be the class Ctc

of transform coders (filter lengths ≤ M), or the class
Cideal of ideal filter banks (filters allowed to have in-
finite order, like brickwall filters). Or it could be a
practically attractive class like the FIR class Cfir with
filter orders bounded by a fixed integer, or the cosine
modulated class Ccmfb. Given such a class C and an in-
put power spectrum Sxx(ejω) we say that a filter bank
F in C is a principal component filter bank or PCFB
if the set {p2k} of its subband variances (i.e., variances
σ2

vk
of the signals vk(n) in Fig. 1) majorizes the set

{q2k} of subband variances of all other filter banks in
the class. That is, with p2n ≥ p2n+1 and q2n ≥ q2n+1,

p20 ≥ q20 , p20 + p21 ≥ q20 + q21 , . . .

and so forth. The equality
∑M−1

k=0 p
2
k =

∑M−1
k=0 q

2
k fol-

lows automatically from orthonormality.
The advantage of PCFBs is that they are optimal for

several problems. This includes subband coding with
arbitrary (not necessarily high) bit rates, the denois-
ing problem, and so forth, as elaborated in [3]. These
arise from the result (proved in [3]) that any concave
function φ of the subband variance vector

v = [σ2
v0

σ2
v1

. . . σ2
vM−1

]T

is minimized by a PCFB when one exists. Using this we
show in this paper that PCFBs also serve as optimal so-
lutions to certain problems in communication systems
which use DMT modulation. It possible that PCFBs
do not exist for certain classes but when they exist,
they have the stated optimality. Whenever we say that
the PCFB is optimal for a problem, the implicit as-
sumption is that the class of filter banks searched is
such that a PCFB exists.

For the transform coder class Ctc, theM×M KLT of
the input serves as the PCFB. For the ideal filter bank
class Cideal, there is a systematic method to construct
a PCFB by designing a sequence of compaction filters
[19]. For example the filter bank in Fig. 3(b) is a
PCFB for the power spectrum in Fig. 3(a).
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Figure 3. A power spectrum and its PCFB (M = 4).

3. THE DMT COMMUNICATION SYSTEM

Figure 4 shows the essentials of discrete multitone com-
munication. Background material on the DMT system
and more generally on the use of digital filter banks in
communications can be found in [1,4,5,7,8,16].
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Figure 4. The discrete multitone communication system.

Briefly, here is how the system works: the signals xk(n)
are bk-bit symbols obtained from a PAM or QAM
constellation [13]. Together these signals represent∑

k bk = b bits, and are obtained from a b-bit block
of a binary data stream [4]. The symbols xk(n) are
then interpolated M -fold by the filters Fk(z). Typi-
cally the filters {Fk(ejω)} constitute an orthonormal
filter bank and their passbands cover different uniform
regions of digital frequency 0 ≤ ω ≤ 2π. The outputs
of Fk(z) can be regarded as modulated versions of the
symbols. These are packed into M adjacent frequency
bands (passbands of the filters) and added to obtain
the composite signal x(n). This is then sent through
the channel which is represented by a transfer func-
tion C(z) and additive Gaussian noise e(n) with power
spectrum See(ejω). In actual practice the channel is a
continuous-time system preceded by D/A conversion
and followed by A/D conversion. We have replaced
this with discrete equivalents C(z) and e(n).

The received signal y(n) is a distorted and noisy
version of x(n). The receiving filter bank {Hk(z)} sep-
arates this signal into the components yk(n) which are
distorted and noisy versions of the symbols xk(n). The
task at this point is to correctly detect the value of
xk(n) from yk(n). There is a probability of error in
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this detection which depends on the signal and noise
levels.

If the filter bank {Fk, Hm} is biorthogonal then we
have the perfect reconstruction property yk(n) = xk(n)
in absence of channel imperfections (i.e., assuming
C(z) = 1 and e(n) = 0). In practice we cannot assume
this. We will assume that {Fk, Hm} is biorthogonal (in
fact orthonormal, see below) and that the receiving fil-
ters are

Hk(z)/C(z)

instead ofHk(z), so that C(z) is compensated or equal-
ized completely.

4. OPTIMAL DMT SYSTEMS

For simplicity we assume that xk(n) are PAM symbols
[13]. Assuming that xk(n) is a random variable with
2bk equiprobable levels, its variance represents the av-
erage power Pk in the symbol xk(n). The Gaussain
channel noise e(n) is filtered through Hk(z)/C(z) and
decimated by M. For the purpose of variance calcu-
lation, the model for the noise qk(n) at the detector
input can therefore be taken as in Fig. 5. Let σ2

qk
be

the variance of qk(n). Then the probability of error in
detecting the symbol xk(n) is [13]

Pe(k) = 2(1 − 2−bk)Q
(√

3Pk

(22bk − 1)σ2
qk

)
(1)

where Q(v)∆=
∫ ∞

v
e−u2/2du/

√
2π (area of the normal-

ized Gaussian tail).

4.1. Minimizing Transmitted Power
Since the Q-function can be inverted for any nonnega-
tive argument, we can invert (1) to obtain

Pk = βk

(
Pe(k), bk

)
× σ2

qk
(2)

where the exact nature of the function βk(., .) is not
of immediate interest. This expression says that if the
probability of error has to be Pe(k) or less at the bit
rate bk, then the power in xk(n) has to be at least as
large as Pk. The total transmitted power is therefore

P =
M−1∑
k=0

Pk =
M−1∑
k=0

βk

(
Pe(k), bk

)
× σ2

qk
(3)

Let us assume that the bit rates bk and probabilites of
error Pe(k) are fixed. For this desired combination of
{bk} and {Pk}, the total power required depends on
the distribution of noise variances {σ2

qk
}.

From Eq. (2) we see that the power Pk in the kth
band is a linear (hence concave) function of σ2

qk
. The

total transmitted power P is therefore a concave func-
tion of the noise variance vector

[σ2
q0

σ2
q1

. . . σ2
qM−1

]T (4)

From Fig. 5 we see that this is the vector of subband
variances for the orthonormal filter bank {Hk(ejω)}
in response to the power spectrum See(ejω)/|C(ejω)|2.
Recalling the discussion of PCFB from Sec. 2 we now
see that the orthonormal filter bank {Hk(ejω)} which
minimizes total power for fixed error probabilities and
bit rates is indeed a PCFB for the power spectrum

See(ejω)/|C(ejω)|2

(for whatever class C is under consideration). Hav-
ing identified this PCFB, the variances σ2

qk
are readily

computed, from which the powers Pk for fixed bit rate
bk and error probabilty Pe(k) can be found (using (2)),
and the minimized power P calculated.
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Figure 5. A model for noise at detector input.

4.2. Maximizing Total Bit Rate
Returning to the error probability expression (1) let
us now invert it to obtain a formula for the bit rate
bk. This is tricky because of the way bk occurs in two
places. The factor (1−2−bk) however is a weak function
of bk in the sense that it varies from 0.5 to 1 as bk
changes from one to infinity. So we will replace (1 −
2−bk) with unity. Then Eq. (1) yields

bk = 0.5 log2

(
1 +

3
[Q−1(Pe(k)/2)]2

Pk

σ2
qk

)

so the total bit rate is

b = 0.5
M−1∑
k=0

log2

(
1 +

3
[Q−1(Pe(k)/2)]2

Pk

σ2
qk

)
(5)

This is the bit rate achieved by the DMT system
without channel coding, for fixed error probabilities
{Pe(k)} and powers {Pk}. Since function

log2(1 +
a

x
)

is convex in x (for a, x > 0), the total bit rate is con-
vex in the variance vector (4). Thus the orthonor-
mal filter bank {Hk(ejω)} which maximizes bit rate for
fixed error probabilities and powers is again a PCFB
for the same power spectrum See(ejω)/|C(ejω)|2 as be-
fore. This is very appealing since the maximization of

3
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bit rate and minimization of total power are consisent
goals.

The preceding result is true regardless of how the to-
tal power P =

∑
k Pk is allocated among the bands. In

particular we can perform optimum power allocation.
We have

b = 0.5
M−1∑
k=0

log2

(
1 +

Pk

Nk

)

where Nk = σ2
qk

[Q−1(Pe(k)/2)]2/3. The optimization
of {Pk} for fixed total power P =

∑
k Pk is a stan-

dard problem in information theory [6]. The solution
is given by the water pouring rule, described as

Pk =
{
λ−Nk if this is nonegative,
0 otherwise.

(6)

where λ is chosen to meet the power constraint. See
Fig. 6. This power allocation is optimal regardless of
the exact choice of the filter bank {Hk(z)}. In particu-
lar if {Hk(z)} is chosen as the optimal PCFB and then
power is allocated as above, it provides the maximum
possible DMT bit rate b for fixed total power and fixed
set of error probabilities.

N0

N1

N2

N3

P0 P1

P  = 02

P3

λ

Figure 6. Optimal power allocation by water pouring.

5. CONCLUDING REMARKS

DMT systems based on fixed filter banks such as the
DFT or cosine modulated filter banks [5, 14] are at-
tractive because of the efficiency with which they can
be implemented. A PCFB solution in general may not
lead to such an efficient implementation, even though
it is optimal from a performance point of view. The
PCFB system serves as a useful bound for performance
comparisons for fixed number of bandsM . Such a com-
parison appears to be the next logical step for future
work. If the performance gap between a practical sys-
tem and the PCFB solution is small in a particular
application, this gives the assurance that we are not
very far from optimality.
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