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ABSTRACT

In multirate processing, it is often necessary to understand

howthestatistical properties of signals (such as stationar-

ity) arealtered bypassage through MultiMate systems. Some

of these issues have been addressed in [1]. For example, it

is shown in [1] that a necessary and sufficient condition for

the output of an L-fold interpolation filter to be wide sense

stationary (WSS) for all WSS inputs, is that the filter have

analiasfree(L) support. However this result was established

using conventional tools such aspolyphase matrices, which

resulted in a convoluted derivation which does not provide

much insight. It also leaves many questions unanswered,

since it does not generalize easily to the case of systems

with vector inputs. This paper shows that problems of this

nature can be addressed in an elegant and insightful manner

by using bifrequency maps [2],[3], and bispectra [4]. In

particular, we give a simpler proof of the above-mentioned

result of [1], and generalize it to the case of vector systems.

1. INTRODUCTION

Consider the L-fold scalar interpolation filter shown in Fig. 1

For this system, [1] derives a necessary and sufficient con-

dition for the output to be wide sense stationary (WSS)

for all WSS inputs. The condition is that the filter ilf(e~ti )

have aliasfree(L) support. The derivation of this result was

based on the fact that a scalar random process is WSS iff its

blocked version is WSS with pseudocirculant power spectral

density (psd) matrix. The use of pseudocirculants however

results in very implicit conditions on the system. Trans-

forming them into the explicit aliasfree(L) condition is la-

borious, and does not provide much insight. Further, it

becomes extremely difficult to generalize this approach to

the case of multi-input multi-output (MIMO) systems with

vector random process inputs.

This paper shows that problems of this nature can be

solved very elegently and in a geometrically insightful way
using bifrequency maps [2] ,[3] and bispectra [4]. These

are two-dimensional Fourier transforms that characterize all

linear time-varying (LTV) systems and nonstationary ran-

dom processes respectively. Though these tools have been

known in the literature, they have not often been used for

analysis of multirate systems, being very general. However

they greatly simplify the analysis in the context of problems
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of the kind mentioned above. We provide a much simplified

derivation of the above-mentioned aliaafree(L) condition,

and extend it to the MIMO case shown in Fig. 2.

2. BIFREQUENCIES AND BISPECTRA

2.1. Bifrequencies and LPTV systems

A MIMO LTV system [2] with input x(n) and output y(n)

is fully specified by the time-domain input-output relation

w w

y(?7t) = ~ k(m, TJ)X(?I) = ~ h(m, ?l)X(7TZ – n) (1)

V,=-.XI n.—m

Here k(m, n) is called the Green’s function, and is perfectly

general; while h(rn, n) is the time-varying impulse response,

useful only if the input and output rates are equal [2]. These

are related as h(m, n)=k(m, m – n). The bifrequency func-

tion of the LTV system is the 2D Fourier transform of the

Green’s function, i.e.

Coca

K(e~”’, e~”) = ~ ~ ~ k(m, n)e-~”’me~wn (2)

m.—’x %.-CO

The LTV system is said to be LPTV(L) (linear periodically

time-varying with period L) if h(m, n) is periodic in m with

period L for each n. Such a system can be shown [5, chap-

ter 10] to be equivalent to a uniform L-channel maximally

decimated filter-bank. For such a system, the bifrequency

function can be shown [6] to consist of a set of parallel

impulsive lines, as illustrated by Fig. 3a. The q-th line is

the line u’ – w = 2mq/L. The shape of the impulse along

this line is given by a transfer function denoted by Fq (e~ti ),

which has a periodicity of L in q. For q = O, 1,...,L – 1

we have Fq (e~” ) = A* (e~ti ) where Ag (e~w ) are the alias-

ing gains [5, chapter 5] of the filter-bank, that describe the
input output relation according to

L–1

Y(e~”) = ~ AQ(e~”)X(e~(w- ~)) (3)

*=O

Bifrequency maps have been used in [2] to elegantly ex-

plain the action of decimators and expanders on determin-
istic inputs. This paper shows that the same can be done

with stochastic inputs (not considered in [2]), which leads

to results that would be otherwise hard to see.
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2.2. Bispectra and CWSS processes

The autocorrelation matrix r~ (m, n) and bispectrum ma-

trix SX (e~””, e~w) of a nonstationary vector process x(n)

are defined asl

rx (m, n) = E[x(m)xt(n)] (4)

SX(e~@’, e~”) = + ~ ~ X’X(m,n)e-’@’~e’”” (5)
m.—ca n.—m

Bispectra have been studied in [4], [9] where some of their

properties have been stated for the case of continuous-time

scalar processes. These hold for the bispectrum S. (e~ti’, e~” )

of discrete-time scalar random processes too. For example,

‘ j“ ) may not be real in general, Sz (ejU, e~” )while Sj (e~w , e

is real and non-negative for all real u. More generally for

vector processes, !% (e~’”, e~w) is Hermitian positive semidef-

inite for all real u. Analogous to the case of LPTV(L) sys-

tems, a CWSS(L) (cycle-wide-sense stationary with period

L) process x(n) is one for which E[x(m)xt (m. – n)] is peri-

odic in m with period L for each n. Its bispectrum matrix

consists of a set of parallel impulsive lines as in Fig. 3a. The

explicit expressions for the bispectrum are

where px (;, T)= E[x(i)xt (r)] and

The function describing the shape of the im ulse along the
ej(w-(%~/~fi). Note thatq-th line is P% (e~~ ) = PX (e~W,

P~(eJW) = P~+L (e~’”) for all integers q. Here P~(e~W ) is

Hermitian positive-semidefinite for all real w. In the WSS

case, L = 1 and this quantity equals the conventional psd

matrix of the WSS process. Thus the bispectrum matrix of

a WSS process x(n) with psd matrix S(e~W) has a plot as

shown in Fig. 3b, and is given by

m

Sx(ejw’, e~w)= S(e3w) ~ d(w – w’ + 2nq) (9)

*=–m

If ever a vector process x(n) has a bispectrum matrix given

by (6) then it is necessarily C WSS(L). Similarly, for any

SX (e~ti’, ejti ) given by (9) for Hermitian positive semidefi-

nite S(eJW) one can find a WSS process x(n) with S(e~’”)

as the psd matrix, and hence with SX (eJ”, ejw ) as the bis-

pectrum matrix.

1The term bispectrum has also been used in the literature [7]
to refer to third order statistics of random processes, however our
definition is completely different from this usage. Our definition
is similar but not identical to that of the cyclic suectrum used

2.3. Action of linear systems on Bispectra

It is well known that passing a WSS vector x(n) with psd

matrix SX (eJW) through an LTI system with frequency re-

sponse H(e~W ), gives a WSS vector y(n) with psd matrix

SY(ejU) = H(eJW)SX(e~w)H+ (e~’”) (lo)

Thus the output psd matrix is the transfer function of the

cascade shown in Fig. 4 where each box is an LTI system

with transfer function written within. Similarly, passing an

arbitrary random vector process x(n) with bispectrum ma-

trix S~ (e~”’, e~W) through an LTV system with bifrequency

function K(e~”, e~~ ) givesa vector y(n) which is in gen-

eraf nonstationary. The bispectrum matrix SY (eJU’, e~ti ) of

y(n) is the bifrequency function of the cascade shown in

Fig. 5, where each box is an LTV system with bifrequency

function written within. This is shown in [9] for continuous-

time scalar systems, and can be proved for the present case

in a similar way. Here in particulzu if the LTV system is

LTI with transfer matrix H(e~@) then

Sy(e~w’, e~’”) = H(e~w’)Sx(e~o’, e~’’’)H+(ejw) (11)

This can be proved independently or by specializing the

general result for LTV systems to the LTI case.

3. VECTOR INTERPOLATION FILTERS

This section states and proves one of the main results of the

paper. We first define MIMO aliasfree(L) transfer matrices.

Recall that an aliasfree(L) set of frequencies is a set S such

that no two points u and w’ satisfying w – w’ = (2rq/L) can

simultaneously belong to S, if q is any integer not a mul-

tiple of L. A scalar LTI system is said to be aliasfree(L)

(or anti-aliasing(L)) if its transfer function is supported on
an aliasfree(L) set. The output of such a system can be

decimated by L without causing aliasing overlap in the fre-

quency domain.

Definition. The transfer matrix H(eJ@ ) of a MIMO

LTI system is said to have an aliasfree(L) support, and the

system is said to be MIMO aliasfree(L), if it satisfies the

following property: If w – w’ = (2nq/L) where q is any

integer not a multiple of L, then at least one of the two

matrices H(e~ W) and H (e~”’ ) is zero. This is equivalent to

the statement that there exists an aliasfree(L) set S such

that each of the scalar transfer functions within the matrix

H(e~W ) has support contained in S.

3.1. Statement and Discussion of the Result

Theorem la. The vector interpolation filter shown

in Fig. 2 has a WSS output y(n) for all WSS input x(n) if

and only if the LTI system H(ej” ) is MIMO aliasfree(L).

Under this condition the psd matrices SX(e~W) and SY (e~’” )

of x(n) and y(n) respectively, are related as

Sy(e~u) = ~H(ejw)S~(e~uL) Ht(ej’”) (12)

Theorem lb. In Fig. 2, if the expanders are removed,

the output y(n) is WSS for all CWSS(L) v(n) if and only
. .

in [8],
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if H(e~w ) is MIMO aliasfree(L). In other words, a MIMO

LTI system produces WSS outputs for all CWSS(L) inputs

if and only if it is MIMO aliasfree(L).

Note that the definition of MIMO aliasfree transfer ma-

trices, when applied to scalar systems, yields the usual defi-

nit ion of a system with aliasfree support. Thus the aliasfree

condition derived in Theorem 4.1 of [I] is a special case of

Theorem la for the case of scalar systems as in Fig. 1. The

condition in Theorem la is clearly necessary for Theorem lb

because the vector process v(n) in Fig. 2 can be shown to be

CWSS(L) for any WSS input x(n). However if v(n) is an

arbitraxy C WSS (L) vector process, then it cannot always

be created by L-fold upsampling of a WSS process x(n);

and then it is not obvious whether the condition of Theo-

rem la would still ensure that the output y(n) is WSS. The

strength of Theorem lb is that it tells that this is indeed

sufficient. Thk result is not stated in any form in [1].

The main idea in the proof of the result is that the

system out put is in general C WSS (L), with an impulsive

bispectrum as in Fig. 3a. The impulse functions on the lines

have shapes that depend on the transfer matrix H(e~” ) in

a way that can be calculated. We now impose that the

output be WSS. This is thus equivalent to choosing H(e~W )

so that the unwanted impulse-lines (i.e. the lines w’ – u =

2xq/L, q=l,2,..., L – 1) are suppressed, and the output

bispectrum looks as in Fig. 3b. The proof will show that

this translates almost immediately into a condkion on the

support of H(e~U ), in contrast to the approach of [1] which

is much more laborious.

3.2. Proof of Theorem la

We can verify from the definitions, that L-fold upsampling

of a process causes its bispectrum to be upsampled by L

in each ‘frequency’ variable. From this observation and us-

ing (II.), we can compute t he bispectrum matrix SY (e~W’, e~W)

of the output in Fig. 2, to be

~H(e~’’’’)SX(e~ W~)Ht(e~O)p~(u – w’), (13)

where SX (e~ti ) is the conventional psd matrix of x(n). Here

we have used (9) for the input bispectrum, and have also

used the scaling property of the 6(.) function. Now (6)

shows that y(n) is CWSS(L), and will be WSS if and only

if the following is true:

H(e~W’)SX(e~WL) H+(e~w) = O if w’ – w = 2~q/L, (14)

for all q E B where B is the set of integers that are not

multiples of L. (The system H(eJ W) must suppress the

unwanted impulse-lines in the CWSS bispectrum). Con-

sider the special, case of Fig. 1 where H(e~@) = H(eiW ) and

SX (e~” ) = S%(e~” ) are scalars. This is the case addressed

in [1]. Here (14) becomes

H(e~’’’’)&(e~W~)Ht (e~ti) = O if w’ – u = 2mq/L, (15)

for all q 6 B. If the output y(n) is to be WSS for all WSS

inputs r(n), then it is necessary and sufficient that (15)
holds for every positive Sm(e~”~). (The necessity is because,

as is well known, given any positive transfer function S(e~W )

we can find a WSS scalar random process with S(e~” ) as

the psd matrix.) Clearly this is the same as saying that

whenever w’ – w = 2mq/L for any integer q not a multiple

of L, then of lf(e~”’ ) and H(e~”) at least one is zero. This

is nothing but the statement that the LTI system H(e~’” )

has an aliasfree(L) support. This proves the scalar result

(Theorem 4.1 of [1]).

For the more general vector case of Fig. 2, y(n) is WSS

for all x(n) if and only if (14) holds for every Hermitian

positive semidefinite matrix SX (eJ ‘L ). (Again, given any

Hermitian positive semidefinite matrix A one can find a ma-

trix B such that A = BBt; so by (10), if e(n) is a process

with white uncorrelated scalar components, we can form the

process x(n)=Be(n) which has psd matrix SX(e~w) = A).

From the definition it is clear that if H(eJW ) is MIMO

aliasfree(L) then (14) is indeed satisfied for every SX (e~ti~ ).

The converse is proved by contradiction, first for the case

when H(e~” ) is a row vector : Let w’ – w = 2nq/L, q G B.

Choosing !%(ej’” ) = I shows that H(e~W), H(e~W’ ) are or-

thogonal. But if they are both nonzero, we can easily find

a linear transform matrix B that transforms them into two

non-orthogonal vectors. Choosing Sx (e~‘“ ) = BBt now fur-

nishes the contradiction to the assumption that they are

both nonzero. This can then be used to prove by contradic-

tion the statement for the general case when H(e~W ) is of

arbitrary size. This gives the converse statement. Finally,

under the MIMO aliasfree(L) condition, since the output

y(n) is WSS, its bispectrum (13) takes the form of (9).

Comparing these equations shows that the output psd is

indeed given by (12) as claimed. This concludes the proof

of Theorem la. v v v

3.3. Proof of Theorem lb

As explained in Section 3.1, we just need to show that the

MIMO aliasfree(L) property of H(e~” ) implies that y(n) is

WSS for all CWSS(L) v(n) in Fig. 2. If v(n) is CWSS(L),

the form of its bispectrum S“ (e~ti’, e~w) is given by (6), and

using (11), the output bispectrum has the form

SY(e~@’, e~w) = H(e~W’)PV(e~U’, e~’’’)Ht (e~”)p~(w – w’)
(16)

Comparison with (6) shows that y(n) is indeed CWSS(L).

The MIMO aliasfree(L) condition immediately implies that

the function on the q-th line of the bispectrum of y(n), i.e.

H(e~W)PV(e~W, e )
j(w–2rg/L) Ht(eJ(kJ-2ml/L))

>

is zero unless q is a multiple of L. Hence (16) takes the

form of (9), i.e. y(n) is WSS as claimed. v v v

4. OTHER RESULTS AND CONCLUSION

Looking at the bispectra allows us to find an explicit condi-

tion for the output of a scalar LPTV(L) system to be WSS

for all WSS inputs. This is obtained by applying the rule

described by Fig. 5 to LPTV systems in order to find the

output bispectrum. As explained eadier, we then impose

the condition that the unwanted impulse-lines in the bis-

pectrum be suppressed. This gives rise to a condition in
terms of the aliasing gains Ag (eJ w ) of the system:

Ai(e3(w+ +))A, (e ) _* ~W — 0 whenever i # r, (17)
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foralli, r6 {0,1,..., L – 1}. Thk can be verified to hold if

the LPTV(L) system is in particular an exponential mod-

ulator or a LTI system, for which the result is known to be

true [1]. It also leads to the following result :

Theorem 2. A rational LPTV(L) scalar system pro-

duces WSS outputs for all WSS inputs if and only if it is

either a rational LTI system or an exponential LPTV(L)

modulator or a cascade of these.

These results can be applied to other systems such as princi-

pal component reconstructions. Details can be found in [10].

We have thus shown that some problems involving mul-

tirate systems with stochastic inputs can be easily and ele-

gantly solved by looking at the output bispectra. The main

advantage is the geometric insight obtained when CWSS

processes are involved, which gives a neat representation of

the bispectra in terms of impulsive lines.
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Fig. 1. Scalar interpolation filter -
a special case of Fig. 2.
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Fig. 2. A general vector interpolation filter.
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Fig. 3. Impulsive lines in LPTV(L) bifrequencies

and CWSS(L) bispectra.
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Fig. 4. Schematic explanation of the effect

of an LTI system on the psd matrix.
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Fig. 5. Schematic explanation of the effect

of an LTV system on the bispectrum matrix.
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