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ABSTRACT 
The problem of optimization of subband coders for given in- 
put statistics has received considerable attention in recent 
literature. The goal in these works has been to maximize 
the coding gain, which is a compression performance mea- 
sure under the standard quantizer noise models for high 
bit-rates. The optimal filter bank (FB) for this problem 
has been observed to be a principal component filter bunk 
(PCFB) for the class of FB’s over which the optimization 
is performed. The purpose of this paper is to point out a 
stronger connection between optimality of the FB and the 
principal component property, which appears to have been 
overlooked in the literature. We show that PCFB’s are also 
optimal for a variety of other signal processing schemes such 
as noise suppression by using hard-thresholding or zeroth 
order Wiener filtering in the subbands. 

1. INTRODUCTION 

Suppose a filter bank (FB) is being used to analyze a signal 
into subbands, and then reconstruct it after some kind of 
processing of the subbands, as shown in Fig. 1. This pa- 
per is concerned with the problem of finding the best 
FB among a class C of uniform orthonormal A& 
channel FB’s, for a particular kind of processing. We as- 
sume that the FB input z(n) is modelled by realizations of a 
CWSS(M) ( wi ‘d e sense cyclostationary with period M) ran- 
dom process (which could be wide sense stationary (WSS) 
in particular). To explain our usage of the term ‘best FB’, 
consider the situation where the FB is used for data com- 
pression, and so the processors pi in Fig. 1 are quantizers. 
Under the standard high bit-rate quantization noise mod- 
els and assuming optimal bit allocation among the subband 
quantizers, minimizing the mean-square reconstruction er- 
ror is equivalent to minimizing the product of the variances 
of the subband signals [l]. Thus, for this situation, the 
best FB is the one that minimizes this product of subband 
variances. 

When the class C consists of all M-channel orthogonal 
transform coders, the optimum FB in C for the above situ- 

(4 ation is the KLT [2]. It produces subband signals zti (n) in 
Fig. 1 such that the vector process (‘up), 2rix), . . . , ~g’_,>’ 
has a diagonal autocorrelation matrix. When C is the class 
of all (unconstrained) M-channel orthonormal FB’s, the op- 
timum FB has been obtained in [l]. It produces a vector 
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process (vO (4) 21(x) ,z$‘_,>’ (see Fig. 1) that has a di- 
agonal power-spectrum (psd) matrix, with the diagonal el- 
ements (i.e. the subband spectra) ordered according to a 
condition referred to as spectral majorization [l]. In both 
these cases, the optimum FB turns out to be a principal 
component fiEter bunk (PCFB) for the class C. PCFB’s were 
first propounded in [3], and are defined in Section 3. 

There is a stronger connection between optimality of 
the FB and the principal component property. This con- 
nection, which we believe is the precise reason for the op- 
timality of PCFB’s, does not seem to have been observed 
in the literature. The main result is that the PCFB is op- 
timal whenever the objective to be minimized is a concave 
function of the subband variances produced by the FB. In 
the above-mentioned coding problem, the objective was the 
product of the subband variances. Minimizing it is equiva- 
lent to minimizing its logarithm, which is a concave function 
of the subband variances. Thus, the PCFB is optimal. The 
subsequent sections elaborate on this result, and illustrate 
various other FB based signal processing schemes for which 
the FB optimization involves minimizing a concave func- 
tion of the subband variances. For example, this happens 
in the noise suppression system where the FB input z(n) 
in Fig. 1 is a signal corrupted by zero mean additive white 
noise, and the processors pi are either zeroth order Wiener 
filters or hard-thresholders. Thus a PCFB is optimal for all 
these schemes as well. 

2. PROBLEM FORMULATION 

We are given a class C of M-channel orthonormal FB’s, 
and a set of M subband processors &, i = 0, 1, . . . , M - 1 

(numbered arbitrarily). A processor is simply a well-defined 
function that maps input sequences to output sequences. 
The specification of this function might be independent of 
any statistical properties that the input sequences are as- 
sumed to have; or on the other hand it might not. Examples 
of the former kind of processors are fixed LTI systems and 
memoryless squaring devices. Examples of the latter kind 
are Wiener filters and pdf-optimized quantizers. The signal 
processing system consists of a FB from C and the proces- 
sors pi used in its subbands as shown in Fig. 1. 

For this system, we define the subband variance vec- 
tor asv = (a&of ,..., a&-1 )T whose i-th entry is the vari- 
ance of the subband signal input to the processor Pi, for 
i = 0, 1, . . . , M - 1. It can be computed for each FB given 
the psd matrix of the M-fold blocked version of the scalar 
process z(n) input to the FB. The optimization search 
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space is defined as the set S consisting of all subband vari- 
ance vectors associated with all FB’s in the given class C. 
We do not assume any constraint as to which processor Pi 
to use in which subband of the FB. The set S is therefore 
‘permutation-symmetric’: If v is in S then all vectors ob- 
tained from v by permuting its entries are also in S. The 
problem at hand is to find the FB from C that minimizes 
an objective function that is well-defined on the class C. 
The assumption we make on this objective is that it can be 
fully evaluated at each FB in C given the variances of the 
subband signals that the FB produces, and the information 
as to which variance enters which processor Pi. Thus the 
objective can be represented by a real-valued function g de- 
fined on the search space S. This happens for a number of 
FB based signal processing schemes, as will be seen later. 

Notice that the objective need not be symmetric in its 
arguments, i.e. g could have different values at two different 
vectors in S which are permutations of each other. This 
usually happens because the subband processors Pi are not 
identical. To find the best FB, we find the vector vopt E S 
that minimizes g over S. The optimum FB is then identified 
as any FB in C whose subband variances are the entries in 
vopt, provided the subbands of this FB are coupled to the 
subband processors in the order corresponding to vopt. 

3. PCFB’S AND THEIR OPTIMALITY 

3.1. Definitions and statement of result 

Majorization : Given two sets A, B each having M real 
numbers (not necessarily distinct), A is defined to ma- 
jor&e B if the elements ui E A and bi E B arranged in 
descending order a0 > al > . . . > u~-l, and bo > bi > - - 
. . . 2 b~-l, obey the property that 

bi forall P=O,l,..., M-l, (1) 
i=O 

with equality holding when P = M - 1. 

PCFB’s : Let us be given a class C of uniform orthonormal 
M-channel FB’s, and the power-spectrum of the input to 
the FB. A PCFB for the class C is defined to be a FB in 
C whose set of subband variances majorizes the set of sub- 
band variances of any FB in C. Alternatively, a PCFB may 
be defined as a FB that minimizes (over all FB’s in C) the 
mean-square error caused by dropping the P weakest (low- 
est variance) subbands, for any P = 0, 1, . . . , M. The equiv- 
alence of these two definitions is due to the fact that drop- 
ping subbands results in a mean-square reconstruction error 
that is the sum of the variances of the dropped subband sig- 
nals (upto a constant scale-factor of &). The PCFB and 
its existence depends on both the class C and the input 
spectrum. 

Main result on PCFB optimality. Let C be a perfectly 
arbitrary class of uniform M-channel orthonormal FB’s, 
such that a PCFB exists for this class. Then the search 
space S has the property that its convex hull co(S) is a 
polytope (defined in Section 3.2 below). All the corners of 
this polytope are permutations of each other, and are ele- 
ments of S that correspond to the PCFB. The objective g 

to be minimized is a real-valued function on S. If it has an 
extension to co(S) on which it is concave, then at least one 
of the corners of the polytope is a minimum of g. Thus, 
the PCFB is always optimal. Further if g is strictly 
concave, then its minimum is necessarily at some corner 
of the polytope, i.e. the optimum FB is necessarily a 
PCFB. 

3.2. Discussion of the result 

Recall that a function f : D + R. is defined to be concave 
if given any x, y E D and 1-1 E [0, 11, 

f (px + (1 - P>y> L Pf (4 + (1 - P>f (39 (2) 

Graphically, this means that the function is always above 
its chord, as is seen from the examples in Fig. 2. Here 
the domain D of f is some subset of X”, however the 
definition makes sense only if D is a convex set. D is defined 
to be convex if any convex combination of any finite set 
of elements from D is also in D. A convex combination 
of the vectors xi,i = 1,2,. . . ,N is a vector of the form 

c f”=i aixi for some ai E [0, l] that satisfy EL1 ai = 1. 
The convex hull of a set E is defined as the set of all possible 
convex combinations using vectors from E, and is denoted 
by co(E). A convex polytope is defined as the convex hull 
of a finite set of points. Given such a polytope co(E), we 
can assume that no element of E is a convex combination 
of other elements of E. This is because any such element 
can be deleted from E without changing co(E). Under this 
condition, the elements of the finite set E are called comers 
of the polytope. The reason for these names is clear from 
examples of polytopes embedded in 1, 2 or 3 - dimensional 
space as shown in Fig. 3. 

Now if the function f : D -+ 7Z is concave and D is a 
polytope, then at least one of the corners of D is a minimum 
of f over D. This fact is illustrated in Fig. 4, which makes 
it intuitively clear. Indeed it is a standard result in convex 
function theory, provable directly from the definitions of 
polytopes and concave functions. 

In our problem, f = g, the objective function; and 
D = co(S) h w ere S is the optimization search-space (de- 
fined in Section 2). Further, if a PCFB exists then it can be 
shown that co(S) is a polytope whose corners correspond to 
the PCFB. This proves the main result on PCFB optimal- 
ity (Section 3.1). The crucial fact that co(S) is a polytope 
when a PCFB exists, follows from the geometrical meaning 
of majorization [4]. It is proved in detail in [5]. Thus, when 
a PCFB exists, the analytical tractability of the FB opti- 
mization problems can be attributed to this special struc- 
ture of the search-space S. The situation when a PCFB 
does not exist is discussed in [6, 51. Extensions to nonuni- 
form FB’s are discussed in [5]. 

4. PROBLEMS WITH CONCAVE OBJECTIVES 

This section shows a number of filter-bank based signal pro- 
cessing schemes for which the FB optimization objective is a 
concave function of the subband variances of the FB. Thus, 
from Section 3, if a PCFB exists then it is optimal for all 
these schemes. 
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Consider the generic FB based signal processing scheme 
shown in Fig. 1. We denote by vi(“)(n) the i-th subband 
signal generated by feeding the signal s(n) as input to the 
FB, for i = O,l,. . . , M - 1 (where the subbands are num- 
bered according to the subband processors they are associ- 
ated with). The system of Fig. 1 is aimed at producing a 
certain desired signal d(n) at the FB output. It is deemed 
to be optimized if the actual FB output y(n) is ‘as close 
to’ d(n) as possible, i.e. some measure of the error signal 

4.1. General features and structure of the problems 4.2. Denoising/Wiener filtering for white noise 

Here the FB input in Fig. 1 is x(n) = s(n) + p(n) where 
s(n) is a pure signal and p(n) is zero mean white noise. We 
assume that p(n) is uncorrelated to s(n), and has a fixed 
known variance v2 > 0. The overall desired output signal 
is d(n) = s(n). The i-th subband process v,‘“‘(n) contains 
a signal component zli (‘I (n) and a zero mean additive noise 

e(n) = 44 - Y( n is minimized. To formulate this mea- ) 
sure, we assume that the signals x(n) and d(n) are jointly 
CWSS(M). Often the subband processors Pi are such that 
the error e(n) is also a CWSS(M) process - this happens 
whenever the Pi are LTI systems for instance. The error 
measure is then the variance of the process e(n) averaged 
over the period of cyclostationarity M. If the FB is or- 
thonormal, this measure takes the form 

M-l 

$ x E[lvjeJi2], where 
i=o 

(3) 

v!“‘(n) = vcd)(n) - u(‘) . 

Thus v(d) ’ 

i (n), fori=O,l,..., M-l (4) 

(n) serves as the desired response that the pro- 
cessor ki must try to approximate at its output as best as 
possible in the sense of minimizing E [ Ivie) 12]. 

Let the variance of vi”)(n) be denoted by a& The sub- 
band variance vector [defined in Section 2) is thus v = 
( 2 2 
~O,~l,*-, U&-l)T* In many situations, the processors Pi 

are such that 
E[Iv~e)(n)12] - hi(af) - 2 (5) 

where hi is some function that depends on the kind of pro- 
cessor Pi, and is independent of the FB. Thus, for such 
processors Pi, (3) and (5) show that the FB optimization 
objective g takes the form 

M-l 

g(v) = $ x hi(gf) (6) 

i=o 

If the hi are concave on [O,oo) then g is concave on co(S) 
where--S is the search space (defined in Section 2). Thus, 
from Section 3, PCFB’s are optimal whenever the hi are 
concave on [O,oo). We may note that often all the hi are 
identical functions, the typical reason being that the pro- 
cessors Pi are identical. In this case g is symmetric in its 
arguments, i.e. it is not changed by permutations of the a:. 
Hence the subbands of optimum FB can be coupled to the 
subband processors in an arbitrary fashion. If the hi are 
not identical ‘9 loses this symmetry property, and then the 
coupling has to be done in a definite way to ensure optimal- 
ity. In the high bit-rate coding problem with optimal bit 
allocation [l], hi(x) = log(x). At low bit-rates, let the i-th 
quantizer have a normalized quantizer function fi. Under 
the assumption that fi is independent of the FB (thus rul- 
ing out pdf-optimized quantizers), hi(x) = fi(bi)x [7] where 
bi is the number of bits alloted to the i-th subband. Since 
all these hi are concave (on [0, 00))) this gives a direct proof 
of the results of [l, 71. Further details regarding optimal bit 
allocation can be found in [5]. 

component zti (“(n). Orthonormality of the FB ensures that 
the subband noise components are also white with 
q2, and are uncorrelated to the signal components 

variance 

4.21. Subbund processors us constant multipliers 

Suppose each processor P; is a tied multiplier of value ki 
(memoryless LTI system). Then 

vte) (n) = vcd) (n) -v(‘) i (n) = (1 ki)v(“)(n)-kiv;(‘+‘)(n) (7) - 
i i i 

Thus, since @I (4 (n) is zero mean and uncorrelated to zti (n), 

E[lv!‘)(n)12] = 11 - ki12 a? + lki12 q2 2 2 

where 0: is the i-th subband variance corresponding to the 
signal s(n), i.e. a; = E[lv,!“)(n)12]. Comparison with (5) 
identifies the hi in (5,6) as 

hi(x) = 11 - ki12 x + lki12 q2 (9) 

which is linear in x, and is hence concave. Notice that while 
in (5)) a; was the variance of the subband signal zti (x) (n) 
corresponding to the FB input x(n), here it is the variance 
of v,!“)(n) = vi(“)(n) - vi’) (n). This distinction is not very 
serious here: It says that the optimal FB is a PCFB for 
the signal s(n) ( as opposed to the FB input x(n)). How- 
ever in the present problem, because the noise is white, and 
E[@)(n)12] - - a? = E[lv!“)(n)12] -q2, we find that PCFB’s 
for i(n) are also’PCFB,s’for x(n) and vice verca. The sit- 
uation when the noise is colored is more involved [5]: In 
certain cases it is possible to show optimality of a simultu- 
neous PCFB for signal and noise (if it exists). 

4.22. Using multipliers matched to input statistics. 

If the processor Pi is a zeroth order Wiener filter, then it is 
a multiplier given by 

ki = 
0; +qJ2 (10) 

where a: is the variance of zti (‘I (n). On the other hand, if Pi 
is a hard-threshold operator, it keeps or kills the subband 
depending on whether the variance of the subband signal 
component is greater than or less than the variance of the 
noise component. In this case, it is a multiplier given by 

ki = 
1 if cf 2 q2 
0 otherwise (11) 

These schemes can be implemented in practice by estimat- 
ing a: from the subband process Zfi (x)(n), which is possible 
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since q2 is known. Substituting these ki in (8) and compar- 
ing with (5) shows that we have a new set of hi, i.e. 

if Pi = Oth order Wiener filter 
if Pi = hard thresholder 

These functions are plotted in Fig. 5, and are concave on 
[0, 00). Thus the PCFB is optimal for any mixture of zeroth 
order Wiener filters and hard thresholders in the subbands. 

Notice that in Fig. 5, the Wiener filter curve lies fully 
below the hard threshold curve, i.e. the Wiener filter yields 
a lower mean-square error. This is expected since it is by 
definition the optimum choice of multiplier ki in this sense. 
Use of hard thresholds is motivated by other considera- 
tions [8, 91, for example to effect a bias-variance tradeoff. 
Indeed, (7) shows that when s(n) has nonzero mean and 
Ici E [0, 11, the estimation bias decreases if Ici increases. The 
Wiener filter always produces bias, while the hard thresh- 
older produces zero bias whenever it results in k; = 1. 

5. CONCLUDING REMARKS 

We have pointed out a basic connection between FB opti- 
mization and the principal component property. We have 
shown that PCFB’s are optimal for various signal process- 
ing schemes such as subband denoising using zeroth order 
Wiener filters and hard thresholders. A companion pa- 
per [6] discusses these optimization problems in situations 
where a PCFB does not exist. Extensions to colored noise 
suppression, and to nonuniform FB’s, can be found in [5]. 
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Figure 1: Generic FB based signal processing scheme. 
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Figure 2: Concave functions on different domains. 
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Figure 3: Polytopes in 7Z., R2 and R3. 
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Figure 4: Optimality of corners of polytopes. 
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Figure 5: Subband error functions. 
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