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ABSTRACT 

In a companion paper, we have considered the problem of 
optimization of filter banks (FB’s) for given input statis- 
tics. We have pointed out a strong connection between FB 
optimality and the principal component property. We have 
shown that principal component filter banks (PCFB’s) are 
optimal for various signal processing schemes such as cod- 
ing and denoising. In the present paper, we examine the 
nature of the FB optimization problems for these schemes 
in situations where a PCFB does not exist. We describe an 
algorithm involving a sequential design of compaction fil- 
ters, which is known to produce PCFB’s if they exist. We 
then demonstrate in an insightful manner how this algo- 
rithm can be suboptimal when PCFB’s do not exist. This 
was earlier shown only by numerical examples. 

1. INTRODUCTION 

A generic filter-bank based signal processing scheme is shown 
in Fig. 1. For such a system, a companion paper [l] ad- 
dresses the following problem: Find the best filter bank 
(FB) from a class C of uniform M-channel orthonormal 
FB’s, for given statistics of the input z(n>. For various 
schemes described by Fig. 1, the subband processors pi are 
such that the FB optimization objective is a concave func- 
tion of the subband variances produced by the FB. When- 
ever this happens, we have shown that a principal compo- 
nent filter bunk [l, 21 for the class C is always optimum 
within C. 

The existence of a PCFB for the class C is thus seen to 
make these FB optimization problems analytically tractable. 
In particular, when C is the class of all (unconstrained) M- 
channel orthonormal FB’s, the PCFB can be obtained by 
an algorithm involving design of a sequence of compaction 
filters, as observed in [3]. In the present paper we state 
this algorithm formally in a way that makes it well-defined 
for arbitrary classes C. We then use the geometric approach 
described in [l] to show that this algorithm always produces 
a PCFB if one exists. Further we show that in absence of 
a PCFB, the algorithm will be suboptimal for a large num- 
ber of objectives. Since this was previously shown only by 
numerical examples [4], it provides a new insight into the 
problem. 

Work supported in part by the National Science Foundation 
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2. REVIEW OF PCFB OPTIMALITY 

Following [ 11, we define the subband variance vector 
associated with the system of Fig. 1, as the vector v = 

( a&c&.. . ,&,)’ h w ose 6th entry is the variance of the 
subband signal input to the processor pi, for i = 0, 1, . . . , Ad- 
1. The optimization search space is defined as the set S 
consisting of all subband variance vectors associated with 
all FB’s in the given class C. Since there is no constraint 
on which processor to use in which subband in Fig. 1, the 
set S is ‘permutation-symmetric’: If v is in S then all vec- 
tors obtained by permuting the entries of v are also in S, 
and correspond to the same FB in C. The optimization 
objective is a real valued function g defined on the set S. 
We assume that g has an extension to the convex hull of S 
(denoted by co(S)) [l] on which it is concave. 

As noted in [l], existence of a PCFB implies that the set 
co(S) is a polytope. By definition this means that co(S) = 
co(E) where E is a finite set. Assuming that E is chosen 
to have as few elements as possible, the vectors in E are 
known as corners of the set co(S). When a PCFB exists, 
in fact these corners are permutations of each other, and 
correspond to the PCFB. Thus, since g is assumed to be 
concave over the polytope co(S), at least one corner of this 
polytope is a minimum of g over co(S) (and hence over S), 
as illustrated in Fig. 2. Thus a PCFB is always optimal for 
such objectives g. For various FB based signal processing 
schemes, the processors & of Fig. 1 are such that g is indeed 
concave on co(S). g usually takes the form 

M-l 

d2 2 ~0,mY.v a&-l) = $ x hi(af) 
i=o 

(1) 

which is concave on co(S) whenever the hi are concave on 
[0, co). For example, in the high bitrate coding problem 
of [3], hi(z) = log(z). In the noise suppression problems 
considered in [1], hi (z) = -$$ when pi is a zeroth order 

Wiener filter, and h&c) = min(z,q2) when pi is a hard- 
threshold operation (where q2 is the noise variance). 

Thus whenever co(S) is a polytope, the optimization 
can be reduced to a search over the finite set of FB’s that 
correspond to the corners of the polytope. When a PCFB 
exists, this set has exactly one element, namely the PCFB. 
If there is no PCFB, one could hope that if co(S) is indeed 
still a polytope, then it would not be very difficult to iden- 
tify this finite set of FB’s that corresponds to its corners 
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(and thereby solve the optimization problem). However, 
a polytope is a fairly structured object. Given an input 
power spectrum and a class C of FB’s, say the class of FIR 
FB’s with a given bound on the filter orders, there is no 
apriori reason to believe that the corresponding set co(S) 
is a polytope. In general, co(S) would thus be a bounded 
convex set that is not necessarily a polytope. We shall as- 
sume that co(S) is closed (or compact), which will be true 
for most ‘natural’ classes C of FB’s. We will next observe 
that corners can be defined for arbitrary convex sets (not 
necessarily polytopes), and note that they have optimality 
properties similar to those discussed above. 

3. ARBITRARY CONVEX SETS: CORNERS 
AND THEIR OPTIMALITY 

Definition [5]. Let B be a convex subset of 7Z”. A point 
z E B is said to be an extreme point, or a comer of B if 

z=arx+(l-a)y with aE(O,l), x,y~B 

implies x = y (= a). 

Geometrically, we cannot draw a line-segment that contains 
z in its interior (i.e. not as an endpoint) and yet lies wholly 
within the set B. The interior of B cannot have any corners, 
because around each point in the interior we can draw a 
ball that lies wholly in B. So all the corners lie on the 
boundary. However, not all boundary points are necessarily 
corners. If B is a polytope, the above definition can be 
verified to coincide with the earlier definition of corners of 
a polytope. These points are illustrated in Fig. 3, which 
shows the corners of some closed and bounded (or compact) 
convex sets. 

It can be shown without much effort, that every com- 
pact convex set is the convex hull of its boundary, and that 
it has at least one corner. The proof of the following result 
however is less obvious: 

Krein-Milman theorem / Internal representation of 
convex sets [5,6]: Every compact convex set is the convex 
hull of its corners. 

This result is evidently true for polytopes, and can be 
verified to. be true in the examples shown in Fig. 3. The 
result is thus intuitively clear (although its formal proof 
might not be obvious). Its importance lies in the fact that 
it can be used to immediately prove 

Optimality of corners: Given any function g that is con- 
cave on a compact convex set D, at least one of the corners 
of D is a minimum of g. Further if g is strictly concave then 
its minimum is necessarily at a corner of the set. 

For the special case when the compact convex set is a 
polytope, this result was discussed in [l] and is illustrated 
in Fig. 2. Fig. 4 illustrates the result for a compact convex 
set that is not a polytope. In Fig. 4, all corners are ‘equally 
good’, i.e. all are minima, but this of course need not be 
true in general. 

Proof of optimality of corners: Let vopt be the mini- 
mum of g over D. (Its existence is either assumed or follows 
if g is assumed to be continuous.) By the Krein-Milman the- 
orem, vopt is a convex combination of some set of corners 

of D, i.e. 

J 

vopt = 
x Pjzj where (2) 
j=l j=l 

for some distinct corners zj of D. Now at least one of 
the zj has to be a minimum of g over D. If not, then 
g(zj) > g(v,,t) for all j = l,2,. . . , J, and hence 

i.e. g(vopt) > g(vopt) which is a contradiction. 
least one corner of D is a minimum of g over D. 

Hence at 
The first 

inequality above is the Jensen’s inequality for concave func- 
tions. If g is strictly concave, then this inequality is strict - 
unless one of the /3j is unity. Hence in this case vopt equals 
the corresponding zj, i.e. the minimum 1s necessarily at a 
corner of D. 

In our FB optimization problem, D = co(S) where S is 
the search space. Let E be the set of corners of D, so E c S 
and 
tion 

co(S) = co(E). 
over co(S) can 

From the above result, 
be reduced to one over 

the 
E. 

optimiza- 
Thus the 

analytical tractability of the problems of [l] can be traced 
to the fact that co(S) is a polytope, i.e. that E is finite. 
In general, ‘almost every’ corner in E is associated with 
a concave (in fact linear) objective for which the corner is 
the unique minimum.’ Thus, if a PCFB does not exist, or 
more precisely if E is not finite, it is not possible to make a 
general statement about the optimality of any single FB for 
a large class of objectives. It might be possible to avoid a 
suboptimum numerical search for a specific objective. How- 
ever the analytical solution will have to exploit the specific 
structures of both the objective function and the set co(S). 
Thus we see that in absence of a PCFB, the problem of 
finding the optimum FB for a given concave 
ally becomes anaZyticaZZy intractable. So in 

objective usu- 
such cases, a 

numerical procedure (that in general gives a suboptimum 
solution) such as a gradient-descent based algorithm is usu- 
ally needed. It is 
set E (as opposed 

enough 
to S or 

to 
co 

search for the minima over the 
(S)); however it is not known to 

the authors at this time whether there are numerical search 
procedures that can exploit this fact. 

4. THE SEQUENCE - OF - 
COMPACTION-FILTERS ALGORITHM 

This is an algorithm that has sometimes been proposed [3, 
41 to find a ‘good’ FB in classes C that need not necessarily 
have PCFB’s. We first state the algorithm in a precise way 
that holds for any general class C. This will show that it 
produces FB’s for which the corresponding subband vari- 
ance vector is a corner of co(S). The optimality of the 
algorithm is then examined in this light. 

‘This 
‘tangent 

can be proved using the concept of 
hyperplanes’ to convex sets [6]. 

‘exposed points ’ or 
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4.1. Algorithm statement 

Let us be given the class C of FB’s, and the corresponding 
optimization search space S. For each v E S, define w as 
the vector obtained by arranging the entries of v in increas- 
ing order. Let TO c S be the set of all such w for all v E S. 
The i-th coordinate of a vector w E RM is denoted by wi, 
fori=O,l,..., M-l. Then, 

1. Find CYO 2 max{wo : w E To). Let Tl C TO be the 
set of all w E ZJ such that wo = a~. 

2. Find CY~ b max{wl : w E Tl}. Let 25 & Zj be the 
set of all w E Tl such that wl = al. 

3. Continue the process, i.e. find Eli A max(wi : w E 
Ti). Let Ti+l C Ti be the set of all w E Y!! such that 
Wi = ari. Do this for i = 0, 1, . . . , A4 - 1. 

4. This procedure uniquely defines a vector 

A 
VQ = (~o,cy1,-•- ,aM--l)T E s (3) 

with QIO > a1 > . . . > CYM-1. In fact the set TM - - - 
consists of the single element va. The output of the 
algorithm is any FB in C with subband variance vec- 
tor va (or any of its permutations). 

Step 3 for each i represents a maximization of a subband 
variance followed by a narrowing down of the search. This 
gives the algorithm its name. By construction, the vector 
va has the special property that it is the greatest of all 
vectors in S in the ‘dictionary ordering’ on 7E”. In fact, a 
concise restatement of the above algorithm is that it finds 
the vector va with this property, and finds all FB’s in C that 
have subband variance vector va (or its permutations). 

4.2. Connection to compaction filters 

Given the power spectrum of a wide sense stationary (WSS) 
input, the notion of an optimum compaction filter for the 
input has been defined in [3]: It is the filter that maxi- 
mizes its output variance among all filters in the class & 
of Nyquist(M) filters. The motivation for the Nyquist(M) 
constraint is the fact that these filters are used to con- 
struct an orthonormal FB, and any filter in such a FB is 
Nyquist(M). 

The compaction filter can be constructed by a proce- 
dure outlined in [3]. This procedure always results in an 
ideal filter, i.e. one supported on an aliasfree zone and 
having constant magnitude on this zone. If such a filter is 
to be part of an orthonormal FB, its support cannot over- 
lap with the supports of the remaining filters in the FB. 
Thus given the compaction filter HO for the input, we can 
complete the FB by a sequential design of compaction fil- 
ters [3]: For i = 1,2,. . . , M - 1, the i-th filter E& in the 
FB is one that maximizes its output variance among all fil- 
ters in the class & C ,Ei-1. Here the class Fi is defined 
to consist of filters whose supports do not overlap those 
of the previously designed (ideal) filters HO, &, . . . , J&-i. 
An equivalent definition of Hi is as follows: Consider the 
power spectrum obtained by setting to zero the bands of 
the original input spectrum that fall within the supports of 
the previously defined filters Ho, &, . . . , Hi-i. Then Hi is 
a compaction filter for this modified power spectrum. 

The above procedure from [3] can now be seen to be 
exactly the algorithm of Section 4.1 applied to the class C 
of all (unconstrained) orthonormal FB’s. However, stating 
this algorithm using the notion of a compaction filter be- 
comes difficult for a general class C. To illustrate this, let C 
be the class of all M-channel FIR orthonormal FB’s having 
filters with orders bounded by N. With this class in mind, 
it might appear reasonable to make the following definition: 
A FIR compaction filter is one that maximizes its output 
variance among all filters in the class GO of all Nyquist(M) 
filters with order bounded by N. Indeed, design of such 
filters has been studied [7]. However, completing the FB 
poses difficulties: Letting HO be the FIR compaction filter, 
it is not even clear whether there is any FB in C that con- 
tains HO as one of its filters. The statement of Section 4.1 
circumvents this difficulty. 

4.3. Is the algorithm optimal? 

Fact. The vector va E S produced by the algorithm of 
Section 4.1 is a corner of co(S). 
Proof. Let va = yx + (1 - y)y for y E (0,l) and x, y E 
co(S). Then by definition of a corner (Section 3)) the proof 
will be completed if we show that x = y = va. Now by 
definition of the convex hull co(S), x, y and hence va can 
be written as convex combinations of elements of S, i.e. 
va = ‘& pjvj for some vj E S and pj E (0, 11 satisfying 

cj=1p j = 1. We now show x = y = va by showing 

v3 =va for allj = 1,2,... , J. To this end, since a0 > vi, - 
we have 00 = ~6. Hence v3 E Ti. This in turn leads to 

, and hence to CY~ = V; and so on; until finally 
for all j = 1,2 ‘“‘7 J. 

When the class C has a PCFB, all corners of co(S) cor- 
respond to the PCFB. Hence the algorithm of Section 4.1 
always produces the PCFB, and is thus optimal for many 
problems [l]. The vector va of (3) here has an additional 
property: If its entries are arranged in increasing order, 
then in fact it becomes the least vector in S in the dictio- 
nary ordering on RM .2 On the other hand, if a PCFB does 
not exist, then there will be at least two corners that are not 
equivalent, i.e. whose coordinates are not permutations of 
each other. The algorithm of Section 4.1 produces one cor- 
ner, but the minima could easily be at other non-equivalent 
corners. Thus the algorithm could be suboptimum. 

To illustrate this point, consider the following hypo- 
thetical example with M = 3 channels: Let co(S) = co(E) 
where the set E consists of vectors v1 = (3,2, 1)T,~2 = 

(2.9) 2.2, 0.9)T and their permutations. Since E is finite, 
co(S) is a polytope whose corners lie in E. Since neither 
of ~1, v2 majorizes [l] the other, in fact all elements of E 

2 However, the fact that va of (3) has this additional property 
does not imply that a PCFB exists, unless the number of channels 
is AI < 3. Mujorization [l] is an even stronger requirement, as 
illustrated by the vectors (10,6,5,1) and (9,8,3,2): The former 
is both greater and lesser than the latter and its permutations, 
depending on whether the entries of the former are in decreasing 
or increasing order respectively. However, neither of these two 
vectors majorixes the other. 
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are corners of co(S). A PCFB does not exist because vi, v2 
are not permutations of each other. Now consider the high 
bit-rate coding problem of [3]. Here the objective to be 
minimized over S is X(V), the product of the coordinates of 
v E S. (As noted in [l], this is equivalent to minimizing an 
objective that is concave on co(S).) Since r(vi) = 6 and 
7r(v2) = 5.742, v2 is the minimum. However, the algorithm 
of Section 4.1 produces va = vi, and is thus suboptimum. 

More generally, let P C co(S) be the polytope whose - 
corners are permutations of the vector va of (3). Then 
P = co(S) iff a PCFB exists. Now consider the function 
f( > = -d(v, P), where d(v, P) = min{l]v - xl] : x E P} is 
theVminimum distance from v to P using any valid norm 11 .I( 
on R”. It can be shown that f is a well-defined continuous 
concave function on 7Z”. From the definition it is clear that 
(1) f has a constant value (zero) on P, and (2) if a PCFB 
does not exist, then P is actually the set of maxima off over 
co(S). Since the algorithm of Section 4.1 produces subband 
variance vector va E P, it leads to the worst possible choice 
of FB’s for an infinite family of such concave objectives f. 

0 0 

v&L1 (n) 

I PMH 
J”-&) 

analysis FB 

corresponding to input 

Figure 1: Generic FB based signal processing scheme. 
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5. CONCLUDING REMARKS I l = corner of P 
I 
minimum of f over P 

We have described a FB design algorithm involving a se- 
quential maximization of subband variances, that produces 
PCFB’s if they exist. We have shown in an insightful way 
how the algorithm can be suboptimal in the absence of a 
PCFB. We have also shown how many FB optimization 
problems often become analytically intractable in absence 
of a PCFB. The methods used here suggest ways of analyt- 
icdy proving nonexistence of PCFB’s for certain classes of 
FB’s; as discussed in [8] in the context of nonuniform FB’s. 

Figure 2: Optimality of corners of polytopes. 
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Figure 3: Corners and boundaries of compact convex sets. 
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Figure 4: Optimality of corners of compact convex sets. 
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