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Bifrequency and Bispectrum Maps: A New Look at
Multirate Systems with Stochastic Inputs

Sony Akkarakaran and P. P. Vaidyanathan, Fellow, IEEE

Abstract—In multirate digital signal processing, we often en-
counter decimators, interpolators, and complicated interconnec-
tions of these with LTI filters. We also encounter cyclo-wide-sense
stationary (CWSS) processes and linear periodically time-varying
(LPTV) systems. It is often necessary to understand the effects
of multirate systems on the statistical properties of their input
signals. Some of these issues have been addressed earlier. For
example, it has been shown that a necessary and sufficient
condition for the output of an -fold interpolation filter to be
wide sense stationary (WSS) for all WSS inputs is that the filter
have an alias-free ( ) support. However, several questions of this
nature remain unanswered. For example, what is the necessary
and sufficient condition on a pair (or more generally abank) of
interpolation filters so that their outputs are jointly WSS (JWSS)
for all jointly WSS inputs? What is the condition if only the sum
of their outputs is required to be WSS? When is the output of an
LPTV system (for example a uniform filter-bank) WSS for all WSS
inputs? Some of these questions may appear to be simple general-
izations of the above-mentioned result for a single interpolation
filter. However, the frequency domain approaches that proved this
result are quite difficult to generalize to answer these questions.
The purpose of this paper is to provide these answers using
analysis based on bifrequency maps and bispectra. These tools
are two-dimensional (2-D) Fourier transforms that characterize
all linear time-varying (LTV) systems and nonstationary random
processes, respectively. We show that the questions raised above
can be addressed elegantly and in a geometrically insightful way
using these tools. We also derive a bifrequency characterization
of lossless LTV systems. This may potentially lead to an increased
understanding of these systems.

I. INTRODUCTION

M ULTIRATE systems contain interconnections of
decimators, interpolators, and LTI filters. Linear peri-

odically time-varying (LPTV) systems and cyclo-wide-sense
stationary (CWSS) random processes occur frequently in
multirate processing [1], [7], [13], [15]. It is often required
to analyze the effects of multirate systems on the statistics of
their input. Some analysis of this kind has been carried out
in [1], where a necessary and sufficient condition is derived
for the output of an -fold interpolation filter to be WSS for
all WSS inputs. The condition is that the filter should have
an alias-free( ) support. However, many questions remain
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unanswered. For example, what is the generalization of this
condition for the case of multi-input multi-output (MIMO)
systems with WSS vector inputs? What is the condition if we
have a general LPTV system instead of the interpolation filter?

This paper addresses issues of this kind. We show that the
alias-free ( ) condition mentioned above, as well as many of
the other results of [1], can be obtained in an elegant and geo-
metrically insightful manner using bifrequency and bispectrum
analysis. The bifrequency map [2], [3] gives a complete descrip-
tion of a general linear time-varying (LTV) system. For non-
stationary vector random processes, the autocorrelation matrix
is a function of two indices. Its two-dimensional (2-D) Fourier
transform, which we shall call the bispectrum matrix (or simply
bispectrum for scalar processes) gives a complete description of
the second-order statistics of the process. These tools have not
often been used to analyze multirate systems because they are
sometimes too general for the purpose. However, they greatly
simplify the analysis of the issues raised above and in the ab-
stract. Thus, the bifrequency and bispectrum “domain” is the
natural domain for addressing questions of this nature. The anal-
ysis of [1] based on pseudocirculant power spectral density (psd)
matrices would prove to be inordinately complicated for this
purpose. We also point out a necessary and sufficient bifre-
quency characterization of the lossless LTV systems described
in [5] and [6]. The condition is somewhat more general than that
of [5] and [6] and may potentially give additional insights into
these systems.

A. Previous Work

For a general continuous-time nonstationary scalar random
process, the autocorrelation function depends on two “time”
variables. Many properties of its 2-D Fourier transform can be
found in [4] and [8]. These 2-D Fourier transforms are repeat-
edly referred to in this paper and are calledbispectrafor conve-
nience. The term bispectrum has also been used in the literature
on higher order spectral analysis [9] to denote the 2-D Fourier
transform of thethird-order statisticsof the random process.
Thus, this second definition is totally different from what we
mean here, and we will make no further reference to works
based on it. Thebifrequencyfunction for general scalar LTV
systems has been defined in [3] for continuous-time and in [2]
for discrete-time systems. Bifrequency maps are used in [10] for
design of multirate filters and LPTV systems. They are used in
[2, ch. 3] to obtain beautiful geometric insights into the oper-
ation of basic multirate building blocks with deterministic in-
puts; however, in this case, the results could also be obtained
using other methods such as polyphase matrices. Stochastic in-
puts have, however, not been considered in [2].

1053-587X/00$10.00 © 2000 IEEE
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CWSS processes arise naturally in our analysis. Such pro-
cesses have been observed and studied by a number of authors.
For example, Gardner discusses continuous-time CWSS pro-
cesses in signal processing and communications applications
[11], [12] using a tool called the cyclic spectrum, which is some-
what different from the bispectrum. The cyclic spectral density
matrix is used for discrete time CWSS processes by Ohno and
Sakai in [13] and [14], and several results have been established.
If the CWSS( ) process is passed through modulators pro-
viding frequency shifts of and
the results are then passed separately through ideal lowpass fil-
ters of bandwidth , then the vector consisting of the
resulting outputs is WSS [14], and the cyclic spectral density
matrix is the psd matrix of this vector. The-fold blocked ver-
sion(Section II) of the CWSS( ) scalar process is also a WSS
vector process, and its psd matrix is related to the cyclic spectral
density matrix by the Gladyshev’s relation [14].

In [14], the cyclic spectral density matrix is computed for
(discrete time) periodic AR processes and for the output of a
filterbank. It is shown that if the FB is alias-free, its output is
WSS for all WSS inputs. The cyclic spectrum is used in [13]
to numerically optimize filterbanks to minimize the reconstruc-
tion error after some subbands are dropped. In [15] and [16],
Petersohnet al.have presented a matrix calculus description of
multirate systems. It is used to compute the spectra of output
signal and noise in systems such as cascaded multirate filters
and fractional decimation circuits. It is also used to derive an
efficient polyphase structure for fractional decimation. These
earlier works have not considered more complex situations in-
volving vectorCWSS processes. They have also not considered
the conditions for stationarity of the output of more complicated
systems like vector interpolation filters. While the present paper
was in the final stages of preparation, the very recent reference
[17] also came to our attention. This reference deals with the
properties of higher order spectra in the context of multirate pro-
cessing.

B. Outline of the Paper

Section II provides a review of the basic definitions and prop-
erties of stationary and cyclostationary discrete random pro-
cesses. Section III is a review of the basic properties of bifre-
quency maps and bispectra, which we will need for our anal-
ysis. Section IV examines the effect of elementary multirate
building blocks such as decimators and expanders on the bis-
pectra of their random process inputs. These results are then
used in the later sections to analyze more complicated multirate
systems. Section V considers vector interpolation filters, which
upsample the input vector process and pass the result through
a MIMO transfer matrix. We find the necessary and sufficient
condition on this transfer matrix so that the output is WSS for
all WSS inputs. Section VI considers general LPTV scalar sys-
tems. In particular, we show that the only rational LPTV sys-
tems that produce WSS output for all WSS inputs are rational
LTI systems, exponential LPTV modulators, and cascades of
these. These results are applied to other multirate systems such
as principal component filterbanks in Section VII. We also point
out the bifrequency characterization of lossless LTV systems de-
scribed in [5] and [6].

Fig. 1. Blocking.

II. NOTATIONS AND PRELIMINARIES

A. Notations

Superscripts and denote the complex conjugate and
matrix (or vector) transpose, respectively, whereas superscript
dagger denotes the conjugate transpose. Boldface letters are
used for matrices and vectors. The element of a matrix

is denoted by Lower-case letters are used for 1-D
and 2-D discrete sequences, whereas upper-case letters are used
for 1-D and 2-D Fourier transforms. and , respectively, de-
note the set of integers and that of real numbers. The space of
all finite norm -component vector sequences is denoted by

[The norm of a vector sequence is defined as
] The DFT matrix of order

is denoted by Decimators, expanders, and other multirate
building blocks have their standard definitions and symbols in
figures, which can be found, for example, in [18].

B. Preliminaries

Multirate systems contain decimators and expanders in addi-
tion to LTI systems. Therefore, their study involves the study of
linear periodically time-varying (LPTV) systems and “blocked
versions” of scalar systems. Stationary random processes, when
passed through LPTV systems, become cyclostationary. Since
these ideas occur frequently later, we begin by defining them.
A central theme of this paper is to study the effect of multirate
systems on the statistics of random process inputs. All random
processes are assumed to be zero mean since the effect of a linear
system on the mean can easily be analyzed.

1) Blocking: Fig. 1(a) shows a scalar linear system
with input and output Fig. 1(b) shows

the -fold blocked version of this system. The vector
is said to

be the -fold blocked version of , and similarly,
is the blocked version of the output Conversely, is
called the -fold unblocked version of The -input

-output system of Fig. 1(b) is said to be the -fold
blocked version of the scalar systemof Fig. 1(a). If is
linear, so is Further, is LTI if and only if is LTI
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with a pseudocirculant transfer matrix (defined in [1]).is
LPTV( (defined in Section III-B) iff is LTI.

2) Cyclostationarity: Given a vector random process
define its autocorrelation sequence as

If this is periodic in with period for
all integers , we say that is CWSS( , i.e. wide sense
cyclostationary with period If , then is wide
sense stationary (WSS), and is independent
of In this case, the-transform of is called the power
spectrum (psd) matrix of the process.

3) Joint Cyclostationarity:Two vector processes and
are said to be jointly CWSS() [JCWSS( )] if the vector

is CWSS( . It can be shown that a vector process

is CWSS( ) iff all pairs of its component scalar processes are
JCWSS( ). If JCWSS( ) is synonymous with jointly
WSS (JWSS).

4) Blocking of CWSS Processes:Let be scalar
random processes with respective-fold blocked versions

and Then, is CWSS( ) iff
is WSS. In addition, is WSS iff is WSS with
pseudocirculant psd matrix. Last, are JCWSS( iff

and are JWSS.
To motivate how processes with properties as defined above

appear in multirate systems, note, for example, that upsampling
a WSS vector process (i.e., upsampling each component) by
gives a CWSS( vector process. Another example is a multi-
stage implementation of an interpolation filter, i.e., a repeated
cascade of an expander and a filter. This kind of cascade also
occurs in nonuniform tree-structured filterbanks. This gives rise
to processes that are CWSS with larger and larger periods.

III. B ASIC PROPERTIES OFBIFREQUENCIES ANDBISPECTRA

In order to describe the time-varying systems and nonsta-
tionary processes that are invariably encountered in the study
of multirate systems, we now review the bifrequency and bis-
pectrum descriptions.

A. General LTV Systems and Bifrequency Maps

A MIMO LTV system [2] with input and output
is fully specified by the time-domain relation

(1)
Here, is called theGreen’s functionand is perfectly
general. The function is the time-varying impulse re-
sponse that is useful only if the input and output rates are equal
[2]. These are related as The LTV
system is also fully specified by the bifrequency function

(2)

The system input–output relation in the frequency domain is

(3)

Fig. 2. General representation of scalar LPTV(L) systems.

An example of an LTV system is the (scalar) modulator defined
by the input-output relation It has a bifre-
quency map [2], where

is the Fourier transform of A generalization is
what may be called a “rational” LTV system, i.e., one that is
realizable by a linear difference equation with time-varying co-
efficients. Thus, it is characterized by

and can be shown to
have bifrequency map

(4)

where is the Fourier transform of for
This expression clearly brings out the

fact that the system is characterized by the transfer
functions

Cascading two LTV systems with Green’s functions
and bifrequencies (in that order) gives
a new LTV system with Green’s function and bifre-
quency given by

(5)

(6)

B. LPTV Systems

An LPTV( ) system (linear periodically time-varying with
period ) is defined as one whose impulse response
is periodic in with period for each integer By LPTV
system, we will always mean one with equal input and output
rates so that the impulse response can be meaningfully
used. This paper considers only scalar LPTV() systems. Such
systems can always be represented as in Fig. 2 (see [18, ch.
10]), and conversely, the system of Fig. 2 is always LPTV().
In this figure, the boxes are scalar LTI systems with transfer
functions and impulse responses Using standard
multirate tools, we can show that for

for all integers The system is characterized
by the transfer functions It can also be viewed as a
maximally decimated filterbank (in which theanalysis filters
are delays). Hence, it can alternatively be characterized by the
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Fig. 3. Impulsive lines in LPTV(L) bifrequencies and CWSS(L) bispectra. (a)
L = 3: (b) L = 1 (LTI/WSS case).

“aliasing gains” [18] of the filterbank, which describe
its input-output relation according to

(7)

Applying the relations in [18, ch. 5] to the system in Fig. 2 shows
that

(8)

From (7), we can expect the bifrequency function
for this system to be characterized in some way bytransfer
functions. Indeed, we have [10]

(9)

where

(10)

and where Green's function Equation (9)
shows that the bifrequency map consists of a set of par-
allel impulsive lines, as illustrated by Fig. 3(a). Theth
line has equation The shape of the
impulse along this line is given by the transfer function

, which is thus seen to
have an -fold periodicity in The bifrequency map is fully
characterized by the first of the functions , i.e., we
have

and

for all integers (11)

Fig. 4. Bifrequency maps of three-fold expander and decimator. (a) Expander.
(b) Decimator.

To prove this, we insert (9) in (3) and integrate using the sifting
property of the function, which yields

(12)

Comparison with (7) now proves (11).1

Conversely, for any function given by (9),
we can find an LPTV( ) system with bifrequency function

This is because by inverse Fourier transforma-
tion, we see that the corresponding impulse response
is periodic in with period for all integers , which is in
agreement with the definition of an LPTV() system. If the
system is in fact LTI with transfer function , then
and for all integers

Expanders and decimators are also LTV systems but are not
LPTV under our definition as their input and output rates are
not equal. Their bifrequencies also consist of parallel impul-
sive lines [2], but unlike the case of LPTV systems, the slope
of these lines is not unity. It is less than unity for expanders and
greater than unity for decimators [2]. These bifrequency maps
are shown in Fig. 4, which is a pictorial representation of the
frequency domain input-output behavior (3) of these systems. It
shows exactly how the expander creates imaging and the deci-
mator creates aliasing in the frequency domain, for deterministic
inputs.

C. General Nonstationary Processes and Bispectra

The autocorrelation matrix and bispectrum matrix
of a nonstationary vector process are de-

fined as

(13)

(14)

When is a scalar, is a scalar
as well and satisfies the following properties: (These are dis-

1We can also prove (11) in the time domain by using (8), (10), and the relations
h(m;n) = k(m;m� n) andb (n) = h(n � r; n):
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Fig. 5. Illustrating properties of scalar bispectra.

crete-time versions of the properties stated in [4] for contin-
uous-time processes.)

for all real (15)

(16)

(17)

Here, Fig. 5 illustrates these properties.
Equation (15) says that the 2-D function is non-
negative on the diagonal , and (16) says that its inte-
grals over the hatched areas A,B are non-negative. To help un-
derstand these properties, we can draw analogies between the
bispectrum and the conventional power spectrum
(psd) matrix of a WSS vector process. Thus, we have
the following.

• Equation (15) is analogous to for all real
.

• Equation (16) is analogous to the positive semidefiniteness
property for all vectors

• Equation (17) is analogous to the property
(for any

vectors , which follows from the Cauchy–Schwartz
inequality.

• Although the diagonal elements of are non-neg-
ative functions, the off-diagonal elements need not even
be real. Similarly, although (15),

need not even be real if

In general, when is not a scalar, is Hermi-
tian positive semidefinite for all real. The Hermitian property
follows from (14). The positive semidefiniteness can be deduced
by using (15) on the (scalar) bispectra of the scalar processes

for arbitrary constant vectors

D. Action of Linear Systems on Bispectra

It is well known that when a WSS vector with psd matrix
is passed through an LTI system with frequency

Fig. 6. Schematic explanation of the effect of an LTI system on the psd matrix.

Fig. 7. Schematic explanation of the effect of an LTV system on the
bispectrum matrix.

response , the output is a WSS vector with psd
matrix

(18)

Thus, the output psd matrix is the transfer function of the
cascade shown in Fig. 6, where each box is an LTI system
with the indicated transfer function. When an arbitrary random
vector process with bispectrum matrix
is passed through an LTV system with bifrequency function

, the output vector is, in general, nonsta-
tionary. Its bispectrum matrix is the bifrequency
function of the cascade shown in Fig. 7, where each box is an
LTV system with indicated bifrequency function. This is shown
in [8] for continuous-time scalar systems and is proved for
discrete-time MIMO systems in Appendix A, for completeness.
In particular if the LTV system is LTI with transfer matrix

, then

(19)

This can be proved independently or by specializing the general
result for LTV systems to the LTI case.

E. Bispectra of CWSS Processes

Analogous to the case of LPTV() systems, we can show that
a CWSS( ) random vector process has bispectrum matrix

consisting of a set of parallel impulsive lines as
in Fig. 3(a). The bispectrum is given by expressions analogous
to (9) and (10), namely

(20)
where

where (21)

The function describing the shape of the impulse along
the th line (i.e., the line ) is

Note that
for all integers We may separate the component functions
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that characterize the bispectrum
and rewrite (20) as

(22)

From the discussion following (17), is Hermitian pos-
itive-semidefinite for all real . In the special case when is
WSS, , and equals the conventional psd matrix
of Thus, for a WSS process with psd matrix ,
the bispectrum matrix has a plot as shown in Fig. 3(b) and is
given by

(23)

IV. A NALYSIS OF BASIC MULTIRATE BUILDING BLOCKS

This section examines the effect of basic blocks such as
decimators and expanders on the bispectrum of their stochastic
input. Some of the results will be used in the later sections to
analyze more complicated systems. Note that decimating/up-
sampling of a vector means performing that operation on each
of its components.

A. Expanders, Decimators, and the Blocking Mechanism

1) Expanders:Let be a vector process obtained by
-fold upsampling of the process , i.e.,

whenever is an integer
otherwise.

Then, we conclude that has autocorrelation sequence
that is obtained by upsampling the autocorrela-

tion sequence of by the diagonal matrix

Thus, if and are, respectively, the
bispectrum matrices of and , we have

whenever are both integers
otherwise

(24)

(25)

It is well known (see Fig. 4(a) [2]) that an expander creates
imaging in the frequency domain for deterministic inputs. Re-
lation (25) shows that it also creates imaging in thebispectrum
domainfor arbitrary stochastic inputs(not necessarily WSS).
This is shown in Fig. 8. This observation will be very useful in
later sections.

2) Decimators: Let the vector process be obtained by
decimating by , i.e., Then, the autocorre-
lation sequence of is obtained by decimating that of ,
i.e.,

(26)

Fig. 8. Effect of an expander on the bispectrum of a nonstationary process.

Fig. 9. Effect of a decimator on the bispectrum of a nonstationary process.

Hence, the bispectrum matrices of and are related as

(27)

Thus, the decimator creates aliasing in thebispectrum domain
(Fig. 9) forstochastic inputs(possibly nonstationary), just as it
creates aliasing in the frequency domain (Fig. 4(b) [2]) for de-
terministic inputs. In Fig. 9, the light shade represents the region
of support of the original bispectrum and that of its stretched-out
version (after passage through the expander). The dark–shaded
areas in the output bispectrum represent overlap with shifted
copies of the stretched version.

3) Blocking: Consider a scalar process and its -fold
blocked version These are related as in Fig. 1.
Thus, using (19), (25), and (27), we find that their bispectra are
related as

(28)
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and

(29)

These equations can be used to prove certain results on blocking
of CWSS processes (see Section IV-B).

B. Preliminary Results

Many of the more elementary results of [1], some of which
are stated in Section II, can now be easily proved from the above
discussion. Further, this proof technique generalizes these re-
sults directly to the case of vector inputs, unlike the techniques
of [1].

• -fold upsampling of a WSS vector process gives a
CWSS( ) vector process. To see this, note that the
bispectrum of the WSS process has impulse lines sepa-
rated by a vertical spacing of [see Fig. 3(b)]. Due to
the bispectrum domain imaging created by the expander
(Fig. 8), this spacing is “compressed” to Therefore,
the output has a CWSS() bispectrum as in Fig. 3(a).
Note that the expander output cannot be CWSS() for

(unless the input is identically zero), i.e.,is the
“fundamental period” of cyclostationarity of the output.

• -fold decimation of a CWSS() vector process
gives a process that, in general, is CWSS(), where

gcd To prove this, note that the input
bispectrum is as in Fig. 3(a), with impulses along the lines

Due to the bispectrum
domain aliasing created by the decimator [which is shown
in Fig. 9 and by (27)], the decimator output has impulses
along the lines

or equivalently (30)

for (31)

where gcd These lines certainly form a
subset of the set of lines

in a CWSS( ) bispectrum, and hence, the output is
CWSS( ).

• A scalar process is CWSS() iff its -fold blocked ver-
sion is a WSS vector. More generally, a scalar process is
CWSS( ) iff its -fold blocked version is CWSS().
This can be shown from (28) and (29).

V. VECTORINTERPOLATION FILTERS

This and the remaining sections analyze more complicated
interconnections of the basic multirate building blocks of the
last section. We derive necessary and sufficient conditions for
their outputs to be WSS for all WSS inputs. The central theme
in these analyses is that the multirate system fed with WSS input
creates CWSS output by somehow adding more lines in the bis-
pectrum (which is usually due to the presence of an expander).
The aim is tofind the conditions under which the extra lines

Fig. 10. General vector interpolation filter.

Fig. 11. Synthesis filter bank—a special case of Fig. 10.

Fig. 12. Scalar interpolation filter—a special case of Fig. 10.

can be suppressed. The geometric insights obtained by looking
at the bispectra are exploited to find the conditions elegantly.

This section examines the-fold vector interpolation filter,
which is shown in Fig. 10. This system upsamples the-com-
ponent input vector by and passes the result through a
MIMO LTI system with transfer matrix In gen-
eral, and could be arbitrary positive integers unrelated to
each other . Fig. 11 shows the synthesis section of an

channel uniform filterbank with upsampling factor This is
a special vector interpolation filter where , i.e.,
is a row vector. If the vector is considered to be output in
Fig. 11, we get another special case where , and
is square and diagonal. Finally, if in Fig. 10, we get
the usual scalar interpolation filter of Fig. 12.

For the special case of the scalar interpolation filter, [1] shows
that the output is WSS for all WSS inputs if and
only if the LTI filter has an alias-free () support. The
proof is based on the fact that a scalar process is WSS iff its
blocked versions are WSS with pseudocirculant psd matrices.
This proof is quite involved and does not give any indication
about the corresponding result for the general system of Fig. 10.
This section provides a greatly simplified proof of this result
using bispectrum analysis. We show that the new proof extends
without much additional effort to the general case of Fig. 10.

A. MIMO Alias-free ( ) Systems

In order to state the main result on vector interpolation fil-
ters, we need to define MIMO alias-free () transfer matrices.
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Fig. 13. Illustrating MIMO alias-free (L) supports.

Recall that an alias-free () set of frequencies is a set such
that no two points and satisfying can
simultaneously belong to for any integer that is not a mul-
tiple of A scalar LTI system is defined to be alias-free ()
[or anti-aliasing ( )] if its frequency response is supported on
an alias-free ( ) set [1]. We now generalize this definition to
MIMO LTI systems.

Definition: The transfer matrix of a MIMO LTI
system is said to have an alias-free () support, and the system
is said to be MIMO alias-free () if it satisfies the following
property: If such that , where
is any integer not a multiple of , then at least one of the two
matrices and is zero. This can be seen to be
equivalent to the following: There exists an alias-free () set
such that each of the scalar transfer functions within the matrix

has support contained in [In particular, for example,
they all could have the same support, which is alias-free ().]

Notice that for scalar , the above reduces to the usual
definition of alias-free ( ) scalar systems [1]. In addition,
another equivalent definition is that is an ideal “image
suppressor” for deterministic inputs coming from the output
of an -fold expander. To explain image suppression for
MIMO systems, note that if the vector is upsampled

-fold, the output is , each of whose
components has copies of the frequency response of the
corresponding component of A MIMO alias-free ( )
system acting on would retain only one copy of each
of the components and process these copies. Note that thesame
copy is retained for each component of the vector so that all
these copies lie in the same frequency bands. This is illustrated
in Fig. 13, where the shaded areas show the filter supports. In
this figure, the matrix is MIMO alias-free
(3), whereas is not MIMO alias-free ( )
for any integer , although all the individual scalar systems

have alias-free (3) supports.

B. Statement and Implications of the Main Result

Theorem 1a:The vector interpolation filter shown in Fig. 10
has a WSS output for all WSS inputs if and only
if the LTI system is MIMO alias-free ( ). Under this

Fig. 14. Setup for Theorem 1b.

condition, the psd matrices and of and
, respectively, are related as

(32)

Theorem 1b: In Fig. 14, the output is WSS for all
CWSS( ) if and only if is MIMO alias-free ( ).
In other words, a MIMO LTI system produces WSS outputs for
all CWSS( ) inputs if and only if it is MIMO alias-free ( ).

We now discuss some implications of the above results.

1) Generalization of[1]: We get [1, th. 4.1] from Theorem
1(a) above if and are scalars.

2) Connection Between Theorems 1a and 1b: In Fig. 10, the
vector process is always CWSS() for any WSS

, as shown in Section IV. Therefore, the condition
in Theorem 1a is obviously a necessary condition in
Theorem 1b. However, if is an arbitrary CWSS()
vector process as in Fig. 14, it cannot always be created
as in Fig. 10 by upsampling a WSS process by
It is then not obvious whether the condition of Theorem
1a is still sufficient for of Fig. 14 to be WSS. The
strength of Theorem 1b is that it states that this is indeed
the case. This result is not stated in any form in [1].

3) Synthesis Filterbank: Theorem 1a can be ap-
plied to the special vector interpolation filter of
Fig. 11. With as input and as output,

If the
output is considered to be instead of , then

is diagonal with theth diagonal entry equal to
However, Theorem 1a says

that in both cases, the necessary and sufficient condition
for the output to be WSS for all WSS inputs is the
same, i.e., that all the filters
have supports contained in an aliasfree () set. In addi-
tion, under this condition, from Theorem 1b, the output
will be WSS even if the expanders are removed and
the input is allowed to be an arbitrary CWSS()
process. The sum of the components of a WSS vector
process is a WSS scalar process. Therefore, obviously the
condition for to be WSS is sufficient for to be
WSS, but Theorem 1 further tells us the not-so-obvious
fact that it is also necessary.

4) Relation to Perfect Reconstruction Filterbanks: Fig. 11
is in fact the synthesis section of the uniform filterbank
shown in Fig. 15. If this filterbank has the perfect re-
construction (PR) property, i.e., an input-output relation
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Fig. 15. General uniform filter bank.

, then clearly, the output is WSS
for all WSS inputs However, in this case, the syn-
thesis filters cannot satisfy the MIMO alias-free
condition of Theorem 1 because that would imply that
all output sequences have Fourier transform
with an alias-free ( ) support (violating the PR prop-
erty). This apparent conflict with Theorem 1 is resolved
by noting that it is only thefilterbank input that is
allowed to be arbitrary. The input vector to thesyn-
thesis sectionof the filterbank in Fig. 15 isnot an arbi-
trary WSS vector process as required by Theorem 1; it is
constrained by the analysis section of the PR filterbank.
The nature of this constraint is analyzed in detail in Ap-
pendix B. A question arising from this is the following:
What are the conditions under which is WSS for all
WSS in Fig. 15? This is answered in Section VI. In
addition, note that for PR, it is necessary that The
case where cannot give PR and is considered in
Section VII.

5) Joint Stationarity Properties: Theorem 1 allows us to an-
swer questions on joint stationarity. For example, we can
obtain the condition on a pair of-fold scalar interpola-
tion filters for their outputs to be jointly stationary for all
pairs of jointly stationary inputs. This situation is equiv-
alent to that of Fig. 11 with From [1], a necessary
condition is that each filter have a support contained in
an alias-free ( ) set. Theorem 1 goes further to give the
following necessary and sufficient condition:Both filter
supports must be contained in somecommonalias-free
( ) set. Similarly, from Theorem 1a, we can further find
the necessary and sufficient condition on a pair ofvector
interpolation filters for their outputs to be jointly WSS for
all jointly WSS input pairs: All the component scalars in
boththe filter transfer matrices should have supports con-
tained in some common alias-free () set.

C. Proof of Theorem 1

We first prove Theorem 1a. We use (19) and (25) to compute
the output bispectrum matrix in Fig. 10, as

(33)

where is the usual psd matrix of Here, we have
used (23) for the input bispectrum, and the scaling property of

the function. Now, (20) shows that is CWSS( ) and
will be WSS if and only if

whenever

for all (34)

where is the set of integers that are not multiples of[The
system must suppress the unwanted impulse-lines in the
CWSS bispectrum to get a WSS bispectrum].

1) The Sathe–Vaidyanathan Special Case:Consider the
special case of Fig. 12, where , and

are scalars. This is the case addressed in
[1]. Here, (34) becomes

whenever

for all (35)

The output will be WSS for all WSS inputs iff
(35) holds for every non-negative [This condition is
necessary because as is well known, for any transfer function

, we can find a WSS scalar random process with
psd ] Clearly, this is the same as saying that whenever

for any integer not a multiple of , then
of and , at least one is zero. This is precisely
the statement that the LTI system has an alias-free ()
support. This proves the scalar result (see [1, th. 4.1]).

For the more general vector case of Fig. 10, is WSS
for all WSS iff (34) holds for every Hermitian positive
semidefinite matrix (Again, for any Hermitian pos-
itive semidefinite , we can find a matrix such that

Therefore, by (18), if is a process with white un-
correlated scalar components, we can form the process

with psd matrix From the definition of
MIMO alias-free ( ) systems, it is clear that if is MIMO
alias-free ( ), then (34) indeed holds for every The
lemma in Appendix C shows that if (34) holds for every Hermi-
tian positive definite , then of and , at
least one is the zero matrix, i.e., is MIMO alias-free ( ).
This gives the converse. Finally, under the MIMO alias-free ()
condition, since the output is WSS, its bispectrum (33)
takes the form of (23). Comparing these equations shows that
the psd of is indeed given by (32), as claimed. Notice that
the lemma of Appendix C is not needed for the scalar case be-
cause it is trivial there.

We now prove Theorem 1b. For this, it suffices to show that
the MIMO alias-free ( ) property of implies that
is WSS for all CWSS( ) in Fig. 14. If is CWSS( ),
the form of its bispectrum is given by (20). There-
fore, using (19), the output bispectrum has the form

(36)

Comparison with (20) shows that is CWSS( ). The
MIMO alias-free ( ) condition implies that

is zero unless is a multiple of Hence, (36) takes the form of
(23), i.e., is WSS.
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Fig. 16. Exponential LPTV(L) modulator. (a) Symbol. (b) Representation as
in Fig. 2.

Thus, the MIMO alias-free () suppresses the un-
wanted lines in the bispectrum in both Theorems 1a and 1b. The
only difference is that the functions on the lines were more con-
strained in the case of Theorem 1a; however, we showed that
this does not enable us to relax the requirement on for
its output to be WSS for all WSS inputs. The proof of the scalar
and vector cases of Theorem 1a are almost equally easy, and
the generalization to Theorem 1b is almost immediate. The ap-
proach of [1] would be inordinately complicated for these pur-
poses.

2) Further Generalizations:The method of proof also al-
lows us, if we so desire, to obtain more relaxed conditions, such
as the conditions for the output to be CWSS((rather than
WSS) for all WSS inputs, where is any divisor of This
requirement would again translate into a condition on the sup-
ports of the elements of the transfer matrix ; however,
it would be less restrictive than the MIMO alias-free () condi-
tion. Looking at bispectra shows exactly how the requirements
translate into conditions on the supports.

VI. A CTION OF LPTV SYSTEMS ONWSS INPUTS

We know that an LTI system produces WSS output for all
WSS inputs. Exponential modulators described by Fig. 16 also
have this property, as shown in [1]. Both these systems are spe-
cial cases of a general LPTV() scalar system shown in Fig. 2.
The question that arises is whether there are other LPTV sys-
tems that have this property. This section answers this question
completely, i.e., we derive a necessary and sufficient condition
for an LPTV( ) system to produce WSS outputs for all WSS
inputs. Using the derived condition, we show that the onlyra-
tional LPTV systems (systems as in Fig. 2 with the filters
all rational) with this property are rational LTI systems, expo-
nential LPTV modulators, and cascades of these two. Recall that
we deal only with scalar LPTV systems, and that the input and
output rates are equal. Thus, Fig. 2, which shows such a system,
is completely equivalent to Figs. 15 and 17 with , i.e.,
a uniform maximally decimated filter-bank, as stated in Sec-
tion III-B.

A. Condition for WSS Outputs from LPTV(L) Systems

We begin by characterizing the bispectra of the outputs of
LPTV( ) systems for WSS inputs. For the system of Fig. 2,
Appendix D computes the expression for the bispectrum

of the output in terms of the psd
of the WSS input The result shows that the output is

Fig. 17. Polyphase representation of a general uniform filter bank.

CWSS( ), with an impulsive bispectrum as in Fig. 3(a) and
given by

where (37)

(38)

Here, the function describes the shape
of the impulse along theth line The
are the functions on the impulse-lines of the bifrequency map of
the LPTV system.

From the form of the bispectrum of a WSS process [which
is shown by Fig. 3(b) and (23)], we know that is WSS for
all WSS if and only if the following condition is satisfied:

must be identically zero whenis not a multiple of
for all valid input psd, i.e., for all This is clearly
equivalent to

for all (39)

whenever is not a multiple of Now, let denote the
“aliasing gains” of the LPTV system viewed as a filterbank,
as described in Section III-B and given by (8). Then , using

[see (11)] and reindexing, we get the de-
sired condition

for all

such that (40)

1) Conditions from [1] Are Less Explicit:We have shown
that a general LPTV() scalar system shown in Fig. 2 pro-
duces WSS output for all WSS inputs if and only if it satis-
fies (40), where are the aliasing gains of the system.
This condition is not easy to state concisely in an elegant form
without using an equation. However, it provides a clear way
to test if a given LPTV system has this property or not. Fur-
ther, it simplifies elegantly in the case ofrational LPTV sys-
tems, as shown in Section VI-B. To contrast this with results
from the approach of [1], let be the MIMO LTI transfer
matrix of the -fold blocked version of the LPTV system (see
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Section II). In addition, let be the psd matrix of the
blocked version of [which is pseudocirculant as

is WSS]. The approach of [1] would use (18) to state the
condition as follows: must be pseudo-
circulant for every pseudocirculant positive semidefinite matrix

[i.e., for every possible valid psd matrix of
under the constraint that is WSS]. This statement

gives a veryimplicit condition on the LPTV system and cannot
be easily tested.

2) LTI Case: The LPTV( ) system of Fig. 2 becomes LTI
with transfer function if and only if all the filters
equal From (8), this is equivalent to

, which means that (40) is satisfied. Therefore,
such a system indeed produces WSS output for all WSS inputs,
which is a well known fact.

3) Exponential Modulator:A general scalar modulator is a
system with output for input An expo-
nential modulator is one with This is LPTV( )
if and only if for some integer Such a system
is shown in Fig. 16(a). We know [1] that any exponential modu-
lator produces a WSS output for all WSS inputs To
reconcile this result with (40), note that an LPTV() exponen-
tial modulator can be represented as in Fig. 16(b). This is like
the general structure of Fig. 2 with a constant multiplier
of value Therefore, (8) shows that is nonzero
(and constant) for exactly one value of
This means that (40) is indeed satisfied here.

B. Case of Rational LPTV Systems

Rational LPTV( ) systems are systems as in Fig. 2 with all
the filters being rational LTI filters. Special cases are ra-
tional LTI systems [where all ] and expo-
nential LPTV( ) modulators Cascades
of rational LPTV(L) systems are also rational LPTV(L)—this
is evident when we consider the-fold blocked versions of the
systems (which are LTI as seen in Section II).

It is well known that the special cases of rational LTI systems
and exponential LPTV() modulators produce WSS outputs for
all WSS inputs, and hence, so do cascades of these systems. The
question arises whether there are other rational LPTV() sys-
tems with this property. This can be answered using the general
condition (40) derived above. We have the following theorem.

Theorem 2: A rational LPTV( ) scalar system produces
WSS outputs for all WSS inputs if and only if it is either a
rational LTI system, an exponential LPTV() modulator, or a
cascade of these.

Proof: From the earlier discussion, we see that it suffices
to prove the “only if” part of the theorem. We need the relation
between the aliasing gains and the filters of
the LPTV( ) system. This relation is given by (8) and is repro-
duced here for convenience:

(41)

This equation shows that rationality of the is equivalent
to that of the Now, consider a rational LPTV() system

Fig. 18. Illustrating the proof of Theorem 2. (a) Rational LPTV(L) system
producing WSS output for all WSS inputs. (b) Equivalent structure for this
system.

producing WSS output for all WSS inputs. Thus, are ra-
tional and satisfy the condition (40). This is possible if and only
if there is at most one such that
is not identically zero. Excluding the trivial case when there is
no such , let be not identically zero. [ is
rational]. Using (41), this means that each in Fig. 2 is the
cascade of a constant multiplier and Thus, the
system has the structure shown in Fig. 18(a), which shows itself
to be equivalent to Fig. 18(b) on comparison with Fig. 16. Thus,
the system is indeed a cascade of an exponential LPTV() mod-
ulator followed by the rational LTI system This concludes
the proof.

VII. OTHER APPLICATIONS

A. Partial Reconstructions from Subbands of a FB

Principal component filterbanks were proposed in [19],
with the idea of compressing the main signal features into a
few subbands of the filterbank and dropping the remaining
subbands. This results in a partial reconstruction of the signal,
and the system producing this reconstruction is equivalent to an
overdecimated uniform filterbank, i.e., a system as in Fig. 15,
where Theorem 2 then says that given any rational
uniform maximally decimated filterbank, none of the partial
(or principal component) reconstructions can be WSS for all
WSS inputs. For if this were the case, the system creating
the reconstruction (an overdecimated rational filterbank)
would have to be a cascade of a modulator and an LTI system
(from Theorem 2). However, such a cascade is necessarily a
maximally decimatedfilterbank, which is a contradiction.

B. Nonrational LPTV Systems

If we relax the restriction of rationality, we can find more
examples of LPTV( ) systems producing WSS output for all
WSS inputs. The ideal uniform brickwall subband coder is an
example of a nonrational filterbank for which the systems pro-
ducing the partial reconstructions are also LTI. Thus, in this
case, every partial reconstruction is WSS if the input is WSS.
Systems as in Fig. 2 where the vector of filters is
MIMO alias-free ( ) are another class of systems that produce
WSS output for all WSS inputs, as is clear from using The-
orem 1a. Indeed, (41) shows that for such systems the vector
of aliasing gains is also MIMO alias-free ( ); hence,
the condition (40) is satisfied. In fact Theorem 1a shows that
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this class of systems is also the class for which the output
is WSS forarbitrary CWSS( ) scalar inputs

C. Characterization of CWSS Scalar Bispectra

The equations (37) and (38) give a full characterization of
the bispectrum of an arbitrary CWSS(L) scalar process
This is because by spectral factorization of the psd matrix of
the blocked version of , we can show that every CWSS()
scalar process can be obtained by passing (WSS) white noise
through an appropriate LPTV() system. In particular, this
means that from (37) and (38) will automatically
satisfy the properties (15)–(17) for arbitrary transfer func-
tions for any non-negative function (i.e., valid psd)

D. Bifrequency Characterization of Lossless LTV Systems

Lossless LTI systems have been extensively studied in the
literature, owing to connections with paraunitary filterbanks
and orthonormal wavelets. Losslessness of a causal stable LTI
system may be described by two equivalent definitions.

1) The system input and output “energies” norms) are
always equal.

2) The inverse of the system is , which is the so-called
paraconjugate, defined so that

The extension to LTV systems is described in [5] and [6] in con-
nection with time-varying paraunitary filterbanks. Using the no-
tation of [5], the above definitions apply and are shown to be
equivalent for LTV systems as well, except that we have a new
definition of the “paraconjugate” of the LTV system

Converting this definition from [5] into the notation
using the Green’s function , we find that the paraconju-
gate is the system with Green’s function
This system is called the adjoint or dual system in [2]. Thus,
using (5) and (6), the second definition above for a lossless LTV
system now reads as

(42)

(43)

(Here, is the discrete impulse sequence.) This notation
is more general since the notation of [5] is useful only if the
input and output rates of the LTV system are equal. For example,
the -fold expander is a lossless LTV system that necessarily
requires this notation. For this system,
[2], which is easily seen to satisfy (42). This is consistent with
the fact that the expander is lossless.

The term “adjoint” here has the same meaning as in operator
theory: If are inner-product spaces, the adjoint of a linear
operator is the operator satisfying

for all (where
is the innerproduct of the two vectors from the same

inner-product space). Now, viewing the LTV system
as an operator from to , we can show on lines sim-
ilar to [5] that the adjoint of this operator is the LTV system

Thus, general lossless LTV systems areoperators
whose inverses are their adjoints.

VIII. C ONCLUDING REMARKS

We have used bifrequencies and bispectra to study the ef-
fects of multirate systems on the statistics of random input sig-
nals. We have shown that this often yields more insight into
the working of these systems than other approaches based on
polyphase matrices and pseudocirculants. It allows easy gen-
eralization of many of the results of [1] to MIMO systems. It
allows us to prove two nontrivial results (Theorems 1 and 2)
and seems to be a powerful tool for answering questions like
“When does a multirate system produce WSS outputs for all
WSS inputs?” However, as with any tool, indiscriminate use
of bifrequency analysis may be inefficient in many situations.
What appears to make it especially useful is the geometric in-
sight obtained when LPTV systems and CWSS processes are
involved, causing the 2-D Fourier transforms to become impul-
sive lines.

One question arising from our analysis is the following: Can
these results be used to tell us more about lossless LTV sys-
tems described in [5]? We have pointed out the bifrequency
characterization of a general lossless LTV system. However,
the bifrequency function is so general that it is not immediately
clear whether this helps in any way. A special case that might
be considered is that of lossless LPTV systems. Scalar sys-
tems of this kind have been dealt with in this paper. Vector sys-
tems correspond to paraunitary periodically time-varying filter-
banks, where the analysis and synthesis filterbanks are switched
cyclically between a selection of banks. Bifrequency analysis
of these may lead to some new insights. Another special case
might be that of “rational” LTV systems, i.e., those realizable
by a linear difference equation with time-varying coefficients.
The bifrequency function for such a system, which is given by
(4), clearly reflects the fact that it is fully characterized by the
coefficients of the difference equation (unlike the representa-
tion in [5]). Another area where bifrequency analysis might be
useful is in the theory of matrix filterbanks described in [20].
We could also ask other questions further generalizing the is-
sues considered here, e.g., find all LTV (as opposed to LPTV)
systems producing WSS outputs for all WSS inputs. The answer
to this is not directly evident from using bispectra. For example,
arbitrary exponential modulators (not necessarily LPTV) also
fall in this class [1].

APPENDIX A

Here, we prove the rule expressed by Fig. 7 for determining
the effect of a general LTV system on the bispectrum of its input.
Let the processes and be, respectively, the input and
output of an LTV system represented by its Green’s function

Equations (1) and (2) are therefore satisfied. Define
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the autocorrelation sequences and
Using (1), we have

where (44)

(45)

By comparison with (5), in (45) is the Green’s function
of the cascade of the LTV systems with Green’s functions

and (in that order). Similarly, the
output autocorrelation in (44) is the Green’s function
of the cascade of the LTV systems represented by
and (in that order). Hence, the 2-D Fourier transform
of , i.e., the output bispectrum, is the bifrequency
function of this cascade. Drawing the cascades and replacing
Green’s functions with bifrequency functions yields Fig. 7.

APPENDIX B

This appendix serves to show that if the filterbank in Fig. 15
has the PR property, the vector input to its synthesis sec-
tion isnotan arbitrary WSS vector process even if the filterbank
input is an arbitrary WSS scalar process. To do this, we
redraw Fig. 15 as in Fig. 17, where and are the anal-
ysis and synthesis polyphase matrices of the filterbank. We can
now use (18) to show that the psd matrix of is

Here, is the psd matrix of
the blocked vector in Fig. 17, and is thus pseudocircu-
lant since is WSS. Now, PR implies that is invert-
ible (for all ); hence, cannot be an arbitrary positive
semidefinite matrix. For example, if is positive semidef-
inite but not pseudocirculant, then is an
example of a positive semidefinite matrix that cannot
equal because cannot equal

APPENDIX C

Lemma 1: If are fixed matrices of the same size such
that for every Hermitian positive definite matrix ,
then either or (or both).

To prove the lemma, first consider the case when
and are column vectors. Assuming both are nonzero, we
will establish a contradiction. Choosing shows that the
vectors are orthogonal, i.e., However, we can
easily find a linear transform that acts on these vectors to pro-
duce two nonorthogonal nonzero vectors. To be specific, let
be any two independent nonzero nonorthogonal column vectors
of same size as Then, we can find a nonsingular square
matrix such that and Since ,
taking (which is Hermitian positive definite) yields

, which is a contradiction. [To find the matrix

here, suppose , which is the space of all -tuples.
Extend the linearly independent set to a basis of ,
and use the basis elements as columns of a matrixThus,
is nonsingular with first two columns Repeat the same
construction starting with to get a nonsingular
matrix with first two columns Then, is a
satisfactory choice.]

Next, we use the above to prove by contradiction the
general case, i.e., , and

, where are column
vectors of the same size. If both are nonzero, we can find

such that both and are nonzero.
Now, for all Hermitian positive definite , ,
and therefore, its entry is zero as well. This is
impossible by the established statement of the lemma when

are column vectors. This completes the proof.

APPENDIX D

This appendix serves to prove (37) and (38). As explained
in Section III-D, is the bifrequency function of
the cascade of Fig. 7, where is a
scalar given by (9), and

(46)

which is (23) in scalar form. By (6), the cascade of
and has bifrequency func-

tion

(47)

(48)

Using the sifting property of the function and the definition
, we get

(49)

(50)

One more application of (6) to cascade with
yields

(51)

(52)
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Using (46) and (50), we get

(53)

(54)

We now use the -fold periodicity of the summand in the index
to replace with throughout the summand. The inner

sum over then becomes independent ofUsing
, this yields

(55)

This is identical to (37) with defined as in (38). This
completes the derivation of (37) and (38).
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