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Bifrequency and Bispectrum Maps: A New Look at
Multirate Systems with Stochastic Inputs

Sony Akkarakaran and P. P. VaidyanathBellow, IEEE

Abstract—n multirate digital signal processing, we often en- unanswered. For example, what is the generalization of this
counter decimators, interpolators, and complicated interconnec- condition for the case of multi-input multi-output (MIMO)
tions of these with LTI filters. We also encounter cyclo-wide-sense systems with WSS vector inputs? What is the condition if we
stationary (CWSS) processes and linear periodically time-varying have a general LPTV system instead of the interpolation filter?
(LPTV)_ systems. It is often necessary to undt_arstand the gffects . g Y - o P :
of multirate systems on the statistical properties of their input ~ This paper addresses issues of this kind. We show that the
signals. Some of these issues have been addressed earlier. Falias-free {) condition mentioned above, as well as many of
example, it has been shown that a necessary and sufficientthe other results of [1], can be obtained in an elegant and geo-
condition for the output of an L-fold interpolation filter to be metrically insightful manner using bifrequency and bispectrum

wide sense stationary (WSS) for all WSS inputs is that the filter lvsis. The bif o1 1314 lete d .
have an alias-free £) support. However, several questions of this analysis. The bifrequency map [2], [3] gives a complete descrip-

nature remain unanswered. For example, what is the necessary tion_Of a general linear time-varying (LTV) system. Eor non--
and sufficient condition on a pair (or more generally abank) of stationary vector random processes, the autocorrelation matrix

interpolation filters so that their outputs are jointly WSS (JWSS) s a function of two indices. Its two-dimensional (2-D) Fourier

for all jointly WSS inputs? What is the condition if only the sum ; ; ; ;
of their outputs is required to be WSS? When is the output of an transform, which we shall call the bispectrum matrix (or simply

LPTV system (for example a uniform filter-bank) WSS for all WSS bispectrum for scalar prqcesses) gives a complete description of
inputs? Some of these questions may appear to be Simp|e genera|_the Second'order statistics Of the pI’OCGSS. These tOO|S haVe not
izations of the above-mentioned result for a single interpolation often been used to analyze multirate systems because they are
filter. However, the frequency domain approaches that proved this sometimes too general for the purpose. However, they greatly
result are quite difficult to generalize to answer these questions. simplify the analysis of the issues raised above and in the ab-
The purpose of this paper is to provide these answers using tract. Th the bif d bi t “d in” is th
analysis based on bifrequency maps and bispectra. These toolgStract. US'_ e bl requen_cy ai _|spec rum omain™Is the
are two-dimensional (2-D) Fourier transforms that characterize natural domain for addressing questions of this nature. The anal-
all linear time-varying (LTV) systems and nonstationary random ysis of [1] based on pseudocirculant power spectral density (psd)
processes, respectively. We show that the questions raised abovgnatrices would prove to be inordinately complicated for this
can be addressed elegantly and in a geometrically insightful way purpose. We also point out a necessary and sufficient bifre-

using these tools. We also derive a bifrequency characterization h terizati f the lossl LTV t d ibed
of lossless LTV systems. This may potentially lead to an increased quency characterization or the [0Ssiess Systems aescribe

understanding of these systems. in [5] and [6]. The condition is somewhat more general than that
of [5] and [6] and may potentially give additional insights into
|. INTRODUCTION these systems.

ULTIRATE systems contain interconnections ofA. Previous Work

V'l decimators, interpolators, and LTI filters. Linear peri- o 4 general continuous-time nonstationary scalar random
odically time-varying (LPTV) systems and cyclo-wide-sensy,cess, the autocorrelation function depends on two “time”
stationary (CWSS) random processes occur frequently \Jgijapjes. Many properties of its 2-D Fourier transform can be
multirate processing [1], [7], [13], [18]. It is often requiredi,nq in [4] and [8]. These 2-D Fourier transforms are repeat-
to analyze the effects of multirate systems on the statlst|c5ézg|y referred to in this paper and are callBspectrafor conve-
their input. Some analysis of this kind has been carried Oence. The term bispectrum has also been used in the literature
in [1], where a necessary and sufficient condition is deriveg}, higher order spectral analysis [9] to denote the 2-D Fourier
for the output of anL-fold interpolation filter to be WSS for yranstorm of thethird-order statisticsof the random process.
all WSS inputs. The condition is that the filter should havey, s this second definition is totally different from what we
an alias-freel) support. However, many questions remaifhean here, and we will make no further reference to works

based on it. Théifrequencyfunction for general scalar LTV
systems has been defined in [3] for continuous-time and in [2]
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CWSS processes arise naturally in our analysis. Such pro- z(n) N - 5 w(n)

cesses have been observed and studied by a number of author.

For example, Gardner discusses continuous-time CWSS pro- (a) Scalar system.

cesses in signal processing and communications applications

[11],[12] using a tool called the cyclic spectrum, which is some- y(n)= w(B(n)

what different from the bispectrum. The cyclic spectral density z(n) \/‘\x(l‘) (n w(n)
matrix is used for discrete time CWSS processes by Ohno and @ tL

Sakaiin [13] and [14], and several results have been established | 2

If the CWSSQ4) process is passed through modulators pro- L L YL

viding frequency shifts ofxk/M, &k = 0,1,---,M — 1 and ) 2@ _
the results are then passed separately through ideal lowpass fitblocking” o ° unblocking
ters of bandwidti2x /M, then the vector consisting of the T °

resulting outputs is WSS [14], and the cyclic spectral density z @ @ z
matrix is the psd matrix of this vector. Thé -fold blocked ver- L channels

sion(Section 1) of the CWSS¥/) scalar process is also a WSS

vector process, and its psd matrix is related to the cyclic spectral (b) L-fold blocked version.

density matrix by the Gladyshev's relation [14].

In [14], the cyclic spectral density matrix is computed for
(discrete time) periodic AR processes and for the output of a
filterbank. It is shown that if the FB is alias-free, its output is II. NOTATIONS AND PRELIMINARIES
WSS for all WSS inputs. The cyclic spectrum is used in [1?3& Notations
to numerically optimize filterbanks to minimize the reconstruc-"
tion error after some subbands are dropped. In [15] and [16],Superscriptg*) and (") denote the complex conjugate and
Petersohret al. have presented a matrix calculus description épatrix (or vector) transpose, respectively, whereas superscript
multirate systems. It is used to compute the spectra of outgl#gger’) denotes the conjugate transpose. Boldface letters are
signal and noise in systems such as cascaded multirate filldpgd for matrices and vectors. Tfie;j) element of a matrix
and fractional decimation circuits. It is also used to derive da is denoted byB]; ;). Lower-case letters are used for 1-D
efficient polyphase structure for fractional decimation. Theg¥d 2-D discrete sequences, whereas upper-case letters are used
earlier works have not considered more complex situations f@ 1-D and 2-D Fourier transforms andR, respectively, de-
volving vectorCWSS processes. They have also not considerdgte the set of integers and that of real numbers. The space of
the conditions for stationarity of the output of more complicated! finite norm A7-component vector sequences is denoted by
systems like vector interpolation filters. While the present pap€M)- [The I* norm of a vector sequence(n) is defined as
was in the final stages of preparation, the very recent refererdgg)ll = [>,, x'(n)x(n)]'/?.] The DFT matrix of orderL
[17] also came to our attention. This reference deals with tiedenoted bW ;. Decimators, expanders, and other multirate

properties of higher order spectra in the context of multirate prguilding blocks have their standard definitions and symbols in
cessing. figures, which can be found, for example, in [18].

Fig. 1. Blocking.

B. Outline of the Paper B. Preliminaries

Section Il provides a review of the basic definitions and prop- Multirate systems contain decimators and expanders in addi-
erties of stationary and cyclostationary discrete random prien to LTI systems. Therefore, their study involves the study of
cesses. Section Il is a review of the basic properties of bifrirear periodically time-varying (LPTV) systems and “blocked
guency maps and bispectra, which we will need for our analersions” of scalar systems. Stationary random processes, when
ysis. Section IV examines the effect of elementary multiragassed through LPTV systems, become cyclostationary. Since
building blocks such as decimators and expanders on the lilsese ideas occur frequently later, we begin by defining them.
pectra of their random process inputs. These results are tieoentral theme of this paper is to study the effect of multirate
used in the later sections to analyze more complicated multiratestems on the statistics of random process inputs. All random
systems. Section V considers vector interpolation filters, whigitocesses are assumed to be zero mean since the effect of alinear
upsample the input vector process and pass the result throsgbtem on the mean can easily be analyzed.

a MIMO transfer matrix. We find the necessary and sufficient 1) Blocking: Fig. 1(a) shows a scalar linear system
condition on this transfer matrix so that the output is WSS fat with input z(n) and output w(n). Fig. 1(b) shows
all WSS inputs. Section VI considers general LPTV scalar sythe L-fold blocked version of this system. The vector
tems. In particular, we show that the only rational LPTV sys<*)(n) = [¢(nL), z(nL — 1), -+, z(nL — L+ 1)]7 is said to
tems that produce WSS output for all WSS inputs are ratioriz thel-fold blocked version of:(n), and similarly,w (™) (n)
LTI systems, exponential LPTV modulators, and cascadesisfthe blocked version of the output(n). Converselyz(n) is
these. These results are applied to other multirate systems scalked the Z-fold unblocked version ok (n). The L-input

as principal component filterbanks in Section VII. We also poirft-output system<(E) of Fig. 1(b) is said to be thd-fold
out the bifrequency characterization of lossless LTV systems d#decked version of the scalar systefhof Fig. 1(a). If £ is
scribed in [5] and [6]. linear, so isC{"). Further,£ is LTI if and only if £(™) is LTI
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with a pseudocirculant transfer matrix (defined in [1]).is y(n)
LPTV(L) (defined in Section 1I-B) iff£(%) is LTI. By(e?®)

2) Cyclostationarity: Given a vector random process
x(n), define its autocorrelation sequence Bgn,m) = , z
E[x(m)xt(m — n)]. If this is periodic inm with period L for By(e’)

all integersn, we say thatx(n) is CWSSL), i.e. wide sense
cyclostationary with period.. If L = 1, thenx(n) is wide
sense stationary (WSS), and(n, m) = rx(n) is independent
of m. In this case, the-transform ofr, () is called the power
spectrum (psd) matri$, (=) of the process.

3) Joint Cyclostationarity: Two vector processes(n) and

By_i(e?*) J i

y(n) are said to be jointly CWS$O [JCWSSL)] if the vector Fig. 2. General representation of scalar LPTV(L) systems.

x(n) is CWSSL(). It can be shown that a vector process ) )
) yCCV An example of an LTV system is the (scalar) modulator defined
is

S{) iff all pairs of its component scalar Processes aigy the input-output relation(n) = ao(n)z(n). It has a bifre-
JCWSSL). If L = 1, JCWSSL) is synonymous with jointly quency mapK(cjw’7cjw) - (1/27F)A0(6j(w’—w)) [2], where
WSS (JWSS). Ap(e?*) is the Fourier transform ofy(n). A generalization is

4) Blocking of CWSS Processeket x(n),y(n) be scalar \ynat may be called a “rational” LTV system, i.e., one that is
rargdom processes with respectiefold blocked VETSIONS realizable by a linear difference equation with time-varying co-
_X( )(n) and y' _)_(”)- Then, z(n) is CWSS() iff x( )(7?) efficients. Thus, it is characterized byn) = ao(n)z(n) +
is WSS. In additionz(n) is WSS iff x(")(n) is WSS with ar(n)z(n — 1) + -+ + ax(n)z(n — k) and can be shown to
pseudocirculant psd matrix. Lastin), y(n) are JCWSSL) iff 51 e bifrequency map
x(M)(n) andy " (n) are JWSS.

To motivate how processes with properties as defined above o 1 F o .
appear in multirate systems, note, for example, that upsampling K ,ev) = 2 D eI Ayl ) (4)
a WSS vector process (i.e., upsampling each componert) by T =0

gives a CWSSL) vector process. Another example is a multi- L .

stage implementation of an interpolation filter, i.e., a repeat&{'€"® Ai(e?*) is the Fourier transform ofa;(n) for
cascade of an expander and a filter. This kind of cascade also=_U:1,-~, /. This expression clearly brings out the
occurs in nonuniform tree-structured filterbanks. This gives rid@Ct that the system is characterized by et 1 transfer

to processes that are CWSS with larger and larger periods. functionsA;(e’). . _
Cascading two LTV systems with Green'’s functidném, »)

and bifrequencie¥;(¢/’ ¢/*), i = 1,2 (in that order) gives

a new LTV system with Green’s functidk(,n) and bifre-
In order to describe the time-varying systems and nons@]encyK(ejw’7ejw) given by

tionary processes that are invariably encountered in the study

Ill. B ASIC PROPERTIES OFBIFREQUENCIES ANDBISPECTRA

of multirate systems, we now review the bifrequency and bis- i
pectrum descriptions. k(m,n) = Y ka(m,r)ki(r,n) 5)
A. General LTV Systems and Bifrequency Maps K(ejw’7ejw) _ " KQ(ejw’7ejw”)Kl(ejw”7ejw) 4. (6)
A MIMO LTV system [2] with inputx(n) and outputy(n) -
is fully specified by the time-domain relation
oo oo B. LPTV Systems
y(m)= > k(m,n)x(n)= > h(m,n)x(m - n). An LPTV(L) system (linear periodically time-varying with
n=-oo n=—oo 1 period L) is defined as one whose impulse respoh&e., n)

Here,k(m,n) is called theGreen’s functionand is perfectly is periodic inm with period L for each integen. By LPTV

general. The functioh(m, n) is the time-varying impulse re- system, we will a_Iways mean one with equal input gnd output
sponse that is useful only if the input and output rates are eqﬂ%ﬁes S0 t.hat the |mpul§e resporgen, n) can be meaningfully
[2]. These are related dgm,n) = k(m,m — n). The LTV used. This paper considers only scalar LPLY¢ystems. Such

is also full i he bif f . systems can always be represented as in Fig. 2 (see [18, ch.
system is also fully specified by the bifrequency function 10]), and conversely, the system of Fig. 2 is always LPIWV(

. 1 o o . In this figure, the boxes are scalar LTI systems with transfer
K@, e™) = o > Y k(m,n)e ™" (2)  functions B, (=) and impulse responsés(n). Using standard
m=—00 n=-00 multirate tools, we can show that(n) = h(n — r,n) for r =
The system input—output relation in the frequency domain is 0+ 1, -+ -» L — 1 for all integersn. The system is characterized
by the L transfer functionsB,.(z). It can also be viewed as a
maximally decimated filterbank (in which thieanalysis filters
are delays). Hence, it can alternatively be characterized by the

Y(@) = [ K@ X)) do. @)

—T
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Fig. 4. Bifrequency maps of three-fold expander and decimator. (a) Expander.
o (b) Decimator.
w' To prove this, we insert (9) in (3) and integrate using the sifting

property of thes(-) function, which yields

L—1
Y(e') = F(eh | /@' =2ra/ Iy x (' = (2ma/ L))y
0 w q=0
0 2 — L—1
(b) L =1. (LTI / WSS case). = F ()X (I By, (12)
q=0

Fig. 3. Impulsive lines in LPTVL) bifrequencies and CWS§] bispectra. (a) . .
L =3.(b)L = 1 (LTIUWSS case). Comparison with (7) now proves (11).

Conversely, for any functionk (¢, /) given by (9),
of the filterbank, which describe W& €an find an LPTVL) system with bifrequency function
K(e9%",¢i+). This is because by inverse Fourier transforma-
tion, we see that the corresponding impulse resparise n)
is periodic inm with period L for all integersn, which is in
agreement with the definition of an LPT¥) system. If the
system is in fact LTI with transfer functioH (¢/~'), thenL = 1
Applyingtherelatlonsm [18, ch. 5]to the systemin Fig. 2 showgnd F(ci« | ¢i*) = H(ew) = F, (/) for all integersy.

L “aliasing gains”A,.(») [18]
its input-output relation according to

Y (/) Z A (7)) X GJ(m (2777/’))) (7)

that Expanders and decimators are also LTV systems but are not
[Ao(2), Au(z), -, A" LPTV under our dgfinition as their input gnd output ratt_es are
1 . not equal. Their bifrequencies also consist of parallel impul-
=7 WilBo(z), Bu(z), -, Br-i(2)]". (8) sive lines [2], but unlike the case of LPTV systems, the slope

. ., . oftheselinesis not unity. Itis less than unity for expanders and
From (7), we can expect the bifrequency functific’", ¢’)  greater than unity for decimators [2]. These bifrequency maps
for this system to be characterized in some waylbyyansfer are shown in Fig. 4, which is a pictorial representation of the

functions. Indeed, we have [10] frequency domain input-output behavior (3) of these systems. It
S P iy gﬂq shows exactly how the expander creates imaging and the deci-
K(e, ) = F(e’, e™) Z 6 <‘“ - ) (9 matorcreates aliasing in the frequency domain, for deterministic
== inputs.
where

' ' oo o C. General Nonstationary Processes and Bispectra
P&, %) = i Z Z k(i r)em= e (10)  The autocorrelation matrik, (m,n) and bispectrum matrix

r=0 i=—oo S, (e’ ¢i+) of a nonstationary vector process$n) are de-
and where k(m,n) = Green's function Equation (9) fined as
shows that the bifrequency map consists of a set of par-
allel impulsive lines, as illustrated by Fig. 3(a). Thgh r(m,n) =E[x(m)x"(n)] (13)
line has equations’ — w = 2wq/L. The shape of the S 1 i
impulse along this line is given éy the transfer function Sx(¢’,¢’) Tox Z Z (m,n)e imeden,
F(e/*) = F(e/*, e/ @=ra/1)) which is thus seen to m=—o0 n=—oo (14)

have anL-fold periodicity in ¢g. The bifrequency map is fully
characterized by the first of the functionsF,(c’~), i.e., we
have

F ey = A (ef® =0,1,---,L—1; an
q(e, ) (e )’ 7=0, 7 ; and IWe can also prove (11) in the time domain by using (8), (10), and the relations
Fq(e“) =F,r (GJL") for all integersg. (1) n(m,n) = k(m, m —n) andb.(n) = h(n — r,n).

Whenx(n) isascalarSy (¢, ¢/«) = S,(¢/*", ¢/*) is ascalar
as well and satisfies the following properties: (These are dis-
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27r Y . .
C B Ht () S(e?*) > H(elv) P
* d ..... § _ - =
W ¢ ... & - - Fig. 6. Schematic explanation of the effect of an LTI system on the psd matrix.
[ : :
[
I WE W .
1A : :
b - =D Ko, o) D 8(e, i) FD| K(ev, eiv) >
a [o7 L
O * * . . .
0 a b c d o w Fig. 7. Schematic explanation of the effect of an LTV system on the
- bispectrum matrix.

Fig. 5. [lllustrating properties of scalar bispectra.

response(c’*), the output is a WSS vectgr(n) with psd
crete-time versions of the properties stated in [4] for contifpatrix
uous-time processes.)

ey = H(ed JOVHT (0
S.(e7, ') >0 forallrealw (15) Sy(¢77) = H(E™)Sx(e"JHI (). (18)
bt i’ s g Thus, the output psd matrix is the transfer function of the
/a /a ol ) dwdw 2 0 (16) cascade shown in Fig. 6, where each box is an LTI system
b pb L with the indicated transfer function. When an arbitrary random
/ / Sx(e’, e’ du' dw vector processk(n) with bispectrum matrixS, (¢’ ¢/)
TR is pas;ed through an LTV system with bifrequency function
/ / S,;(ej“',ej“) do’ dw K(ev , e’¢), the output vectory(n) is, in general, nonsta-
e Je tionary. Its bispectrum matri®,, (¢’ , ¢’*) is the bifrequency
b pd L, 2 function of the cascade shown in Fig. 7, where each box is an
> / / Sz(e’¥, %) dw' dw (17) LTV system with indicated bifrequency function. This is shown
@ in [8] for continuous-time scalar systems and is proved for

Here,a,b,e,d € (—r,7]. Fig. 5 illustrates these properties_discrete-time MIMO systems in Appendix A, for completeness.

Equation (15) says that the 2-D functim(eg’w' Y is non- In particular if the LTV system is LTI with transfer matrix
negative on the diagonal’ = w, and (16) says that its inte- H(¢’), then

grals over the hatched areas A,B are non-negative. To help un- j ey o G et g

derstand these properties, we can draw analogies between the Sy(e, ) = H(e")Sx (e’ , H(e?™).  (19)
b|spectrun}5‘m(efffw, ¢’*) and the conventional power Spectrumps .o he proved independently or by specializing the general
Eﬁ:%lrlg:}ir:;})(e] ) of @ WSS vector process. Thus, we havgg ¢ for LTV systems to the LTI case.

« Equation (15) is analogous 3] ;. > 0 for all real .
q (15) g (i 2 E. Bispectra of CWSS Processes

W.
* Equation (16) is analogous to the positive semidefinitenessanalogous to the case of LPTYJ systems, we can show that
propertyx'P(¢/)x > 0 for all vectorsx. a CWSS() random vector processn) has bispectrum matrix

* Equation (17) is analogous to the propertg, (.i~’ ci«) consisting of a set of parallel impulsive lines as
x'P(e’*)y]? < xP(e™)x)(y"P(e/*)y) (for any inFig. 3(a). The bispectrum is given by expressions analogous
vectorsx, y), which follows from the Cauchy-Schwartzi (9) and (10), namely
inequality.

* Although the diagonal elements &f(¢c’~) are non-neg- i e i e 27
ative functions, the off-diagonal ele(mer)ns need not everpx(¢’”»¢’”) = Px(e’, ) >0 <w - Tq)
be real. Similarly, althoughs,.(¢/*, /%) > 0 (15), =T (20)
S.(e’¥, e?*) need not even be realdf # «’.

In general, wherx(n) is not a scalar$, (¢’“, ¢/*) is Hermi- -
tian positive semidefinite for all real. The Hermitian property i e 1 . Zidli ier
follows from (14). The positive semidefiniteness can be deduced Px(e™ ) = i Z Z (i, )7 e
by using (15) on the (scalar) bispectra of the scalar processes =0 =
vix(n) for arbitrary constant vectors.

oo

where

o

wherepy(i,7) = E[x(i)x(r)]. (21)

. ) ) The function describing the shape of the impulse along
D. Action of Linear Systems on Bispectra the gth line (i.e., the linew’ — w = 2rq/L) is PL(c/)

Itis well known that when a WSS vecta(rn) with psd matrix = Py (¢, ¢/ «@~(27¢/L)) Note thatPl(c/*) = PItl(e/v)
Sx(c’) is passed through an LTI system with frequencfor all integersg. We may separate the component functions
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Pi(e/*),i = 0,1,---, L — 1 that characterize the bispectrum x(n) ~—— @ )
and rewrite (20) as

Sulei i) ——> ¢[L 0] —— Sy )
S« eJ‘" eJ‘" E PZ eJ‘" “)

=0

o> 2[.
3 6<w—w’+%+27rm). (22)

m=—0o<

From the discussion following (17R%(c’*) is Hermitian pos-
itive-semidefinite for all reab. In the special case whexin) is
WSS, L = 1, andP?(c’*) equals the conventional psd matrix
of x(n). Thus, for a WSS procesgn) with psd matrixS(c’=),

the bispectrum matrix has a plot as shown in Fig. 3(b) and |s
given by Fig. 8. Effect of an expander on the bispectrum of a nonstationary process.

Sx(ej‘“',,ej“’) = S(eI) Z lw—u +2mq).  (23)
= w — @) —

S(e el —— J'[L O]

IV. ANALYSIS OF BASIC MULTIRATE BUILDING BLOCKS 0L
UJ,

by

This section examines the effect of basic blocks such
decimators and expanders on the bispectrum of their stocha
input. Some of the results will be used in the later sections
analyze more complicated systems. Note that decimating/t=7| 7w
sampling of a vector means performing that operation on ea
of its components.

A. Expanders, Decimators, and the Blocking Mechanism T

1) Expanders:Let z(n) be a vector process obtained by g o
L-fold upsampling of the procesgn), i.

Effect of a decimator on the bispectrum of a nonstationary process.

Hence, the bispectrum matricesxdfn) andy(n) are related as
. Sy(cj“", &)
Then, we conclude that(n) has autocorrelation sequence 1 Lt

T I I i - 7
Elz(m)z'(n)] that is obtained by upsampling the f];l:uto(t):orrela L2 Z Z S, (&9 (& —2D)/ D) illw—2m0)/L)y - (27)

2(n) = x(n/L), whenevem/L is an integer
10, otherwise.

tion sequence ak(n) by the diagonal matrid. = 0 Ll p=0 =0
Thus, if Sx(e/*, e7*) andS,(e’*’, ¢i*) are, respectively, the Thus, the decimator creates aliasing in Higpectrum domain
bispectrum matrices of(n) andz(n), we have (Fig. 9) forstochastic inputgpossibly nonstationary), just as it
creates aliasing in the frequency domain (Fig. 4(b) [2]) for de-
Elz(m)z' (n)] terministic inputs. In Fig. 9, the light shade represents the region
E[x(m/L)x"(n/L)] of support of the original bispectrum and that of its stretched-out
= whenever(m /L), (n/L) are both integers (24) version (after passage through the expander). The dark-shaded
0, otherwise areas in the output bispectrum represent overlap with shifted
S,(e7, &%) = Sy (', &L, (25) copies of the stretched version.

3) Blocking: Consider a scalar processn) and itsL-fold
It is well known (see Fig. 4(a) [2]) that an expander creat@ocked versiory(n) = x(%)(n). These are related as in Fig. 1.

imaging in the frequency domain for deterministic inputs. Rerhys, using (19), (25), and (27), we find that their bispectra are
lation (25) shows that it also creates imaging inbi®pectrum (g|ated as

domainfor arbitrary stochastic inputgnot necessarily WSS). i e
This is shown in Fig. 8. This observation will be very useful in [Sy (e, ¢ )m,n)

later sections. Lol Lot . :
2) Decimators: Let the vector procesg(n) be obtained by = Z Z Sx(C]((L° 72”)/”76’((“72“)/”)
decimatingz(n) by L, i.e.,y(n) = x(Ln). Then, the autocorre- p=0 ¢=0
lation sequence f(n) is obtained by decimating that &fn), exp <—j <w/ _ 27rp> m)
ie., L

Ely(m)y'(n)] = Epx(Lm)x!(Ln)].  (26) exp (5 (“F) n) (28)
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and x(n) v(n)

L-1 L—1 +@—% y(n)

Su(e™ &) = 37 ST Sy (e, ey —
m=0 n=0
-exp(jw'm) exp(—jwn). (29) ; ( :) 5 ) "
. . . o H(e’*) p outputs

These equations can be used to prove certain results on blocking o —>-
of CWSS processes (see Section IV-B). °

r inputs
B. Preliminary Results

Many of the more elementary results of [1], some of which _ _ o
are stated in Section II, can now be easily proved from the above Fig. 10. General vector interpolation filter.
discussion. Further, this proof technique generalizes these re-

-

sults directly to the case of vector inputs, unlike the techniques X(% Hy(elv y{n yn
of [4]. (™)
» L-fold upsampling of a WSS vector process gives a

CWSS() vector process. To see this, note that the %-@—% Hy(e?)

bispectrum of the WSS process has impulse lines sepa- o o

rated by a vertical spacing @ [see Fig. 3(b)]. Due to o °

the bispectrum domain imaging created by the expander o °

(Fig. 8), this spacing is “compressed”2e /L. Therefore, ) A

the output has a CWSS bispectrum as in Fig. 3(a). @9 H,_1(e)

Note that the expander output cannot be CWSS{or

K < L (unless the input is identically zero), i.d.,is the Fig. 11. Synthesis filter bank—a special case of Fig. 10.
“fundamental period” of cyclostationarity of the output.
« M-fold decimation of a CWSS) vector process(n) z(n)y ( :> 3 H(e) Ly(n)

gives a procesg(n) that, in general, is CWSH(), where

K = L/gcd L, M). To prove this, note that the input
bispectrum is as in Fig. 3(a), with impulses along the lines
w—w 4+ (2ri/L) = 0,7 € Z. Due to the bispectrum o ] )
domain aliasing created by the decimator [which is showfif" P& suppresse@he geometric insights obtained by looking

in Fig. 9 and by (27)], the decimator output has impulséd the bispectra are exploited to find the conditions elegantly.
along the lines This section examines thi-fold vector interpolation filter,

which is shown in Fig. 10. This system upsamplestiemm-
=0, orequivalently (30) Ponentinput vectok(n) by L and passes the result through a
M L MIMO LTI system withp x r transfer matrixH (/). In gen-
2n[(p — 9 K + 1] -0 eral,p, 7 and L could be arbitrary positive integers unrelated to
K each othefL > 1). Fig. 11 shows the synthesis section of an
foric 2,p,q€{0,1,--- .M =1} (31) . channel uniform filterbank with upsampling factbr This is
whereN = M/gcd(L, M). These lines certainly form a & special vector interpolation filter whepe= 1, i.e., H(¢’*)
subset of the set of lines — ' + (27j/K) = 0, j € isarow vector. If the vectoy’(n) is considered to be outputin
Z in a CWSSK) bispectrum, and hence, the output i§ig. 11, we get another special case where 7, andH(e’*)
CWSS(). is square and diagonal. Finally,jif= » = 1 in Fig. 10, we get
« A scalar process is CWSHY iff its L-fold blocked ver- the usual scalar interpolation filter of Fig. 12.
sion is a WSS vector. More generally, a scalar process isFor the special case of the scalar interpolation filter, [1] shows
CWSS(K L) iff its L-fold blocked version is CWS%(). that the outputy(n) is WSS for all WSS inputs:(n) if and
This can be shown from (28) and (29). only if the LTI filter H(e’*) has an alias-freel() support. The
proof is based on the fact that a scalar process is WSS iff its
blocked versions are WSS with pseudocirculant psd matrices.
This proof is quite involved and does not give any indication
This and the remaining sections analyze more complicatdBout the corresponding result for the general system of Fig. 10.
interconnections of the basic multirate building blocks of th&his section provides a greatly simplified proof of this result
last section. We derive necessary and sufficient conditions #é¥ing bispectrum analysis. We show that the new proof extends
their outputs to be WSS for all WSS inputs. The central thenféthout much additional effort to the general case of Fig. 10.
inthese analyses is that the multirate system fed with WSS input ,
creates CWSS output by somehow adding more lines in the His- MIMO Alias-free {) Systems
pectrum (which is usually due to the presence of an expander)In order to state the main result on vector interpolation fil-
The aim is tofind the conditions under which the extra linegers, we need to define MIMO alias-freg)(transfer matrices.

Fig. 12. Scalar interpolation filter—a special case of Fig. 10.

w—w +27(p — 2mi
(p—q)  2mi

w—w’—i—

V. VECTORINTERPOLATION FILTERS
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. y(n)
Hy(e?¥) v(n) — LS
arbitrary
| W CWSS(L) .
2 4 o i
0 < 3 2w o H(e) N
.w o
Hy(e) ° p outputs
) /
p o In - 7 inputs
0% Kl 3 2m
Hg(ej“’) Fig. 14. Setup for Theorem 1b.
‘ l w condition, the psd matrice8, (¢’~) andS, (e’*) of x(n) and
0 3 %" %” 4?” 27 v(n), respectively, are related as
Fig. 13. lllustrating MIMO alias-freel) supports. Sy (/) = I H(c7)S, (Z“LYHT (/). (32)

Theorem 1b:In Fig. 14, the outputy(n) is WSS for all
Recall that an alias-fred.j set of frequencies is a sstsuch CwWS§L) v(n) if and only if H(c/*) is MIMO alias-free ().
that no two pointss andw’ satisfyingw — ' = (2mg/L) can |n other words, a MIMO LTI system produces WSS outputs for
simultaneously belong t§ for any integer that is not a mul- all CWSS() inputs if and only if it is MIMO alias-free L).
tiple of L. A scalar LTI system is defined to be alias-frég) ( We now discuss some implications of the above results.

[or ar_lti-aliasing )] 1t its frequency response i_s suppo_r_ted on 1) Generalization of1]: We get [1, th. 4.1] from Theorem
an alias-free £,) set [1]. We now generalize this definition to 1(a) above ifx(n) andH(c/) are scalars

MIMO LTI systems. 2) Connection Between Theorems la anditb-ig. 10, the

Defini'tion:_ The transfer matrixH(eJ“‘) of a MIMO LTI vector proces(n) is always CWSSE) for any WSS
system is said to have an alias-frdg gupport, and the system x(n), as shown in Section IV. Therefore, the condition

is said to be MIMO alias-freelf) if it satisfies the following in Theorem 1a is obviously a necessary condition in
property: Ifw,w’ € R su<_:h thaty — w’ = (2mq/L), whereq Theorem 1b. However, if(n) is an arbitrary CWSS()

is any integer not a multiple ak, then at least one of the two vector process as in Fig. 14, it cannot always be created
matricesH(e¢’) andH(e’*' ) is zero. This can be seen to be as in Fig. 10 by upsampling’a WSS procass) by L
equivalent to the following: There exists an alias-rég ¢etS It is then not obvious whether the condition of Theorem
such that each of the scalar transfer functions within the matrix 1a is still sufficient fory(n) of Fig. 14 to be WSS. The
H(c™) has support contained 81 [In particular, for example, strength of Theorem 1b is that it states that this is indeed

they a.II could have the same suppsrtwhich is alias-freed).] the case. This result is not stated in any form in [1].
Notice that fqr scalaH(e’*), the above reduces to the.u_sual 3) Synthesis Filterbank Theorem 1a can be ap-
definition of alias-free [) scalar systems [1]. In addition, plied to the special vector interpolation fiter of
another equivalent definition is th&E(e¢?«) is an ideal “image Fig. 11. With x(n) as input andy(n) as output
suppressor” for deterministic inputs coming from the output H(e) = [Ho(e3), Hy(c5), - Hooy(e5)]. If the7
of an L-fold expander. To explain image suppression for ¥ R
MIMO systems, note that if the vectd(c’“) is upsampled
L-fold, the output isY(e’*) = X(e/“T), each of whose
components had. copies of the frequency response of the
corresponding component &(e’«). A MIMO alias-free ()
system acting ofY (¢?*) would retain only one copy of each
of the components and process these copies. Note thsathe
copy is retained for each component of the vector so that all
these copies lie in the same frequency bands. This is illustrated
in Fig. 13, where the shaded areas show the filter supports. In
this figure, the matriH, (e’*), Hy(e/*)] is MIMO alias-free
(3), whereagdH; (¢’*), Hz(c’*)] is not MIMO alias-free )
for any integerL, although all the individual scalar systems
H;(¢'*),i = 1,2,3 have alias-free (3) supports.

output is considered to bg/(n) instead ofy(n), then
H(c’*) is diagonal with theith diagonal entry equal to
H;(e*),i=0,1,---,7 — 1. However, Theorem 1a says
that in both cases, the necessary and sufficient condition
for the output to be WSS for all WSS input$r) is the
same, i.e., that all the filterd;(¢/*), s = 0,1,--- 7 — 1
have supports contained in an aliasfrég ¢et. In addi-
tion, under this condition, from Theorem 1b, the output
will be WSS even if the expanders are removed and
the inputx(n) is allowed to be an arbitrary CWSBY
process. The sum of the components of a WSS vector
process is a WSS scalar process. Therefore, obviously the
condition fory’(n) to be WSS is sufficient fog(n) to be
WSS, but Theorem 1 further tells us the not-so-obvious
fact that it is also necessary.

B. Statement and Implications of the Main Result 4) Relation to Perfect Reconstruction Filterbankgg. 11
Theorem la: The vector interpolation filter shown in Fig. 10 is in fact the synthesis section of the uniform filterbank
has a WSS outpug(n) for all WSS inputsx(n) if and only shown in Fig. 15. If this filterbank has the perfect re-

if the LTI systemH(¢?*) is MIMO alias-free (). Under this construction (PR) property, i.e., an input-output relation
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x(n) v(n) the d(-) function. Now, (20) shows that(n) is CWSS{) and
will be WSS if and only if

H(c/")Sy(e?“F)H (™) =0  whenever
W' —w=2nq/L, forallqe B (34)

° whereB is the set of integers that are not multiplesiof[The
@ @ systeniH(e/*) must suppress the unwanted impulse-lines in the
CWSS bispectrum to get a WSS hispectrum].
Fig. 15. General uniform filter bank. 1) The Sathe—Vaidyanathan Special Castonsider the
special case of Fig. 12, wherH(¢’*) = H(¢*), and
Sx(e/*) = S,(e*) are scalars. This is the case addressed in
y(n) = cw(n—no), then clearly, the output(n) is WSS [1]. Here, (34) becomes
for all WSS inputsw(n). However, in this case, the syn- o oL are s
thesis filtersH;(e’«) cannot satisfy the MIMO alias-free H(e? )Sy(e”7)H"(¢’*) =0 whenever
condition of Theorem 1 because that would imply that o' —w=2rq/L, forallqe B. (35)

. I
all output sequencegn) have Fourier ransformi (e™) o o ety (n) will be WSS for all WSS inputs(n) iff
with an alias-free X)) support (violating the PR prop- . il . L
. Co . 5) holds for every non-negativ&,(¢’"). [This condition is
erty). This apparent conflict with Theorem 1 is resolve . .
by noting that it is only thdilterbank inputu(n) that is Necessary because as is well known, for any transfer function
y 9 y putw(n S(e?*) > 0, we can find a WSS scalar random process with

allowed to be arbltra_ry. The mput \_/ectn(n) to thesyn_- psdS(e’«).] Clearly, this is the same as saying that whenever
thesis sectiorf the filterbank in Fig. 15 isotan arbi- 7, . .
— w = 2mq/L for any integerg not a multiple ofL, then

. LW
trary WSS vector process as required by Theorem 1; it s H(eﬂ'“") and H(c/*), at least one is zero. This is precisely

constrained by the analysis section of the PR filterbank. e .
The nature of this constraint is analyzed in detail in Ap- e statement that the LTI systefh(c’*) has an alias-freel()

pendix B. A question arising from this is the foIIowing:SUpport' This proves the scalar result (see [1, th. 4.1]).

What are the conditions under whigln) is WSS for all For the more general vector case of Fig. $p) is WSS

WSSuw(n) in Fig. 152 This is answered in Section V. Infor all WSS x(n) iff (34) holds for every Hermitian positive

e . ol . " i
addition, note that for PR, it is necessary that L. The §§m|deflq|te m_atr|>6x(e )- (_Agam, for_any Hermitian pos

. ’ . . itive semidefiniteA, we can find a matrixB such thatA =
case where < L cannot give PR and is considered i

Section VIl "BB. Therefore, by (18), ife(n) is a process with white un-

: C . correlated scalar components, we can form the pracess=
5) Joint Stat|o_nar|ty P_ropertles'_l'heo_rem 1 allows us to an-Be(n) with psd matrixS,.(c/*) — A.) From the definition of
swer questions on joint stationarity. For example, WeCRNMO alias-free () systems, itis clear thatH (¢’«) is MIMO
obtain the condition on a pair df-fold scalar interpola- .. ¢ o0 (), then (34) indeed holds for eveB (¢’~%). The
t|op flIter.s .for their putputg to be Jom_tly §tat|9nary for a."lemma in Ap,pendix C shows that if (34) holds for every Hermi-
pairs of jointly stgtlonary inputs. This situation is equivy positive definiteS.. (L), then of (/) andH (¢7*'), at
alent to that of Fig. 11 with = 2. From [1], a necessary least one is the zero matrix, i.#L(c’) is MIMO alias-free (.).

condition is that each filter have a support contained 1n,_. =~ . . o
an alias-free I) set. Theorem 1 goes further to give théFhls gives the converse. Finally, under the MIMO alias-freg (

following necessary and sufficient conditioRoth filter condition, since the output(n) IS WSS, its blspectrum (33)
) : . takes the form of (23). Comparing these equations shows that
supports must be contained in som@mmonalias-free

(L) set. Similarly, from Theorem 1a, we can further fin he psd ofy(n) is mdee_d given by (32), as claimed. Notice that
-, . : he lemma of Appendix C is not needed for the scalar case be-
the necessary and sufficient condition on a paivextor

. g ) . cause it is trivial there.
mtgrpolatlon ﬂlt_ers forthew outputs to be jointly WSS fqr We now prove Theorem 1b. For this, it suffices tovs:ovvv that
all JomtIyIWSS input pairs: All the component scalars N e MIMO alias-free 1) property ofH(c7=) implies thaty (n)
boththe filter transfer matrices should have supports CONS\/SS for all CWS in Fia. 14. If is CWSS
tained in some common alias-frek)(set 1S or a SL) v(n) nFg. Lo .V(n) 'S 0,

' the form of its bispectrurB, (¢’“" , ¢’«) is given by (20). There-
fore, using (19), the output bispectrum has the form

C. Proof of Theorem 1 VR y e -
Sy (e, e1) = H(e™ )Py(e, /Y H (¢/%)

We first prove Theorem la. We use (19) and (25) to compute oo 9
the output bispectrum matrix in Fig. 10, as . Z 6 <w —w + Tq> . (36)
1 g=—o0

Sy (e, ey = — H(e/)Sy (/T HT ()

Comparison with (20) shows that(n) is CWSS(.). The
nd MIMO alias-free ) condition implies that
3 5<w_w'+@) (33) ‘ree &) condiion implies e
H(e)P, (7%, @2t/ LY T (i@ =2ma/ 1))

whereS,.(¢’*) is the usual psd matrix of(n). Here, we have is zero unlesg is a multiple ofL. Hence, (36) takes the form of
used (23) for the input bispectrum, and the scaling property &3), i.e.,y(n) is WSSy v v

q=—00
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1 w(n
> w(n) " x(n) (oyt?
f(n) = e—j21rKn/L
(Ke2 > o 2
¢ C : W
z(n)_ y(n) = ° ° ° E(e R(eM
Q= FHopeto) v oo e e ° R N R
- (=]
® ORI i o o
e2m(L-1)K/L -1
Z l;( : — r channels H(: : )_>j z
Fig. 16. Exponential LPT\4) modulator. (a) Symbol. (b) Representation as
in Fig. 2. Fig. 17. Polyphase representation of a general uniform filter bank.

Thus, the MIMO alias-freelf) H(c/“) suppresses the un-CWSSE), with an impulsive bispectrum as in Fig. 3(a) and
wanted lines in the bispectrum in both Theorems 1a and 1b. T#iéen by

only difference is that the functions on the lines were more con- S, ei%)

strained in the case of Theorem la; however, we showed that 1

this does not enable us to relax the requiremenHgrs’*) for _ Z Pi(ey

its output to be WSS for all WSS inputs. The proof of the scalar e Y

and vector cases of Theorem 1a are almost equally easy, and 00 omi

the generalization to Theorem 1b is almost immediate. The ap- Z 6 <w — o+ T + 27rm> , Where (37)
proach of [1] would be inordinately complicated for these pur- m=—o0

poses. ' L-1 '
2) Further Generalizations:The method of proof also al- P} (¢’“) = Z By ot @ra/ L))y

lows us, if we so desire, to obtain more relaxed conditions, such =0 '

as the conditions for the output to be CWS&S((rather than CFH(39) 8, (7 W@/ L))y (38)

WSS) for all WSS inputs, wherg' is any divisor ofL. This ., .o functionP2(ei+) = P1+L (i) describes the shape

requirement would again translate into a condition on the su&-thé impulse aloné theth Iinecg’ w = 2mq/L. The F, (ci*)

Jwy. - - . q
ports of the element_s (.)f the transfer matH>(_e )i howeve_r, are the functions on the impulse-lines of the bifrequency map of
it would be less restrictive than the MIMO alias-frde) condi-

tion. Looking at bispectra shows exactly how the re uirementpse LPTV system.
' 9 P Y q From the form of the bispectrum of a WSS process [which

translate into conditions on the supports. is shown by Fig. 3(b) and (23)], we know thetn) is WSS for
all WSSz(n) if and only if the following condition is satisfied:
PZ(e/*) must be identically zero whepis not a multiple ofZ
for all valid input psd, i.e., for alb,(¢?*) > 0. This is clearly
We know that an LTI system produces WSS output for afiquivalent to

VI. ACTION OFLPTV SYSTEMS ONWSS NPUTS

WSS in'puts. Exponential mogiulators described by Fig. 16 also Fry (Cj(er(%q/L)))F*(ejw) —0
have this property, as shown in [1]. Both these systems are spe- T T
cial cases of a general LPTY) scalar system shown in Fig. 2. forallr =0,1,---, L -1 (39)

The question that arises is whether there are other LPTV Syhenever; is not a multiple ofL. Now, let A;(z) denote the
tems that have this property. This section answers this questigiiasing gains” of the LPTV system viewed as a filterbank,
completely, i.e., we derive a necessary and sufficient conditigg described in Section 11I-B and given by (8). Then , using

for an LPTV(L) system to produce WSS outputs for all WSqu(Cjw) = A,(c**) [see (11)] and reindexing, we get the de-
inputs. Using the derived condition, we show that the 0B sjred condition

tional LPTV systems (systems as in Fig. 2 with the filtétg ») o (I (i) I IV ax i
all rational) with this property are rational LTI systems, expo- Avﬁ(@J( =)/ )))AT(CJ )=20

nential LPTV modulators, and cascades of these two. Recall that forall ¢, € {0,1,---,L — 1}

we deal only with scalar LPTV systems, and that the input and such that # r. (40)
output rates are equal. Thus, Fig. 2, which shows such a system, . o

is completely equivalent to Figs. 15 and 17 with= L, i.e., 1) Conditions from [1] Are Less ExplicitWe .havg shown
a uniform maximally decimated filter-bank, as stated in SeHat a general LPT\() scalar system shown in Fig. 2 pro-
tion NI-B. duces WSS output for all WSS inputs if and only if it satis-

fies (40), where4 (/) are the aliasing gains of the system.
. This condition is not easy to state concisely in an elegant form
A. Condition for WSS Outputs from LPTV(L) Systems without using an equation. However, it provides a clear way
We begin by characterizing the bispectra of the outputs tuf test if a given LPTV system has this property or not. Fur-
LPTV(L) systems for WSS inputs. For the system of Fig. 2her, it simplifies elegantly in the case ddtional LPTV sys-
Appendix D computes the expression for the bispectrutams, as shown in Section VI-B. To contrast this with results
S, (", 7Y of the outputy(n) in terms of the psdb,(¢/*)  from the approach of [1], I (¢?*) be the MIMO LTI transfer
of the WSS inputz(n). The result shows that the output ismatrix of the ZL-fold blocked version of the LPTV system (see
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move T(z) across delays

Section Il). In addition, leS,(e/*) be the psd matrix of the and summing node
blocked versionk™) (n) of z(n) [which is pseudocirculant as
#(n) is WSS]. The approach of [1] would use (18) to state th >} g

condition as followsH(e/*)S, (¢/*)H (¢/*) must be pseudo- .- . f(n) = ermebnre
circulant for every pseudocirculant positive semidefinite matr => (e Eﬁ

Sx(e?) [i.e., for every possible valid psd matrB(e’“) of o ° ° (n)__ )
x®)(n) under the constraint tha(n) is WSS]. This statement @ . ° o _eu-pue (b) Q—fro—~
gives a venjimplicit condition on the LPTV system and canno  ~ :

be easily tested.

2) LTI Case: The LPTV(L) system of Fig. 2 becomes LTI Fig. 18. lllustrating the proof of Theorem 2. (a) Rational LPTY(system
with transfer functionB(z) if and only if all the filters B;() ;S)r(;(tjeur?]lng WSS output for all WSS inputs. (b) Equivalent structure for this
equal B(z). From (8), this is equivalent tel;(z) = 0, ¢ = ysiem:

1,2,..., L — 1, which means that (40) is satisfied. Therefore,
such a system indeed produces WSS output for all WSS inpugpducing WSS output for all WSS inputs. Thuk,(~) are ra-
which is a well known fact. tional and satisfy the condition (40). This is possible if and only

3) Exponential Modulator:A general scalar modulator is aif there is at most oné € {0,1,---, L — 1} such that4;(z)
system with output(n) = f(n)z(n) for inputz(n). An expo- is not identically zero. Excluding the trivial case when there is
nential modulator is one witlfi(n) = ¢=7«°", Thisis LPTV(L) no suchi, let Ax(z) 2 T(2) be not identically zero.I(») is
if and only if wg = 27 K/ L for some integel. Such a system rational]. Using (41), this means that eaB}(z) in Fig. 2 is the
is shown in Fig. 16(a). We know [1] that any exponential modwsascade of a constant multiplier?27*/ andT(z). Thus, the
lator produces a WSS outpytn) for all WSS inputsz(n). To  system has the structure shown in Fig. 18(a), which shows itself
reconcile this result with (40), note that an LPTY)(exponen- to be equivalent to Fig. 18(b) on comparison with Fig. 16. Thus,
tial modulator can be represented as in Fig. 16(b). This is likiee system is indeed a cascade of an exponential LRYWipd-
the general structure of Fig. 2 wi,.(z) a constant multiplier ulator followed by the rational LTI systeffi(z). This concludes
of valuee’27" /T Therefore, (8) shows that, (=) is nonzero the proof. \VAVAV/
(and constant) for exactly one value@f& {0,1,---,L — 1}.

This means that (40) is indeed satisfied here.
VII. OTHER APPLICATIONS

B. Case of Rational LPTV Systems A. Partial Reconstructions from Subbands of a FB
Principal component filterbanks were proposed in [19],

Rational LPTV({) systems are systems as in Fig. 2 with aljith the idea of compressing the main signal features into a
the filters B;(z) being rational LTI filters. Special cases are rafew subbands of the filterbank and dropping the remaining
tional LTI systemsB(z) [where all B;(z) = B(z)] and expo- subbands. This results in a partial reconstruction of the signal,
nential LPTV() modulators(B;(z) = e/*#/L). Cascades and the system producing this reconstruction is equivalent to an
of rational LPTV(L) systems are also rational LPTV(L)—thisoverdecimated uniform filterbank, i.e., a system as in Fig. 15,
is evident when we consider tliefold blocked versions of the wherer < L. Theorem 2 then says that given any rational
systems (which are LTI as seen in Section II). uniform maximally decimated filterbank, none of the partial

Itis well known that the special cases of rational LTI system@r principal component) reconstructions can be WSS for all
and exponential LPT\{) modulators produce WSS outputs fofySS inputs. For if this were the case, the system creating
all WSS inputs, and hence, so do cascades of these systems.ihe reconstruction (an overdecimated rational filterbank)
question arises whether there are other rational LE)\${s- would have to be a cascade of a modulator and an LTI system
tems with this property. This can be answered using the gengfgdm Theorem 2). However, such a cascade is necessarily a
condition (40) derived above. We have the following theoremmaximally decimateéiiterbank, which is a contradiction.

Theorem 2: A rational LPTV() scalar system produces
WSS outputs for all WSS inputs if and only if it is either 83 Nonrational LPTV Systems

rational LTI system, an exponential LPTVY modulator, or a o ) ) )
cascade of these. If we relax the restriction of rationality, we can find more

Proof: From the earlier discussion, we see that it sufficé@amples of LPTVL) systems producing WSS output for all

to prove the “only if’ part of the theorem. We need the relatiod/SS inputs. The ideal uniform brickwall subband coder is an
between the aliasing gains, (¢’“) and the filtersB,(¢/«) of example of a nonrational filterbank for which the systems pro-

the LPTV(L) system. This relation is given by (8) and is reproducing the partial reconstructions are also LTI. Thus, in this

duced here for convenience: case, every partigl reconstruction is WSS if t_he input is.WSS.
. Systems as in Fig. 2 where the vector of filtdBg(e’*) is
[Ao(z) Ai(z) -+ Ap1(2)] MIMO alias-free () are another class of systems that produce
- 1 WTL[Bo(Z) Bi(2) - Br_1()[. (41) WSS output for all WSS inputs, as is clear from using The-
L orem 1la. Indeed, (41) shows that for such systems the vector

This equation shows that rationality of ti#&(z) is equivalent of aliasing gains4,(c’*) is also MIMO alias-free [); hence,
to that of theA;(z). Now, consider a rational LPTV() system the condition (40) is satisfied. In fact Theorem la shows that
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this class of systems is also the class for which the outpuf inner-product space). Now, viewing the LTV systétmn, n)
is WSS forarbitrary CWS$L) scalar inputsc(n). as an operator froit (M) to I2(IV), we can show on lines sim-
ilar to [5] that the adjoint of this operator is the LTV system
k'(n,m). Thus, general lossless LTV systems aggerators
whose inverses are their adjoints

The equations (37) and (38) give a full characterization of
the bispectrum of an arbitrary CWSS(L) scalar procgss).
This is because by spectral factorization of the psd matrix of VIIl. C ONCLUDING REMARKS
the blocked version of(n), we can show that every CWS(
scalar process can be obtained by passing (WSS) white noisé/e have used bifrequencies and bispectra to study the ef-
through an appropriate LPTYJ system. In particular, this fects of multirate systems on the statistics of random input sig-
means thaﬁy(ej“',ej“) from (37) and (38) will automatically nals. We have shown that this often yields more insight into
satisfy the properties (15)—(17) for arbitrary transfer fundhe working of these systems than other approaches based on
tions I, (¢/*), for any non-negative function (i.e., valid psd)polyphase matrices and pseudocirculants. It allows easy gen-
S (e, eralization of many of the results of [1] to MIMO systems. It
allows us to prove two nontrivial results (Theorems 1 and 2)
and seems to be a powerful tool for answering questions like
“When does a multirate system produce WSS outputs for all

Lossless LTI systems have been extensively studied in tA&5S inputs?” However, as with any tool, indiscriminate use
literature, owing to connections with paraunitary filterbankef bifrequency analysis may be inefficient in many situations.
and orthonormal wavelets. Losslessness of a causal stable What appears to make it especially useful is the geometric in-
systemH(z) may be described by two equivalent definitions. sight obtained when LPTV systems and CWSS processes are
involved, causing the 2-D Fourier transforms to become impul-
sive lines.

One question arising from our analysis is the following: Can
these results be used to tell us more about lossless LTV sys-

. i ] ] . tems described in [5]? We have pointed out the bifrequency
The extension to LTV systems is described in [S] and [6] in cOnaracterization of a general lossless LTV system. However,
nection with time-varying paraunitary filterbanks. Using the nGne pifrequency function is so general that it is not immediately
tation of [5], the above definitions apply and are shown to0 R§ear whether this helps in any way. A special case that might
equivalent for LTV systems as well, except that we have a gy considered is that of lossless LPTV systems. Scalar sys-
definition of the “paraconjugateE(n, Z) of the LTV system ems of this kind have been dealt with in this paper. Vector sys-
E(n, Z). Converting this definition from [5] into the notationems correspond to paraunitary periodically time-varying filter-
using the Green’s functick(rm, n), we find that the paraconju- panks, where the analysis and synthesis filterbanks are switched
gate is the system with Green’s functigtm,n) = k'(n,m).  cyclically between a selection of banks. Bifrequency analysis
This system is called the adjoint or dual system in [2]. Thugf these may lead to some new insights. Another special case
using (5) and (6), the second definition above for a lossless LT¥ight be that of “rational” LTV systems, i.e., those realizable

C. Characterization of CWSS Scalar Bispectra

D. Bifrequency Characterization of Lossless LTV Systems

1) The system input and output “energig$? norms) are
always equal.

2) The inverse of the systemH(z), which is the so-called
paraconjugate, defined so tHA{¢/~) = Hf(c/v).

systemk(m,n) now reads as by a linear difference equation with time-varying coefficients.
o0 The bifrequency function for such a system, which is given by
> Ki(r,m)k(r,n) =Iéo(m — n) (42)  (4), clearly reflects the fact that it is fully characterized by the
r=—o0 coefficients of the difference equation (unlike the representa-
" KT(ej“”, Cju;’) K(Cju;”’ Y o’ tion in [5]). Another area where bifrequency analysis might be

— useful is in the theory of matrix filterbanks described in [20].

0 We could also ask other questions further generalizing the is-
=I > 6w-o'+2rg). (43) sues considered here, e.g., find all LTV (as opposed to LPTV)
g=—o0 systems producing WSS outputs for all WSS inputs. The answer
(Here, 6o(n) is the discrete impulse sequence.) This notatida this is not directly evident from using bispectra. For example,
is more general since the notation of [5] is useful only if tharbitrary exponential modulators (not necessarily LPTV) also
input and output rates of the LTV system are equal. For examplial] in this class [1].
the L-fold expander is a lossless LTV system that necessarily
requires this notation. For this systek{yn,n) = do(im — Ln)
[2], which is easily seen to satisfy (42). This is consistent with APPENDIX A
the fact that the expander is lossless.

The term “adjoint” here has the same meaning as in operatoHere, we prove the rule expressed by Fig. 7 for determining
theory: If V1, V, are inner-product spaces, the adjoint of a linedhe effect of a general LTV system on the bispectrum of its input.
operatorA: V; — Vs is the operatord,: Vo — V; satisfying Let the processes(n) andy(n) be, respectively, the input and
(Az,y) = (z,Awy) forall z € Vi,y € V, (where{v;,u2) output of an LTV system represented by its Green’s function
is the innerproduct of the two vectots, v, from the same k(m,n). Equations (1) and (2) are therefore satisfied. Define
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the autocorrelation sequenaggm,n) = E[x(m)x'(n)] and here, suppose,w € R"™, which is the space of at-tuples.
ry(m,n) = Ely(m)y'(n)]. Using (1), we have Extend the linearly independent sgt, w} to a basis ofR",
- - i and use the basis elements as columns of a m&trixhus,C
is nonsingular with first two columns,w. Repeat the same
=FE k k ; ; . ’ ;
ry(m.n) Z (m, p)x(p) < Z (n’Q)X(Q)> construction starting witx,y} C R™ to get a nonsingular
matrix D with first two columnsx,y. Then,B = DC ! isa

pP=—00 g=—00

_ T T satisfactory choice.]
_p;mk(m’p) q;OOE[X(p)X (DK (n,q) Next, we use the above to prove by contradiction the
oo general case, i.eP = [wg, w1, -, wn_1], andQ = [vo,
- Z k(m, p)f(p,n), where (44) Vi, V-], wherex_avi,vi,i =0,1,---,N—1are column
oo vectors of the same size. If bokh, Q are nonzero, we can find
oo i, €{0,1,---, N — 1} such that bottw,; andv; are nonzero.
f(p,n) = Z ry(p, )k’ (n, q). (45) Now, for all Hermitian positive definiteA, PTAQ = 0,
=—oc and therefore, itg¢, j) entry WZTAvj is zero as well. This is

. . . . , . impossible by the established statement of the lemma when
By comparison with (5)f(p, n) in (45) is the Green’s function P.Q are column vectors. This completes the proof.

of the cascade of the LTV systems with Green’s functions’
g(m, n) 2 kf(n, m) andry(m, n) (in that order). Similarly, the
output autocorrelation, (m, =) in (44) is the Green’s function APPENDIX D
of the cascade of the LTV systems representedfby, n)
andk(m,n) (in that order). Hence, the 2-D Fourier transform This appendix serves to prove (37) and (38). As explained
of ry(m,n), i.e., the output bispectrum, is the bifrequencip Section Il-D, S, (¢, ¢/} is the bifrequency function of
function of this cascade. Drawing the cascades and replacthg cascade of Fig. 7, whel€(c’* , e’*) = K(e’* /) is a
Green'’s functions with bifrequency functions yields Fig. 7.  scalar given by (9), and

Sy (e? e19) = S, (8 | eI%)

APPENDIX B =S,.(e7%) Z S(w—w' 4+ 27m)  (46)
This appendix serves to show that if the filterbank in Fig. 15 m=—00
has the PR property, the vectefn) input to its synthesis sec- Which is (23) in scalar form. By (6), the cascade of
tion isnotan arbitrary WSS vector process even if the filterbank (¢’ ¢/") - and S.(¢",¢’~) has bifrequency func-
input w(n) is an arbitrary WSS scalar process. To do this, wion x
redraw Fig. 15 asin Fig. 17, wheE») andR(z) arethe anal- ~ @(c/' | /) :/ Sy (e T NYVKT (0%, ) du!! (47)

ysis and synthesis polyphase matrices of the filterbank. We can —n

now use (18) to show that the psd matrix«gfz) is Sx(e?*) = _ " g (ejw’ ejw”) Fr (e ejw”)
E(c’)Sw (¢/*)Ef(e/“). Here, S, (¢/*) is the psd matrix of A ’

the blocked vectow (") (n) in Fig. 17, and is thus pseudocircu- 0 .

lant sincew(n) is WSS. Now, PR implies tha(c/) is invert- Sy 8 <w” —w+ T) dw”.  (48)
ible (for all w); hence S, (e’“) cannot be an arbitrary positive r=—oc0

semidefinite matrix. For example, (/) is positive semidef- Using the siftin,g‘prqpfartg/ of Ehé(') function and the definition
inite but not pseudocirculant, tha(ci=)A(e/*)Ei (¢} isan Fr(¢*) = F(e, = Cm/10), we get

example of a positive semidefinite matrix tH&it(c/) cannot T =y (e (Emr/L)
equal becaus8,, (¢/) cannot equalA (¢/<). G, )= Suld™ & )
r=0
. F*(Cjw7cj(w—(27r1*/ﬁ))) (49)
APPENDIX C 1
Lemma 1: If P, Q are fixed matrices of the same size such =Y Su(el, dem )y pr(ede). (50)
thatP*AQ = 0 for every Hermitian positive definite matri, r=0 o
then eithe®® = 0 or Q = 0 (or both). One more application of (6) to cascade(c’ ,e’“) with

To prove the lemma, first consider the case wiikn= w K (¢’ ,¢’) yields
. ¥iy
andQ = v are column vectors. Assuming both are nonzero, we Jol ey jo' o
y(C y € ) - F(C y € )

will establish a contradiction. Choosiy = I shows that the .

vectorsv, w are orthogonal, i.ewfv = 0. However, we can o0 -

easily find a linear transform that acts on these vectors to pro- < Z ) <w” "+ T))

duce two nonorthogonal nonzero vectors. To be specifig, let i=—00

be any two independent nonzero nonorthogonal column vectors . G(@iw”, @Jw) dw” (51)
of same size as, w. Then, we can find a nonsingular square L-1

matrix B such thatBv = x andBw = y. Sinceyx # 0, =3 (el W = @m NGl = @ri/ L) piw)
taking A = BB (which is Hermitian positive definite) yields i—0

wiAv # 0, which is a contradiction. [To find the matri8 (52)
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Using (46) and (50), we get [16] U. Petersohn, H. Unger, and N. J. Fliege, “Exact deterministic and sto-
S (ejw’ ejw) chastic analysis of multirate systems with application to fractional sam-
Y ? pling rate alteration,” ifProc. IEEE ISCASvol. I, London, U.K., 1994,
L-1 L-1 pp. 177-180.
= Z Z Fi(cj“",) [17] L. 1zzo and A. Napolitano, “Multirate processing of time series ex-

e o hibiting higher order cyclostationaritylEEE Trans. Signal Processing
== ] ) ) vol. 46, pp. 429-439, Feb. 1998.

. Sm(ej(“’ _(27”/1‘))7 ej(“’_(QW”/L)))ET(eW) (53) [18] P. P. Vaidyanatharultirate Systems and Filter Banks Englewood
Cliffs, NJ: Prentice-Hall, 1993.

L-1 L—1 h : . L )
_ FL (3 VF* (3§ (o (e—(2mr/L) [19] M. K. Tsatsanis and G. B. Giannakis, “Principal component filter banks
= i r z or optimal multiresolution analysis| rans. Signal Processing
(/)T (e7)Sx(e ) fi timal multiresolut lysisfEEE T Signal P
i=0 r=0 vol. 43, pp. 1766-1777, Aug. 1995.
oo . [20] V. M. Gadre and R. K. Patney, “Vector multirate filtering and matrix
2r(i — 1) . . Jmy .
Z Slw—w +2"" L omm). (54) filter banks,” inProc. IEEE Int. Symp. Circuits SystSan Diego, CA,
L May 1992, pp. 1360-1363.

m=—oo

We now use thd.-fold periodicity of the summand in the index

¢ to replacei with ¢ + r throughout the summand. The inner
sum overn then becomes independentofJsing f(z)é(x) =

f(0)6

Sy(ejw,a ij)

L-1
= Z Z FZ+7(61(“’+(27TZ/L)))E*(GJW)Sx (ej(w—(Qﬂr/L)))
=0

This is identical to (37) withP?(c/~’) defined as in (38). This
completes the derivation of (37) and (38).
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