
Nonuniform Filter Banks: New Results and
Open Problems

Sony Akkarakaran and P.P. Vaidyanathan

Abstract. A nonuniform filter bank (FB) is one whose channel decima-
tion rates need not all be equal. While the theory and design of uniform
FBs is a very well developed subject, there are several interesting open
issues in the area of nonuniform FBs. Most nonuniform FB designs either
result in approximate or near–perfect reconstruction, or involve cascading
uniform FBs in tree structures. This leaves unanswered many impor-
tant theoretical issues involved in obtaining perfect reconstruction (PR)
in nonuniform FBs. The purpose of this paper is to address these issues.
We only study FBs with integer decimation rates, as FBs with rational
decimators can also be shown to be transformable to them. The central
problem of interest is as follows: Let S be a set of positive integers obeying
maximal decimation (i.e., with reciprocals summing to unity). Find nec-
essary and sufficient conditions on S for existence of a PRFB belonging
to some FB class C and using S as its set of decimators. The class C is
defined by some constraint on the filters of its constituent FBs; examples
of interest are the class of all rational FBs (FBs with rational filters), FIR
FBs, orthonormal FBs, etc. A condition that immediately suggests itself
is the one stating that the integers be arrangeable in a tree so that the
required PRFB can be built by cascading uniform PRFBs in a tree struc-
ture. However, this condition, while clearly sufficient, is not necessary for
many classes C of interest. In fact there are sets violating it which can be
used to build delay-chain PRFBs (in which all filters are delays). Many
of our new results focus on the class of rational FBs. We strengthen con-
siderably the known necessary conditions in this case, and provide new
ones. The basic problem remains unresolved — necessary and sufficient
conditions are still unknown, however we believe our work is an important
step towards a full solution. We conclude by listing all known conditions,
studying their inter-relationship, and pointing out several open problems.

1. Introduction

Figure 1 shows an M -channel nonuniform filter bank (FB). The FB is said to be
maximally decimated if the channel decimation rates ni are integers satisfying

M−1∑

i=0

1

ni
= 1. (maximal decimation condition) (1.0.1)

Beyond Wavelets
J. Stoeckler and G. V. Welland (Eds.), pp. 1–53.
Copyright c©2001 by Academic Press, Inc.
All rights of reproduction in any form reserved.
ISBN 0-12-xxxxxx-x

1

2 S. Akkarakaran and P.P. Vaidyanathan

���������

�
	������

�
�
��	������

��� �

��� 	

��� ����	

��� �

��� 	

������������� �"!#�%$'&)('� ��� ����	��*#+�+�����,��

������$.-/&0���1�"!���$'&2('�

34�5�����

36	7�����

34�
��	7�����

8�*�$.9#*�$
:; � � �

����9�*#$
; � � �

Figure 1. Nonuniform filter bank.

<>=

<>=

<>=

?>=

?>=

?>=

@�A�B

@�A�B
@�A�B

@

@
@

CEDGF

C�H�F

I�J C @ F

I B C @ F

I�K A�B C @ F

<>=

<>=

<>=

LMJ C @ F

L B C @ F

LNK A�B C @ F

?>=

?>=

?>=

O CQP>F RO CQP>F

S C @ F TUC @ FV�W D�D�H�X�Y V

V�Z X�[.\/] V�^1VH�X�H�_ Z�V�^ V
`�a _ Z ` \�H V]cb
H�[.d ^%e `�a _ Z ` \�H V]cb
H�[.d ^%e

O CQP>F RO CQP>F

Figure 2. Uniform maximally decimated filter bank. (a) Showing analysis and syn-
thesis filters. (b) Polyphase representation.

Nonuniform Filter Banks 3

Figure 2a shows a maximally decimated uniform FB, which is a special case of
Fig. 1 where ni = M for all i. For this case, the system can be equivalently
redrawn using the analysis and synthesis polyphase matrices E(z) and R(z), as
shown in Fig. 2b. The condition for perfect reconstruction (PR) is then easily
expressed as R(z) = E−1(z). Due to this, the theory and design of uniform
PRFBs is an extremely well developed subject. Numerous parameterization
results list all possibleM -channel uniform PRFBs with various sets of properties
such as paraunitariness, FIR filters, linear phase filters, etc.

In contrast, several issues involved in achieving PR in nonuniform FBs re-
main unresolved. For example, given a general set of positive integers ni obeying
maximal decimation (1.0.1), how do we determine whether or not there exists
a rational PRFB (i.e., one with rational filters) using the ni as decimators? If
the ni are all equal, clearly such a FB exists (as it is then uniform). Similarly, it
also exists if the ni are arrangeable in a tree so that such a PRFB can be built
by cascading uniform PRFBs in a tree structure (Section 4.1). This is the most
common approach to achieving PR in nonuniform FBs. In particular, it is used
to build the FBs that implement the dyadic wavelet transforms [11],[12]: Such
a FB has a dyadic decimator–set, i.e., one of form {2, 22, . . . , 2r−1, 2r, 2r} for
some integer r ≥ 1, and is built using a dyadic tree (i.e., one built from a cas-
cade of r 2-channel FBs). However, there are sets of decimators ni that cannot
be arranged in a tree as described above, and yet permit existence of rational
PRFBs in which in fact all filters are delays. Further, even if the decimators are
arrangeable in a tree, it is possible that there are PRFBs using those decimators
that cannot be realized using the tree. These facts will be discussed in detail
with examples in Section 4.2. Thus tree structures of uniform PRFBs are far
from being a full solution to the PR problem for nonuniform FBs.

Derivability of decimators from a tree (as described above) is a sufficient
condition for existence of rational PRFBs using the decimators. There are cer-
tain other conditions that are known to be necessary, e.g., there are no rational
PRFBs using the decimator–set {2, 3, 6} because no two decimators of such a
FB can be coprime (Section 6.1,[4]). However, a condition that is both neces-
sary and sufficient remains unknown. The present work studies this and related
problems. An important part of our study is to significantly improve upon the
known conditions, i.e., to derive new ones, strengthen necessary conditions and
weaken sufficient ones. Another contribution is to study the conditions for re-
ducibility of PRFBs to tree structures. For example, it has been shown [3],[10]
that all rational PRFBs with dyadic decimator–sets must be derivable from
dyadic trees. In Section 7, we will considerably generalize this result. Although
these problems in their full generality remain unresolved, we believe the present
work to be an important step towards a complete understanding of this subject
— an area so rich in open problems even after over two decades of filter bank
research.

4 S. Akkarakaran and P.P. Vaidyanathan

1.1. Relevant earlier work

Trees of uniform FBs, and near–PR designs: A very common approach to
nonuniform PRFB design is to cascade uniform PRFBs in a tree-structure,
e.g., as is done to implement dyadic wavelet transforms [11],[12]. However, as
stated earlier, there are nonuniform PRFBs that cannot be built in this manner.
Many works deal with approximate reconstruction (or ‘near–PR’) nonuniform
FBs, e.g., the frequency domain approaches of Li et al. [7], the time domain
methods of Nayebi et al. [8], and other references therein. These are very useful
from a practical standpoint, giving FBs with excellent filter responses and low
aliasing distortions. However, they do not address the many theoretical issues
involved in obtaining exact reconstruction.

FBs with fractional decimators: Kovačević and Vetterli have studied a more
general system [6] where each channel of the FB has a decimation rate that
is fractional, i.e., of form q/p where p, q are coprime positive integers. Such a
channel, shown in Fig. 3a, is completely equivalent to the system of Fig. 3b.
By this we mean that given any one of these systems, we can choose the filters
in the other so that the same input x(n) for both systems always produces the
same signals s(n) and y(n) as shown. A choice ensuring this is shown in Fig. 3c
(polyphase vectors are defined in Section 1.3). The equivalence under this choice
is provable using the discussion on fractional decimation in [11, Section 4.3.3].
If the Ai(z) differ from the special choice of Fig. 3c, we can replace them by this
choice and modify the Ci(z) so that the signal s(n) is unaffected. This is done
by performing a p-th order polyphase decomposition of the Ai(z), using the fact
that p, v are coprime, and moving the resulting polyphase matrix to the left. A
similar comment holds for the Bi(z).

From the equivalence shown in Fig. 3, we conclude that the PR problems for
integer–decimated and rationally decimated FBs are fully equivalent. Another
concern besides PR in rationally decimated FBs is the nature of their spectral
analysis: Does a subband represent a contiguous portion of the input spectrum,
or do the decimators and expanders in Fig. 3b cause it to contain separate parts,
possibly mirrored and shuffled in order? This issue is studied in [6].1 However,
as far as the PR problem is concerned, it is enough to study FBs with integer
decimators, and that is the approach we shall use.

Other more general multirate structures: As we will see in Section 2.2, nonuni-
form PRFBs are hard to design because of certain structural constraints that
their associated polyphase matrices must obey. This is the origin of the central
problem studied in our work: These structural constraints cannot be obeyed by
rational FBs unless their decimators satisfy various conditions, which we aim
to characterize. However, the constraints vanish if we use more general systems
in the channels of the FB, e.g., if the filters are allowed to be periodically time–

1It becomes less serious if we allow modulators at appropriate points within the FB.

Nonuniform Filter Banks 5

��������	�
��

 �����	�
� �����

���
	��������

� �	�����	��� �����
�! �" �	��#%$

&�')(+*

&-,
&.*

/ �	0	0 " ��1
2 �����

354 �����768� 4 9	: 4 �����

;;;

�	�
�	�

�	�3 ')(<*

3 ,
3 *

;;;

��

��

��

= � 1 � �?>!� �76A@

�
 / � "<B �DCA
 1	#%���E
 �GFIH " � B
 J
� �! �" �K�K#%$ /�L
 �
 ���!# = # B 1K# �
 H " �E
 � � �

M ')(<*

M ,
M *

;;;

� " �

� 0 �

N �IOQP�� 6A@

R 4 �����S68� (4 9�T 4 �����
� T , ����� >VUVUVU%> T ')(?* �����E�EW �KX � Y�+B 1K# B

& 4 �����S68� (4 Z > M 4 �����76[� 4 Z

	�

	�

	� R ')(<*

R ,
R *

;;;

���
���

���

� � � � : , ����� >VU\UVU%> : '](?* �����E�G^SW �KX � Y�+B 1K# B
" � " $ F /
 / � � $ F]� �")/ #D_�# � � �<B`�)a �b�����/ F���� # /
 / � � $ F]� K"]/ #D_]# � � �+B-�<a �c�����

Figure 3. FB with rational decimators. (a) Single channel with decimator q/p.
(b) Equivalent system of p channels with decimator q. (c) A possible set of filter
choices ensuring the equivalence.

varying (Section 2.3). Chen and Qiu [2] and Shenoy [9] have studied multirate
and FB design using such more general structures. The PR design then allows
as much or even more freedom than that in the well–studied PR designs for the
traditional uniform FB of Fig. 2. Our work is restricted to the usual nonuniform
FB structure of Fig. 1 that does not use such generalized multirate structures.

PR conditions on decimators, and reducibility to tree structures: A necessary
condition on the (integer) decimators for PR with rational FBs was first stated
in [5]. Called the compatibility condition, it was generalized by Djokovic and
Vaidyanathan [4], who also pointed out another such condition (pairwise nonco-
primeness). We will considerably generalize these conditions. Another related
work has involved showing derivability of FBs using dyadic decimator–sets from
dyadic trees [10],[3], as explained earlier. These results too will be significantly
strengthened. Among various more general situations studied include certain
non–dyadic sets, unconstrained FBs, and tree structures whose constituent FBs
need not be uniform.

1.2. Outline

Section 2 reviews the PR conditions on the filters of uniform FBs, and their
generalization to nonuniform FBs, derivable using a transformation of nonuni-
form FBs to equivalent uniform ones. It shows how in spite of this transform,
the nonuniform PRFB design does not reduce to a uniform PR design, unless
the filters of the nonuniform FB are allowed to be time varying. In Section 3 we

6 S. Akkarakaran and P.P. Vaidyanathan

formally state the central problem, and study its solution for classes of uncon-
strained FBs (where the filters of the FB have no constraints such as rationality).
Section 4 analyzes the role of tree structures in the study of the main problem.
It shows how tree structures of uniform PRFBs do not provide a full solution
(Section 4.2), and how trees can be used to improve upon known PR conditions
on the decimators (Section 4.3). Section 5 solves the central problem of the pa-
per for the class of delay-chains (FBs in which all filters are delays): It states the
necessary and sufficient condition for a set of decimators to be usable to build
a PR delay-chain, and presents algorithms to test the condition. Subsequent
sections focus mainly on the class of rational FBs. Section 6 states the earlier
known necessary conditions on decimators of rational PRFBs, and generalizes
them in several ways. Section 7 generalizes [10],[3] by finding weaker conditions
on decimators under which all PRFBs using them can be derived from certain
tree structures. Section 8 summarizes all known necessary PR conditions on the
decimators, and studies their inter-relationships. We conclude by noting many
open problems in the area.

1.3. Notations, definitions and assumptions

Standard notation: Superscripts (∗) and (T) denote the complex conjugate and
matrix (or vector) transpose respectively. We use boldface letters for matrices
and vectors. We use lowercase letters for discrete sequences and uppercase let-
ters for Fourier and z–transforms. Sometimes lowercase boldface letters are used
for vector z–transforms. For sequences h(n) without z–transforms that are ra-
tional functions of z, the notation H(z) is an abbreviation for the Fourier trans-
form H(ejω). For LTI transfer matrices H(z), the ‘paraconjugate’ H∗T (1/z∗) is

denoted by H̃(z). The L-th root of unity, e−j2π/L is denoted by WL, or by W
if the subscript value L is understood. The Kronecker delta function is denoted
by δ (δ(0) = 1 and δ(x) = 0 if x 6= 0).

Polyphase concepts [11]: TheM–fold decimator and expander are represented by
↓M and ↑M respectively, as in Fig. 1. Given a sequence h(n) with z–transform
H(z), its M–fold decimated version is the sequence g(n) = h(Mn), with z–
transform denoted by (H(z)) ↓M . Likewise, the M–fold expanded version of
h(n) is

f(n) =

{
h(n/M) if n/M is an integer
0 otherwise

with z–transform denoted by (H(z)) ↑M . With W = e−j2π/M , we have

(H(z)) ↓M =
1

M

M−1∑

i=0

H(z1/MW i), and (H(z)) ↑M = H(zM) (1.3.1)

Given filters H0(z), H1(z), . . . , HN−1(z), their M -th order analysis polyphase

Nonuniform Filter Banks 7

matrix E(z) is the N ×M matrix defined by

h(z)
4
= (H0(z), H1(z), . . . , HN−1(z))

T = E(zM)d(z),

where d(z) = (1, z−1, . . . , z−(M−1))T is the length M delay vector. Thus, E(z)
has i-th column

(
zih(z)

)
↓M . Similarly, the M -th order synthesis polyphase

matrix of the filters F0(z), F1(z), . . . , FN−1(z) is theM×N matrixR(z) obeying

f(z)
4
= (F0(z), F1(z), . . . , FN−1(z)) = d̃(z)R(z

M).

Thus the i-th row of R(z) is
(
z−if(z)

)
↓M . If the Hi(z), Fi(z) are respectively

the analysis and synthesis filters of a FB, then E(z),R(z) are respectively said
to be the M -th order analysis and synthesis polyphase matrices of the FB. An
easily proved result that we often use is the following:

Lemma 1: Polyphase lemma. Let e(z), r(z) be the M -th order analysis and
synthesis polyphase matrices of the filters H(z) and F (z) respectively. Thus
e(z) is a row vector and r(z) is a column vector. Then,

e(z)r(z) = (H(z)F (z)) ↓M (1.3.2)

Maximal decimation: All FBs studied in the paper aremaximally decimated
with integer decimation rates, even if this is not explicitly stated. Similarly,
references to a ‘set of decimators’ (or ‘decimator–set’) always implicitly mean a
set of positive integers (not necessarily distinct) obeying (1.0.1).

2. Background: Equivalent Uniform FBs; PR Equations

The main focus of the paper is to find conditions on the decimators that permit
existence of various types of nonuniform perfect reconstruction (PR) FBs with
those decimators. To do this, we must first know what conditions on the filters
of the FB guarantee the PR property. This section begins by reviewing the PR
conditions for uniform FBs. We then review the transformation of a nonuniform
FB with decimators ni to an equivalent uniform FB with a decimation rate
L that is a multiple of all the ni. This yields the general PR conditions for
nonuniform FBs, that will be used in all the later sections. In spite of the
possible transformation to uniform FBs, the nonuniform PRFB design problem
by no means reduces to the uniform PR design. However, such a reduction
does occur if the nonuniform FB is allowed to have filters that are LPTV(L)
(linear periodically time varying with period L) instead of LTI. With LTI filters,
achieving PR is tougher, and is the subject of the later sections.

2.1. PR for uniform FBs, and the nonuniform to uniform transform

For the uniform FB of Fig. 2, the problem of achieving PR is very well under-
stood. The following are three equivalent necessary and sufficient conditions on

8 S. Akkarakaran and P.P. Vaidyanathan

the filters for PR in this case [11]:

1. Biorthogonality condition. (Si(z)Qj(z)) ↓M = δ(i− j).

2. AC matrix formulation. Let W = e−j2π/M . Then,



A0(z)
A1(z)

...
AM−1(z)



4
=




S0(z) . . . SM−1(z)
S0(zW) . . . SM−1(zW)

...
. . .

...
S0(zW

M−1) . . . SM−1(zW
M−1)




︸ ︷︷ ︸
alias cancellation (AC) matrix S(z)




Q0(z)
Q1(z)

...
QM−1(z)


=




M
0
...
0




(2.1.1)
For any uniform FB (PR or otherwise), the Ai(z) defined above are called
the ‘aliasing gains’. The PR condition (2.1.1) thus specifies all aliasing
gains. It arises from the frequency domain relation between the output
X̂(z) and input X(z) of any uniform FB (PR or otherwise):

X̂(z) =
1

M

M−1∑

i=0

Ai(z)X(zW i) (2.1.2)

3. Polyphase formulation. If E(z),R(z) are respectively theM -th order anal-
ysis and synthesis polyphase matrices of the FB (as in Fig. 2b), then
R(z) = E−1(z). That this is equivalent to the biorthogonality condition
stated earlier follows from the polyphase lemma (Section 1.3), which shows
that the ij-th entry of E(z)R(z) is precisely the quantity (Si(z)Qj(z)) ↓M
occurring in the biorthogonality condition.

Now any nonuniform FB (as in Fig. 1) is transformable into a uniform FB,
which we will call its equivalent uniform FB [1],[4],[5],[6]. This transform is
described by Fig. 4, which shows how a single channel with decimator nk is
replaceable by pk channels with decimators L = nkpk. Repeating this process
on all channels of the nonuniform FB, with L as any common multiple of all
its decimators ni (usually L = lcm{ni}), yields a uniform L-channel FB. The
nonuniform FB has PR if and only if the equivalent uniform FB has PR. The
filters in the uniform FB are various delayed versions of those in the nonuniform
one. Inserting these relations between the filters into the PR conditions for
uniform FBs gives the PR conditions for nonuniform FBs. These conditions,
described next, generalize the uniform FB PR conditions, and are heavily used
later.

2.2. The general PR conditions for nonuniform FBs

Biorthogonality condition. The uniform FB biorthogonality condition, when
applied to the uniform FB derived from the nonuniform one of Fig. 1, is equiv-

Nonuniform Filter Banks 9

���

����� �����

�

�

�

�
	��

� 	��

� 	��

� 	
����� �

�����

�����

����� ���

���

����������� ���"!#��$�%'&��(�)�+*-,.� �����)/
�0�21 ��� &�&
%'3��54768%:9�;��)< � 3�%'&���;�&��)6=47�(,?>A@

�����

���

���

��������

������ �

�
	�B C � 	���D�� ��� �

� ����E �

�
B C � 	���D�� �FE �

E �

� �
G ��H E �
G ��H
I�J ���K�L;�M�M�� &�$N�)&N&�4 &O;�&��)6=4 ��,P>8@

Figure 4. Transforming a nonuniform FB to an equivalent uniform FB.

alent to

(Hi(z)Fj(z)) ↓gcd(ni,nj) = δ(i− j) (biorthogonality condition) (2.2.1)

This has been observed earlier [4],[10]. Appendix A contains a proof for easy
reference. The condition gets its name from its time-domain equivalent. To de-
scribe this, let hi(n), fi(n) respectively be the impulse responses of Hi(z), Fi(z).
We define two sets of sequences

{µik(n) = h∗i (kni − n) | i = 0, 1, . . . ,M − 1, k = any integer} (2.2.2)

{ηjl(n) = fj(n− lnj) | j = 0, 1, . . . ,M − 1, l = any integer} (2.2.3)

The action of the FB on its input x(n) is now elegantly expressible using these
sequences: The j-th subband signal cj() and the FB output x̂() are given by

cj(l) =
〈
x(n), µjl(n)

〉
=

∞∑

n=−∞

x(n)hj(lnj − n), and

x̂(n) =

M−1∑

j=0

∞∑

l=−∞

cj(l)ηjl(n) =

M−1∑

j=0

∞∑

l=−∞

cj(l)fj(n− lnj)

Here 〈a(n), b(n)〉 =
∑

n a(n)b
∗(n) is the inner product of the sequences a(n)

and b(n) (in the space of all sequences x(n) for which
∑

n |x(n)|
2
is finite).

Thus, the FB output x̂(n) is a linear combination of the sequences from (2.2.3),
using weights cj(l) that are inner products of the input x(n) with the se-
quences from (2.2.2). Thus PR (i.e., x̂(n) = x(n)) is achieved if the two
sets (2.2.2),(2.2.3) form a biorthogonal system, i.e., if

〈µik(n), ηjl(n)〉 = δ(i− j)δ(k − l)

10 S. Akkarakaran and P.P. Vaidyanathan

�����
�

���� ����� ���	�

��� ���	
 ����� ���� �

����� 	�

��� ���� �

����� 	�
 ����� ���� ���� ��� � �� �

����� 	�
 ����� � ��� � �� ��� � �� ����� � �� �

����� 	�

��� � �� �

����� 	�
 ����� � �� �

����� 	�

���� ��� � �� �

����� 	�
 ����� � ��� � �� �

����� 	�

��� � ��� � �� �

����� 	�
 ����� � �� �

����� 	�

��� � �� �

����� 	�
 ����� � �� �

����� 	�

������ ��� ��� ��� ��� ��� ��� ��� ���� ��� � �	�
 ����� � ��� � ���	�

��� � ��� � ���	�
 ����� � ��� � �� ��� � �� ����� � �	�
����

 !!!!
"

Figure 5. Polyphase matrix structure for uniform FBs derived from nonuniform ones.

This can indeed be shown to be the ‘time domain’ equivalent of (2.2.1).

AC matrix formulation [4]. In (2.1.1), we set M =L,W = e−j2π/L, and the
filters as those of the uniform FB derived as in Fig. 4, from the nonuniform FB
of Fig. 1. The i-th row in (2.1.1) is a sum of filter product terms Sj(zW

i)Qj(z).
We group terms arising from the k-th subband in Fig. 1, i.e., those with Sj(z) =
z−lnkHk(z) and Qj(z) = zlnkFk(z) for l = 0, 1, . . . , pk − 1 where nkpk = L (see
Fig. 4). This yields a sum of form Hk(zW

i)Fk(z)Aik, where

Aik =

pk−1∑

l=0

W−ilnk =

pk−1∑

l=0

e−j2πil/pk =

{
pk if i is a multiple of pk
0 otherwise

Thus, we can rewrite (2.1.1) using a new L–row AC matrix H(z) that has only
M columns (one for each analysis filter of the nonuniform FB), as follows:

[
h0(z) . . . hM−1(z)

]
︸ ︷︷ ︸

AC matrix H(z)




F0(z)
...

FM−1(z)


 =




L
0
...
0


 , where (2.2.4)

hi(z) = pi




h′i(z)
h′i(zW

pi)
...

h′i(zW
(ni−1)pi)


 , and h′i(z) =

[
Hi(z) 0 . . . 0

︸ ︷︷ ︸
pi−1 zeros

]T
(2.2.5)

If ni = M and pi = 1 for all i (i.e., if the FB is uniform), the form of H(z)
indeed reduces to that of (2.1.1).

Polyphase formulation. The PR condition is R(z) = E−1(z), just as for
uniform FBs. However, as the equivalent uniform FB has interdependencies
between the filters, its analysis polyphase matrix E(z) has a special structure [1]:
Its rows can be partitioned into groups, where the k-th group corresponds to
the k-th subband analysis filter Hk(z) in Fig. 1. This group has pk = L/nk
rows as shown in Fig. 5. The first row is the L-th order analysis polyphase
matrix (vector) of Hk(z). Each subsequent row is formed by shifting length -
nk blocks of the previous row to the right, with the last block multiplied by z−1

Nonuniform Filter Banks 11

and circulated back to the left end.2 These rows are the polyphase vectors of
filters z−ankHk(z) for a = 1, 2, . . . , pk − 1. Similarly, the synthesis polyphase
matrix R(z) of the equivalent uniform FB has columns arrangeable into groups.
The k-th group has a form like the transpose of that in Fig. 5, with the Ek

l (z)
replaced by the entries Rk

l (z) of the L-th order synthesis polyphase vector of
the synthesis filter Fk(z), and the z−1 factors replaced by z elements.

The paraunitary case. The uniform FB of Fig. 2 is said to be paraunitary (or

orthonormal) if E−1(z) = Ẽ(z); or in other words, if PR is obtained withR(z) =

Ẽ(z), or equivalently with Qi(z) = S̃i(z). By generalization, the nonuniform FB
of Fig. 1 is said to be orthonormal if PR is obtained (i.e., (2.2.1) is obeyed) with

Fi(z) = H̃i(z). From the relations between the filters of the nonuniform and the
equivalent uniform FB, we see that each of these is paraunitary if and only if the
other is. Notice that the two sets of (2.2.2),(2.2.3) which form a biorthogonal
system in any PRFB, will coincide, hence forming an orthonormal system, if
and only if the FB is paraunitary. This is because Fi(z) = H̃i(z) is equivalent
to ηjl(n) = µjl(n) in (2.2.2),(2.2.3). A general PRFB that is not necessarily
orthonormal is often called a biorthogonal FB, due to the condition (2.2.1).
Two other properties of orthonormal FBs, proved for uniform FBs in [11], are
the unit energy and power complementarity properties, stated respectively as

1

2π

∫ 2π

0

∣∣Hi(e
jω)
∣∣2 dω = 1, and

M−1∑

i=0

Hi(z)H̃i(z)

ni
= 1

We can prove these for nonuniform FBs using the result for uniform ones and
the transformation of Fig. 4.

2.3. Relation between the nonuniform and uniform PR designs

Transforming a nonuniform FB to an equivalent uniform one helps to find the
PR conditions on its filters. These two FBs also share several properties (i.e.,
each has the property iff the other does). Examples are PR and paraunitariness;
and rationality, stability, and FIR nature of filters. However, the equivalent
uniform FB does not help in designing nonuniform PRFBs. This is due to
its special structure: It has groups of filters that are delayed versions of each
other. There are no known uniform PRFB design methods that allow imposition
of this structure. Notice that the delayed versions of a filter have the same
magnitude response, while uniform PRFB designs usually approximate ideal
nonoverlapping analysis filter responses.

Most choices of the analysis filters Hi(z) of Fig. 1 yield an equivalent uni-
form FB with an invertible analysis polyphase matrix E(z). However, this is

2The submatrix of E(z) shown in Fig. 5 is block pseudocirculant with block size 1 × nk

(generalizing the notion of pseudocirculants [11]).

12 S. Akkarakaran and P.P. Vaidyanathan

���������
	��
��������� �
������	
�
� ��������� �

!�"�#

!�"�#

! "�#

$&%('*),+.-(/ �10��1�324�65*� ���,798,:;���,<=����24�>�3�

? -

? -

? -@ -ACB D E F #HG&I1J

@ -

@ -

A B

A B D I

@=KL8 ?=KL8

$&%('M)C+.-(/ �10��1�32N��5*� ���C798O:;���,<&����24���3�

PLB D E F #HG=I�J

P B D I

!
G�">#

!
G�">#

! G�">#

? -

? -

? -

@ -

@ -

@ -

P B

798,:������
��24Q �R���L	
�
� �����3�6� �
���
� �(<����3�TSU� �
24�>��� ��0V�W���1�3� X

Figure 6. Equivalence between uniform FBs and nonuniform FBs with LPTV filters.

not sufficient for existence of LTI synthesis filters (Fi(z) of Fig. 1) resulting in
PR: For this we further require that the inverse R(z) = E−1(z) have the special
structure described in Section 2.2. This added constraint is not always easy to
satisfy. If E(z) is paraunitary, then R(z), being equal to Ẽ(z), automatically
has the desired structure, and a nonuniform (paraunitary) PRFB is possible.
However, again none of the many known parameterizations of uniform parauni-
tary FBs [11] allow imposition of the special structure of Section 2.2 that E(z)
must have in order to represent a nonuniform FB.

The structural constraints on E(z) and R(z) can however be completely
given up if the filters in the nonuniform FB are allowed to be LPTV(L) instead
of LTI [1]. This is shown by Fig. 6, in which pk = L/nk channels of a uniform
L-channel (maximally decimated) FB are converted into a single channel with
decimator nk. The analysis and synthesis filters in this channel are LPTV(L).
The procedure is repeated for each k using disjoint subsets of channels of the
uniform FB. Clearly the nonuniform FB has the PR property if and only if the
uniform one does. In the rest of the paper, we assume all analysis and synthesis
filters of all FBs to be LTI. The nonuniform PR design is then significantly
harder.

3. Problem Statement, and Unconstrained FBs

3.1. Problem statement

The nonuniform perfect reconstruction (PR) FB design problem in its full gen-
erality can be stated as follows:

1. Conditions on decimators for PR. Given a set of positive integers ni
satisfying the maximal decimation condition (1.0.1), find necessary and
sufficient conditions on the ni for existence of a PRFB in some specified
class C of FBs, having the ni as decimators.

Nonuniform Filter Banks 13

���
�����	�

�
�
���

���
���

��
�� �
������
� ��� � �������

� ���
���� �"!�#%$
�'&)(���� �"!
#�$
$

Figure 7. Ideal contiguous–stacked complex coefficient brickwall FB.

2. Parameterization of the PRFBs. When the ni satisfy such a condi-
tion, find all possible PRFBs in C having ni as decimators.

The FB class C here is defined by some constraint on the filters of its con-
stituent FBs. Important examples that we will consider are delay-chains (FBs
in which all filters are delays), rational FBs and FIR FBs. Other constraints
that the class C can impose are realness of filter coefficients, stability of filters,
and paraunitariness (or orthonormality). Note that in general the class defi-
nition does not directly by itself impose any constraint on either the number
of channels or the nature of the decimators in the FB. However, the require-
ment that a FB in the class be maximally decimated and have PR could impose
various constraints on these parameters. The statement of the problem is to
characterize (a) the nature of these constraints, and (b) all PRFBs in C having
a general decimator–set that obeys these constraints.

The solution to the problem of course depends on the FB class C. It is
completely known for delay-chains, but unknown for rational FBs. Notice that
the parameterization problem depends on first finding conditions on the deci-
mators for PR, which can be quite tough in itself. So we will mainly focus on
finding conditions for PR. Our aim will be to weaken the sufficient conditions
and strengthen necessary ones until we obtain a set of necessary and sufficient
conditions (the final goal, which we do not always achieve). We will also derive
some results on the parameterization problem, especially in connection with tree
structures.

3.2. FBs with unconstrained complex and real coefficient filters

Let the class C in the above formulation be simply the class of all FBs, with no
filter constraints (i.e., allowing ideal brickwall filters etc.). Then a PRFB in C
always exists, no matter what the decimators ni are (of course, provided they
obey (1.0.1)). This is because the FB in Fig. 7, with ideal contiguous–stacked
brickwall filters, always has PR. In fact it is a paraunitary FB. We will hence
exclude this class C from all further discussion.

Note that the filters of Fig. 7 always have complex coefficients. Now let C
be the class of all real coefficient FBs (i.e., FBs in which all filters have real

14 S. Akkarakaran and P.P. Vaidyanathan

���� ������	�������	� �������� ����

��
�
����
�
���� �
��
��
��
� �
����� � �

� � �
��������! #"
��%$'&%�

Figure 8. Ideal contiguous–stacked real coefficient brickwall FB.

(*)+(*)+(*)+(*)+(*) ,.-/) 01)�2435�6	7(�,.))

298�:�0<;�:=2>(7 298�?@0<;%?A2>B 7298�C�0<;�C=2'D�(7298 6 0<; 6 2FE 7
8�GH0�I�JHK 7 298�GH0�I*LMJ!K 72'N%GH0�I�JHK 7

8�GH0�I�JHK 7

O
P (P BP E

P D�(

Figure 9. Non–contiguous stacked ideal real coefficient brickwall FB.

coefficients). No other constraint is imposed, so the filters could still be ideal.
However, it is now more difficult to find conditions on the decimators for exis-
tence of PRFBs in C. Taking a cue from Fig. 7, we can examine brickwall FBs,
i.e., FBs as in Fig. 1 where the filters Hi(e

jω) have nonoverlapping supports, are
constant on their supports and Hi(z) = Fi(z). Since the Hi partition the input
spectrum, PR is possible if and only if for each i, the i-th channel perfectly
reconstructs all inputs that are bandlimited to the passband of Hi(e

jω). (In
fact we then get a paraunitary PRFB, by suitable scaling of the filters.) This
equivalently means that Hi(e

jω) has an aliasfree(ni) support. For the (real co-
efficient) FB of Fig. 8, the bandpass sampling theorem states that this happens
iff the band edges of Hi are at integer multiples of π/ni [6]. Thus, the FB of
Fig. 8 has PR if and only if

k∑

i=0

1

ni
is an integer multiple of

1

nk+1
for all k = 0, 1, . . . ,M − 2. (3.2.1)

Thus, a given set of decimators ni can be used to build a real coefficient PRFB
of the form of Fig. 8 if and only if (3.2.1) holds for some ordering of the ni. For
example, the set {2, 3, 6} obeys this condition (with ordering (2,6,3) or (3,6,2)).
The set {2, 3, 7, 42} violates the condition (it is the only such set with ≤ 4

decimators). However, this does not preclude existence of PRFBs with more
complicated stackings of nonoverlapping real coefficient brickwall filters, e.g.,
as in Fig. 9. Given a set S of decimators, does such a PRFB using the set S
always exist? Does its nonexistence imply that there is no PRFB using S with

Nonuniform Filter Banks 15

real coefficient filters (ideal or otherwise) at all? The answers are not currently
known to the authors.

An important class of FBs studied in the later sections is that of all rational
FBs, i.e., those in which all filters have rational transfer functions. As Section 6.1
will show, neither of the above decimator–sets {2, 3, 6} and {2, 3, 7, 42} permit
existence of a rational PRFB (since they have pairs of coprime decimators).
Thus it is tempting to conclude that the decimators of rational PRFBs are
more restricted than those of real coefficient PRFBs. Indeed, intuition suggests
that for any decimator–set S, existence of rational PRFBs using S implies that
of real coefficient rational PRFBs using S. This is in fact true for all sets S
for which rational PRFBs are currently known to exist. However, as we will
see later, there are many sets for which it is not known whether either rational
PRFBs or PRFBs with real coefficient filters (rational or otherwise) exist. Thus,
in general we do not know whether existence of the former implies that of the
latter. The constraint of realness of filter coefficients will not be applied or
studied further in the rest of the paper.

4. Tree Structures

Cascading uniform PRFBs in a tree structure is the most common method of
designing nonuniform PRFBs. As pointed out in Section 1, this method, though
useful, is far from providing a complete PR theory of nonuniform FBs, i.e., a
full solution to either of the two basic problems posed in Section 3.1. However,
tree structures do provide very useful tools in the study of these problems. This
section aims at analyzing their role in this study. Section 4.1 defines some basic
terminology we will often use later in describing and studying tree structures.
Section 4.2 analyzes the method of cascading uniform PRFBs in tree structures,
and shows with examples how it falls short of a full PR theory of nonuniform
FBs. Section 4.3 presents general methods that use trees to improve upon known
PR conditions on the decimators of nonuniform FBs belonging to various FB
classes. By ‘improving a PR condition’ we mean strengthening a necessary
condition, or weakening a sufficient one. These methods will be applied to
specific conditions later on.

4.1. Basics and terminology

A tree structured FB is one of the form shown in Fig. 10, built by repeated
insertion of FBs into the subbands of other FBs. These constituent FBs of the
tree structure will be called its units. They could be either uniform or nonuni-
form FBs, and may themselves be tree structured FBs. The terms parent,
child, root and leaf units will often be used to describe the relative positions
of the units in the tree; their meanings are presumed to be self–evident or clear
from the examples shown in Fig. 10. We also use the term descendant, an

16 S. Akkarakaran and P.P. Vaidyanathan

���� ��� ��
���� ��� � �

���� �	� ��
� �� �	� � �
���� �	� ��

 � ��

 � � �

 � ��

����
� ��
����

� �� ��� ��
� �� ��� ��
� �� ��� ��
� �� ��� ��

 ��� �
����� ���

 � ��

 � ��

 � ��

� ��
� ��
� ��

 � �� � ��

 ��� �

����� ���

 ��� �
����� ���

 ��� �
����� ���

 ��� �
����� ���

 ��� �
����� ���

� �� ��� ��
� �� ��� � �
� �� ��� ��

� � ����� �!�#"%$&$

' (*)&+ $��*,.- (� / 01"2$2�43

' (*)65 �*,87) "2$2�1�23
/ $)&+ $ 529 ����� � 5 �;: �

"%,�,;� 9 ����� ��<

����� ��<� ��
 �

 � �� � ��
� ��
� ��

 � � �

 � ��

����� ��<� ��
 �

) �) / = 5 � 5?>4) ��@ 5 =1�1� ($ 5 � 5?>4) ��@5 � >�>*) �*0 5

 � ��

 � � �

����
����

����� ��� (*)65 ����� ��<)65 7) "2$2�1�

�A,B0�$&-2� C) �%, " � ��;D
) �*0E����� �!�)F5 / $);GH) �A�) - ($&0

Figure 10. Tree structure of filter banks.

I8J KFL#M.J K&NFL#OPJ K&N&Q�L R�S*T U

R	T R�UR�SI8J K1L M.J KFL OPJ K1L

V S4T&U W�J K1LYX.J K&NFL[Z\J K&N&Q&L

V U]Z\J KFL V T V SX.J KFL W�J KFL
^#_1`�`4a b*cEd;egf#h%i�i�^YfYh%_�j2fA_1h2i�c.kml

Figure 11. Structure of a channel of a tree structured FB.

obvious extension of ‘child’.

Figure 11 shows how the decimators and filters of a tree structured FB are
related to those of its units. The same FB may be derivable from many trees,
differing in the choice of filters in the units (e.g., in Fig. 11, replace filter A(z)
by A(z)/T (zp) and B(z) by B(z)T (z) for arbitrary T (z)) or even in the sets
of decimators in the units and the number of units (e.g., combine units 2,3 of
Fig. 10 into a single FB). Every FB is derivable from a trivial tree, which
by definition is one with only one unit, i.e., one whose root is also a leaf. We
will also use the notion of a tree structured set of decimators. Shown in
Fig. 12, this is defined exactly as a tree structured FB, except that the units
of the tree are now just sets of decimators rather than FBs. The distinction is
made because while a decimator–set S may sometimes be derivable from many
tree structures, a FB using S need not always be derivable from all of these.
In fact derivability from all these trees usually occurs only in very special cases
(e.g., when the set S is dyadic, Section 7). Often we have the other extreme
where the trivial tree is the only one that the FB is derivable from. Two other
useful notions are as follows:

Uniform–trees. A uniform–tree structure of FBs or decimator–sets is a tree
structure in which all units are uniform. (A uniform decimator–set, like a uni-
form FB, is one in which all decimators are equal.) Its importance, elaborated

Nonuniform Filter Banks 17

�������

�������

������	

��

�

��
��

��
��

��
��

���

�����

���������
� "! #

� "! #
��������$

� "! #
�������&%

��

���

���

�'�

���

���

�(�

���

�)�

���

���

��	

�������+*
! #"�

,

-�.0/"/21 � . ��34�5� .0/ 6�/"1 ��78�5���)9 15/ �+:<;>= / 34�8?A@<�0: .01

Figure 12. Tree structure of sets of decimators.

in Section 4.2, stems from the fact that design of uniform FBs is so well under-
stood.

Properties preserved by trees. It is fairly clear that a tree structure whose
units are PRFBs generates a (tree structured) PRFB. Similarly a tree of rational
FBs generates a rational FB. In general we say that a property of FBs is pre-
served by tree structures if it is true that whenever all units of a tree of FBs
obey the property, so does the resulting tree structured FB. A similar statement
holds for properties of decimator–sets. Two obvious but important properties
of FBs preserved by trees are PR and maximal decimation. From Fig. 11, we
can infer that the property of having filters that are rational, stable, real coef-
ficient, FIR, or delays, and also the paraunitariness property, are all preserved
by tree structures. The property of being a uniform FB is clearly not preserved
by trees. Other useful nontrivial examples will be presented later (Section 6.3).
As Section 4.3 will show, the ability of trees to strengthen known PR conditions
on the decimator–sets depends crucially on whether or not certain properties
are preserved by trees.

4.2. Uniform–trees: An incomplete PR theory for nonuniform FBs

A uniform–tree of FBs or decimator–sets is one in which each unit is uniform
(i.e., all its decimators are equal). Its role in the central problem of Section 3.1
can be summarized as follows:

18 S. Akkarakaran and P.P. Vaidyanathan

Role of uniform–trees. Derivability of a decimator–set S from a uniform–
tree is a sufficient condition on S for existence of PRFBs using S and belonging
to the specified FB class C, for all C of interest in this work.

This statement follows from the simple fact that a uniform–tree whose units
are rational PRFBs generates a rational PRFB, and so on. More generally, the
statement holds for every FB class C having two features, namely (a) C contains
uniform PRFBs with all decimation rates, and (b) the property of being in C is
preserved by tree structures. All C of interest here, e.g., the rational and FIR
FB classes, have these features. Thus it is important to have an algorithm to
test whether or not a given decimator–set S is derivable from a uniform–tree.
Such derivability is assured, for instance, if S has no more than two distinct
decimators, or if each decimator divides every decimator greater than itself
(e.g., when they are all powers of the same integer). Appendix B proves this,
and gives complete algorithms to test for derivability from uniform–trees.

Due to the common use of uniform–trees to design nonuniform PRFBs,
the term ‘tree structure’ in the literature sometimes implicitly refers only to
uniform–trees. In this work however, trees are always more general, i.e., unless
explicitly referred to as uniform–trees, they could have nonuniform units too.
This is necessary, for as we now show, uniform–trees do not provide a complete
PR theory for nonuniform FBs.

Deficiencies of uniform–trees.

1. Uniform–tree condition is not necessary for PR: There are decimator–sets
S that are not derivable from uniform–trees, but can be used to build PR
delay-chain FBs, i.e., FBs in which all filters have the form z−k for integer
k. An example [4] is the set S = {6, 10, 15, 30, . . . , 30} (30 occurring 20
times), discussed in detail and generalized in Section 5.3. A delay-chain
belongs to every FB class C of interest here (e.g., the FIR class). Thus,
the uniform–tree condition is not necessary for any of these classes.

2. Uniform–tree FBs are not a full parameterization: Even if a decimator–
set S is derivable from a uniform–tree, there may be PRFBs using S which
are not derivable from any uniform–tree of FBs. We will now illustrate
two examples of such a situation.

Example 1: Based on modifying filters of tree structured FBs. We take the anal-
ysis bank of a tree structured PRFB, find all subbands with a fixed decimation
rate N , and transform them using an invertible square matrix E(z). If h(z) is
the vector of analysis filters in the channels being transformed, the transform is
equivalent to replacing h(z) by h′(z) = E(zN)h(z). We preserve PR by effecting
a corresponding change of synthesis filters using the inverse transform E−1(z).
Now if all the subbands being transformed come from the same unit FB in the
tree, the transform can be effected by modifying only the filters of this unit,
and the tree structure is preserved. More generally, if E(z) is block–diagonal

Nonuniform Filter Banks 19

with each block acting on subbands coming from the same unit of the tree, then
again the tree structure can be preserved. However, this is no longer possible
in general once we choose E(z) to avoid this degeneracy. In fact it is then fairly
easy to ensure that the special structure of h(z) imposed by the tree is absent
in the new filter vector h′(z). Thus, the new FB has the same decimator–set
S but cannot be derived from the same tree. In particular if we choose a set
S with a unique uniform–tree representation which is chosen as the starting
tree in the above construction, the new FB is not derivable from a uniform–tree
though its decimators are. An example of this kind is shown in [10], using FIR
orthonormal FBs having the decimator–set {6, 6, 6, 6, 9, 9, 9}.

Example 2: Based on PR delay-chains. Consider the set with decimators
6,10,15,30 occurring 2,4,1,6 times respectively. From Section 5.2 we can show
that this set can be used to build a PR delay-chain FB, which is clearly not
derivable from a uniform–tree as the gcd of its decimators is unity. Now we
build a tree in which the root is a uniform 2-channel PR delay-chain and the
leaves are two such (identical) FBs, both children of the root. This yields a
new (tree structured) PR delay-chain FB in which the gcd of the decimators is
2. Thus if this FB is to be derived from a uniform–tree, the root of the tree
must be uniform with decimator 2. From its construction, this implies that
in fact the new FB is not derivable from a uniform–tree. However, its set of
decimators is derivable from a uniform–tree (in fact, in multiple ways). Note
that this example cannot be produced starting from a uniform–tree of FBs in
the manner used to create Example 1 above. Thus it shows a deeper reason for
the incompleteness of FB parameterizations using uniform–trees.

4.3. Using trees to improve PR conditions on the decimators

Weakening sufficient conditions

Let S be a general decimator–set (obeying (1.0.1)). We seek conditions on S
that permit existence of a PRFB that uses S as its decimator–set and belongs
to some specified FB class C. For all C of interest here, the most elementary but
very strong sufficient condition on S for this purpose is that S be uniform (i.e.,
all its decimators be equal), as uniform FBs can always be built. However, using
the fact that the FB class definition (i.e., property of being in the class C) is
preserved by tree structures, Section 4.2 has obtained a much weaker (and hence
improved) sufficient condition, namely that S be derivable from a uniform–tree.

The process just described can be easily generalized to improve (i.e., weaken)
any sufficient condition P on the decimator–set S (rather than merely the con-
dition that S be uniform). The only requirement for this process to work is
that the FB class definition be preserved by trees (which holds for all classes
of interest here). The improved sufficient condition, denoted by P ′, states that
S be derivable from a tree in which all units obey the original sufficient condi-

20 S. Akkarakaran and P.P. Vaidyanathan

tion P. Because S is always derivable from the trivial tree, the new condition
is indeed weaker, i.e., P implies P ′. It is also easy to test for P ′ once we have a
test for the original condition P: We simply list all possible tree representations
of S and run the test for P on all units of each of them. (Of course the specific
nature of P could make even faster tests possible.)

It may happen that P ′ ≡ P, i.e., the ‘weaker’ condition is not strictly weaker.
For example, suppose P itself is preserved by trees. Then if S is derivable from a
tree in which each unit obeys P (i.e., P ′ holds), it implies that S itself obeys P.
Thus P ′ ≡ P here. In fact a little further thought shows that P ′ ≡ P if and
only if P is preserved by trees. Note that by its definition, P ′ itself is preserved
by trees. Thus repeated application of the above method cannot weaken the
sufficient condition P any more than the first one does.

The only currently known instance where the above method strictly weak-
ens a sufficient PR condition on decimator–sets is the one mentioned at the
beginning of this section, leading to the uniform–tree sufficient condition. (Of
course we can create other artificial instances, which lead to sufficient conditions
that are stronger, and hence not as useful.) In the next section we will show a
method to improve necessary conditions, and see that there are more nontrivial
examples where this method causes a strict improvement.

Strengthening necessary conditions

We begin by illustrating the general method using a specific necessary condition
that follows from Theorem 4 of Section 6.2. The condition states that the
decimator–set of a rational PRFB cannot have a subset of g + 1 decimators
within which the gcd of any pair is g. The set S = {2, 4, 8, 12, 24} can be seen
to obey this condition. Suppose there is a rational PRFB using decimator–
set S. We can create tree structures whose units are this and other rational
PRFBs. The resulting FB also is a (tree structured) rational PRFB. Hence
its decimator–set must obey the above necessary condition too. Thus we can
obtain a new and stronger necessary condition on S by applying the original one
to all the tree structured decimator–sets created from S as just described. In
the present case, this new condition is strictly stronger: Using a two–unit tree
in which the leaf is uniform with decimator 2 and is attached to the decimator 2
in the root S, we obtain the decimator–set {4, 4, 4, 8, 12, 24} which violates the
original condition. (Its subset {4, 4, 4, 8, 12} has 5 decimators within which the
gcd of any pair is 4.)

The new necessary condition P ′′ created as above from the original condi-
tion P will be referred to as the tree version of the necessary condition P. It
is stronger, i.e., P ′′ implies P, because in particular the tree chosen in the above
construction can be taken as the trivial one with S as its only unit. General-
izing the above example, we summarize the method of strengthening necessary
conditions as follows:

Theorem 1: Tree versions of necessary conditions. Let C be a FB class

Nonuniform Filter Banks 21

such that the property of being in C is preserved by trees. Let P be a necessary
condition on a general decimator–set S for existence of a PRFB in C with S
as its set of decimators. Consider any decimator–set S ′′ derivable from a tree
structure in which each unit is either identical to S or allows building of PRFBs
in C (i.e., obeys some sufficient condition). Let P ′′ be the condition that all
such sets S′′ satisfy P. Then P ′′ is also a necessary condition on S, called the
tree version of the necessary condition P.

Remarks:

1. We have just defined tree versions of necessary conditions, which are
stronger necessary conditions. Earlier we had defined tree versions of
sufficient conditions, which are weaker sufficient conditions. Some ba-
sic differences exist between these two methods of using trees to improve
known conditions. For example, the above definition of the necessary con-
dition P ′′ involves a known sufficient condition. The weaker this sufficient
condition, the stronger P ′′ becomes. This is notably different from the
earlier situation for tree versions of sufficient conditions.

2. Algorithm to test P ′′. The condition P ′′ on S demands that P hold for
several sets S′′ derived from S (including S itself) as described above. As
there are infinitely many of the S ′′, we cannot state a general algorithm
that tests for P ′′. One needs specific tests designed using the features of
P and the sufficient condition used to define P ′′. This is again unlike the
situation for tree versions of sufficient conditions.

3. When are tree versions not strictly stronger? Suppose P is preserved by
tree structures. Then if S obeys P, all units in the tree generating S ′′

obey P, and hence so does S ′′. Thus, S obeys P ′′ too, i.e., P ′′ ≡ P. Here
too, as with tree versions of sufficient conditions, P ′′ is preserved by trees,
and is hence unchanged by forming its tree version. The only difference
is that now we cannot in general claim that P ′′ ≡ P implies that P is
preserved by tree structures.

Tree versions of necessary conditions have not been observed earlier. A
possible reason for this is that the simplest known necessary conditions for the
rational FB class (compatibility and pairwise noncoprimeness, Section 6.1) are
preserved by trees, and are hence identical to their tree versions. Section 6.3
shows another necessary condition that is made strictly stronger by forming its
tree version.

5. Delay-chains

A delay-chain FB is one in which all filters are delays, i.e., of form z−k for integer
k. (We call z−k a delay even though it is actually an ‘advance’ for k < 0.)
Such a FB, while quite useless from a practical standpoint, is a useful tool in

22 S. Akkarakaran and P.P. Vaidyanathan

solving the problems of Section 3.1. This section presents a complete solution
to these problems when the class C of FBs under study is that of delay-chain
FBs. Because delays trivially obey various filter properties, delay-chain PRFBs
belong to every class C studied in this paper: They are FBs with FIR, rational,
stable, real coefficient filters, and we will see that they are also paraunitary.
Thus, solving the problem of Section 3.1 for the class of delay-chains yields a
sufficient condition on the decimators for existence of PRFBs in any of these
classes. We will see that this condition is strictly weaker than the other sufficient
condition studied earlier in Section 4.2, namely derivability from uniform–trees.
In fact existence of a delay-chain is the weakest known sufficient condition for
all of the earlier mentioned rational FB classes.

5.1. PR condition on the set of decimators

In Fig. 1, ifHk(z) = z−lk for all k, the k-th subband signal is ck(n) = x(nkn−lk),
i.e., it contains a certain subset of the input samples x(n). Let L = lcm{ni},
and consider any L consecutive samples of x(n). We see that the k-th subband
contains exactly L/nk of these samples. Due to maximal decimation, we have

∑

k

(L/nk) = L (5.1.1)

Thus, if any of the L chosen input samples occurs in more than one subband,
there must be a sample that does not occur in any subband. In this case, PR
is clearly impossible no matter what the choice of synthesis filters. On the
other hand, if none of the input samples occurs in more than one subband,
then (5.1.1) implies that each of them occurs in exactly one subband. We can
then achieve PR by appropriately interleaving the subband samples, which is
done by the choice of synthesis filters as Fk(z) = zlk . Thus, PR is possible iff
no input sample occurs in more than one subband. This condition means that
if i 6= j, then nin− li 6= njm− lj , i.e., li− lj 6= nin−njm, for any integers n,m.
As n,m range over all integers, the right side here ranges over all multiples of
gcd(ni, nj). Thus the PR condition may be summarized as follows:

Theorem 2: Delay-chain PRFBs. In Fig. 1, if Hk(z) = z−lk for integers
lk, PR is possible iff no input sample occurs in more than one subband. Under
this condition, PR is obtained with the unique choice Fk(z) = H̃k(z) = zlk ,
yielding a PR delay-chain FB, which is thus always paraunitary. The necessary
and sufficient condition on the decimators ni for existence of such a FB is that
there exist integers li satisfying

(li − lj) 6≡ 0 (mod gcd(ni, nj)) if i 6= j (5.1.2)

Nonuniform Filter Banks 23

5.2. Testing the PR condition

Given the decimators nk, it is required to test for existence of integers l0, . . . , lM−1

obeying (5.1.2). Now if (5.1.2) holds for some integers lk, then it also holds if
each lk is replaced by lk +mknk +C for any integers mk and any fixed integer
C. Hence, without loss of generality we can assume that 0 ≤ lk < nk and
l0 = 0. This makes the number of possible sets of lk finite, so clearly there is an
algorithm for our purpose.

For example, we can try to assign the lk sequentially, as follows: Suppose
we have l0, l1, . . . , lN−1 obeying (5.1.2) for some N < M . We assign to lN all
possible values obeying 0 ≤ lN < nN and (lN − lj) 6≡ 0 (mod gcd(nN , nj)) for
j = 0, 1, . . . , N − 1. Each value yields a larger set l0, l1, . . . , lN obeying (5.1.2),
and we can now repeat the process on this set. If there is no valid choice for lN ,
we must restart with another valid set of choices for l0, l1, . . . , lN−1. Initializing
this recursive scheme using l0 = 0, we can thus list all sets {l0, l1, . . . , lM−1}
obeying (5.1.2). In particular this finds whether or not there exist such sets.
This solves both problems of Section 3.1 for the class C of delay-chain FBs. To
determine only the existence of a PR delay-chain, the above algorithm can often
be accelerated using the following result:

Fact 1. Let integers l0, . . . , lN−1 obey (5.1.2) for some N < M , and let nN be
a common multiple of n0, n1, . . . , nN−1. Then there is an integer lN such that
0 ≤ lN < nN and l0, . . . , lN−1, lN obey (5.1.2) too.

Proof: From the premise, l0, . . . , lN−1, lN will satisfy (5.1.2) if and only if

(lN − lj) 6≡ 0 (mod gcd(nN , nj)) for j = 0, 1, . . . , N − 1. (5.2.1)

Also gcd(nN , nj) = nj . Thus (5.2.1) is equivalent to lN 6= lj + nnj for all
integers n, for j = 0, 1, . . . , N − 1. For each j there are nN/nj integers of this
form lj + nnj in the range [0, nN). Thus, of the nN integers in [0, nN), at most

B =
∑N−1

k=0 nN/nk of them are excluded as possible choices of lN (in fact we
can even show that exactly B choices are excluded). As N < M , maximal
decimation (1.0.1) means that B < nN , so there are still valid choices of lN in
the interval [0, nN). 555

Thus, suppose there is a decimator nN such that each nj ≥ nN is a multiple
of all ni < nj . It then suffices to verify existence of valid delays lk obeying (5.1.2)
for all nk < nN . As an extreme case, if every nj is a multiple of all ni < nj (i.e.,
every nj divides all ni > nj), then a delay-chain PRFB always exists. In fact
the decimator–set is then derivable from a uniform–tree (Appendix B). Fact 1
is also useful in proving Theorem 3 which follows soon.

Nonuniqueness of delay-chains: When a decimator–set allows building of a PR
delay-chain FB, in general this delay-chain is not unique. The non-uniqueness
can be much deeper than that caused simply by adding a constant delay to all
the filters. For example, when several delay-chains are possible, it could happen

24 S. Akkarakaran and P.P. Vaidyanathan

that some of them are also derivable from uniform–trees, while some others are
not, as seen in Section 4.2.

5.3. Delay-chains vs. uniform–trees

Our study of tree structures showed that (a) known PR conditions on decimators
can sometimes be strengthened using trees (Section 4.3), and (b) derivability
of the decimators from a uniform–tree is a sufficient PR condition for all FB
classes that we study (Section 4.2). Does this teach us more about delay-chains?
Firstly, the condition (5.1.2) is both necessary and sufficient for existence of PR
delay-chains. Hence it remains unaltered by the procedures of Section 4.3. Next,
the uniform–tree condition is not necessary, as we now show:

Theorem 3: PR delay-chains without uniform–trees. There are infinitely
many PR delay-chain FBs that cannot be derived from uniform–trees. Such FBs
can be built using every set of decimators of the form

S = {n0, n1, n2, L, L, . . . , L}, where L = lcm(n0, n1, n2),

and n0 = m1m2, n1 = m2m0, n2 = m0m1 where the mi are pairwise coprime
integers greater than unity. (Here L occurs L(1−

∑2
i=0(1/ni)) times in S.)

Proof: By Fact 1, decimators of S allow building of a PR delay-chain FB iff
there are integers l0, l1, l2 obeying (5.1.2) for i, j ∈ {0, 1, 2}. This condition is
easily ensured, in fact it holds iff gcd(ni, nj) ≥ 2 for i, j ∈ {0, 1, 2} with strict
inequality for at least one i 6= j. (We can then make a valid choice of the li from
the numbers 0,1,2.) Further if gcd(n0, n1, n2) = 1, the set cannot be derived
from a uniform–tree (Appendix B). Both these requirements are satisfied by the
choice of ni stated by the theorem. 555

An example of a delay-chain PRFB not derivable from a uniform–tree was
first shown in [4]. Its set of decimators {6, 10, 15, 30, 30, . . . , 30} (30 occurring
20 times) is a special case of the construction of Theorem 3 with (m0,m1,m2) =
(5, 3, 2). This is not the only way to produce such examples: Delay-chain PRFBs
can also be built with the decimator values 6, 10, 15, 30 when the number of their
respective occurrences are 2, 4, 1, 6 or 2, 3, 2, 7. The former set of decimators is
the smallest such example.3 It can be used as the root of a tree to derive the
example of [4], but not the latter example. In all these cases, the decimators
have no common factor, ensuring that they are not derivable from uniform–trees.
In fact if the decimators of a delay-chain PRFB do have a common factor, the
FB can be built from smaller PR delay-chains as follows:

Fact 2. Let all decimators in a PR delay-chain FB have common factor K > 1.
Then the FB can be derived from a tree structure in which each unit is a PR
delay-chain FB and the root is uniform with decimator K.

3This is true when size is measured by either the number of decimators, or their lcm, or the
largest one. In fact there is no other example with 13 or fewer decimators. This is verifiable
by exhaustive search aided by a computer and Fact 2.

Nonuniform Filter Banks 25

Proof: Let x(n) be the FB input. For 0 ≤ k < K, let fk(n) = x(Kn − k),
which is the k-th subband signal in a uniform K channel delay-chain PRFB.
Now consider the i-th channel of the given PR delay-chain, with decimator
ni, analysis filter z−li , and hence, subband signal x(nin − li). Since ni is a
multiple of K, either all its samples lie in the sequence fk(n), or none of them do
(depending on whether or not li ≡ k (mod K)). We now collect all subbands
whose samples do lie (entirely) in fk(n). Due to the PR condition for delay-
chains (Theorem 2), these subbands collectively contain all samples of fk(n) (as
none of the other subbands have any of them), and each of these samples occurs
in exactly one of these subbands. Further the delays in all these subbands are
equal (to k) modulo K. Thus these subbands can be generated by inserting
a suitable delay-chain PRFB as a child (in a tree) in the k-th subband signal
fk(n) of a uniform K channel delay-chain PRFB. Repeating this process for
k = 0, 1, . . . ,K − 1 yields the desired tree structure. 555

Remarks:

1. The above result does not generalize easily to other classes of FBs (besides
delay-chains). For example, consider the decimators {4, 4, 4, 4}, having
common factor K = 2. These decimators can be used to build rational
and FIR PRFBs that are not derivable from any tree structure (besides
the trivial one).

2. A common factor K > 1 among all decimators does not by itself ensure
their derivability from a tree whose root is uniform with K as decimator.4

However, if the decimators also allow building of a delay-chain PRFB,
then by Fact 2, there is at least one such tree, as the FB itself is deriv-
able from such a tree.

3. All decimators of a PR delay-chain FB need not have a common factor
K > 1 (see the example in Theorem 3). However, further conditions on the
decimators can force such a common factor to exist, thus making Fact 2
apply. For example, suppose the PR delay-chain has a decimator of value
m occurring m − 1 times (m is thus the smallest decimator). Then all
decimators must have m as a factor. This is provable by a slight extension
of the proof of Fact 2. In fact it even generalizes to rational FBs in place
of delay-chains (Theorem 5, Section 7), although this is harder to prove.

6. The Class of Rational FBs

In this section and most of Section 7, the FB class C of interest is that of rational
FBs, i.e., FBs in which all filters are rational. We seek necessary and sufficient
conditions on a decimator–set S for existence of a rational PRFB using S.

4The set of decimators {4, 6, 6, 10, 10, 10, 10, 60} shows this for K = 2. The choice of root
prevents the leaves from obeying (1.0.1).

26 S. Akkarakaran and P.P. Vaidyanathan

The weakest known sufficient condition is that of existence of a PR delay-chain
(Section 5). This is clearly sufficient since delay-chains are rational FBs, but is
it also necessary? Or is there a decimator–set which does not permit existence
of PR delay-chains, but allows building of rational PRFBs (whose filters are not
all delays)? This is a major open question in the PR theory of nonuniform FBs.

A possible approach to answer the above question is to try to build a rational
PRFB with decimators that do not allow building of PR delay-chains. However,
starting with an arbitrary decimator–set such as S = {2, 3, 6} does not help, as
S violates a known necessary condition (called ‘compatibility’, Section 6.1) on
the decimators of a rational PRFB. Such sets must be excluded, and to this end
it helps to derive more necessary conditions. This is our main contribution in
this section. The previously known necessary conditions for PR are described
in Section 6.1. Each subsequent subsection develops a new necessary condition
that is strictly stronger than a previously known one. Table 1 (Section 8)
presents a comprehensive summary of all known conditions, many of which are
new results of the present work. The table studies the interrelationship between
the conditions, and lists example decimator–sets illustrating their use.

All the new necessary conditions we develop still collectively remain insuffi-
cient for existence of delay-chain PRFBs, and thus it is still not known whether
they are sufficient for existence of rational PRFBs. Our work reduces the ‘gap’
between the necessary conditions and the sufficient one. Proving that the suf-
ficient condition is in fact necessary would in some sense render obsolete most
of the present section. However this appears tough to do, in fact the statement
may not even be true. Our work is a step towards the truth.

6.1. Previously known necessary conditions on decimators

1. Pairwise noncoprimeness. No two decimators of a rational PRFB can
be coprime [4]. If gcd(ni, nj) = 1 for two decimators ni, nj in Fig. 1, the
biorthogonality condition (2.2.1) for PR impliesHiFj = 0 and (HiFi) ↓ni =
(HjFj) ↓nj = 1. This is impossible for a rational FB, as HiFj = 0 forces
Hi ≡ 0 or Fj ≡ 0.

2. Compatibility. Every decimator occurring only once must divide some
other decimator [1, 5, 4]. In particular, the largest decimator must occur
at least twice. As Section 6.4 will show, without this condition the rational
FB cannot even be a nonzero LTI system, let alone have PR.

3. Strong compatibility. This condition, developed in [4], places a lower
bound bj ≥ 1 on the number of occurrences Nj of each decimator nj .
The condition is stated as follows:

Nj ≥ bj
4
=

1

pj

(
min
pi 6=pj

lcm(pi, pj)

)
, where pi =

L

ni
, (6.1.1)

Nonuniform Filter Banks 27

where L = K(lcm{ni}) for any integer K > 0. This will be shown in
Section 6.4, which in fact proves a new condition strictly stronger than
the above.

Note that the bound bj of (6.1.1) is independent of the integer K. Also, it
only needs verification for distinct decimator values, because if ni = nj then
Ni = Nj , bi = bj . For a uniform set of decimators, pi = pj for all i, j, so we
define bj = 1 here (so that the bound holds). Excluding this case, bj = 1 iff pj
is a multiple of some pi 6= pj , i.e., iff nj divides some distinct decimator ni. So
the bound need not be checked for such decimators. Also, strong compatibility
implies compatibility, because it demands that any nj occurring only once (i.e.,
with Nj = 1) must have bj = 1, i.e., must divide some other decimator. In fact
strong compatibility is a strictly stronger necessary condition than compatibility,
as shown by the set of decimators {2, 4, 6, 24, 24}. However it does not imply
pairwise noncoprimeness [1] (shown by {2, 5, 10, 10, 10}). Likewise, a set could
satisfy pairwise noncoprimeness but violate compatibility (and hence strong
compatibility), e.g., {2, 4, 6, 12}.

6.2. The pairwise gcd test

Theorem 4: Pairwise gcd test. Among the decimators of a rational PRFB,
there cannot be a subset of g + 1 decimators such that the gcd of any two
elements from the subset is a factor of g. In particular (for g = 1), this implies
the pairwise noncoprimeness condition (Section 6.1).

Proof: As with pairwise noncoprimeness, the proof uses the biorthogonality
condition (2.2.1) for PR. Let g + 1 decimators n0, n1, . . . , ng be such that the
gcd of any pair divides g. From (2.2.1), (Hi(z)Fj(z)) ↓gcd(ni,nj) = 0 if i, j ∈
{0, 1, . . . , g}, i 6= j. In this case g/ gcd(ni, nj) is given to be an integer, so
decimating both sides by it,

(Hi(z)Fj(z)) ↓g = 0, for i, j ∈ {0, 1, . . . , g}, i 6= j (6.2.1)

Form the g-th order analysis polyphase matrix E(z) (of size (g + 1) × g) of
the filters Hi(z), and the g-th order synthesis polyphase matrix R(z) (of size
g × (g + 1)) of the Fi. Thus, from the polyphase lemma (Section 1.3), for
i, j ∈ {0, 1, . . . , g}, (Hi(z)Fj(z)) ↓g is the ij-th entry in the product P(z) =
E(z)R(z). Hence by (6.2.1), P(z) is a ((g + 1) × (g + 1)) diagonal matrix. Its
i-th diagonal entry is the filter (Hi(z)Fi(z)) ↓g, with impulse response ci(gn),
where ci(n) is the impulse response of HiFi. From (2.2.1), (Hi(z)Fi(z)) ↓ni = 1,
so ci(nin) = δ(n) i.e., ci(0) = 1. Hence ci(gn) 6≡ 0, i.e., no diagonal element of
P(z) is identically zero. Thus, as these elements are rational filters, there is a
z such that P(z) has full rank g + 1. However, this is impossible from the sizes
of E(z),R(z). 555

28 S. Akkarakaran and P.P. Vaidyanathan

��� ��� ��� ����� ����� �����
��� ��� 	�

�
�����

	�

�
�����

Figure 13. Showing that strong compatibility is not preserved by trees.

6.3. Tree version of strong compatibility

In Section 4.3, we saw how given a necessary condition P on the decimators
for PR, we could form its ‘tree version’ P ′′, which is a stronger (though not
necessarily strictly stronger) necessary condition. We can apply this process to
the conditions of Section 6.1. Some thought shows that both the pairwise non-
coprimeness and the compatibility conditions are preserved by tree structures,
and are hence identical to their tree versions (as seen in Section 4.3). How-
ever, the same is not true with strong compatibility: Its tree version is strictly
stronger than itself. This is shown by the two–unit tree in Fig. 13. Both units
R and S are strong compatible, and S allows building of rational PRFBs (as it
is uniform). However the resulting set of decimators is not strong compatible.
Hence, though R obeys strong compatibility, it violates its tree version.

A complete algorithm to test this new necessary condition is described in
Appendix E. Its derivation involves characterizing trees similar to that in Fig. 13.
This is done by the following results:

Fact 3. Consider a set T of decimators derived from a 2-unit tree structure
having root R and leaf S attached to decimator m0 of R. Suppose R,S are
strong compatible but T is not. Then S is a uniform unit, i.e., all its decimators
have equal value K. The decimator m0 of R does not occur in T , i.e., it occurs
only once in R. The decimator m0K of T obtained at the leaf S also occurs
in R. Decimators of this value m0K are the only ones violating the strong
compatibility lower bound on the number of their occurrences in T .

Fact 4. Let a set D of decimators satisfy strong compatibility but violate its
tree version. Then there is a tree T generating a set T of decimators, such that
T and T have the following properties:

1. The tree T has root D. All leaves of the tree are uniform and are children
of its root. All decimators obtained at the leaves have equal value d.

2. If di are the decimators of D to which leaves are attached in T , then no
decimator in T has value di.

Nonuniform Filter Banks 29

3. If d 6∈ D, then d = lcm{di}. Hence, if d 6∈ D, the di are not all equal (for
otherwise, d = di ∈ D).

4. Decimator d ∈ T violates the strong compatibility lower bound on the
number of its occurrences in T .

Fact 3 is proved in Appendix C and used to prove Fact 4 in Appendix D. Fact 4
gives an algorithm to test whether the set D obeys the tree version of the strong
compatibility condition: We find all trees with root D and properties 1,2 and 3
listed in Fact 4. It can be seen that there are only finitely many such trees, and
from Fact 4, D violates the condition if and only if one of these trees also obeys
property 4. This idea is the basis of the detailed algorithm of Appendix E.

6.4. The AC-matrix test

The necessary condition derived here relies heavily on the AC matrix formula-
tion (2.2.4),(2.2.5) of the PR condition on the filters of the FB. The algorithm
to test the condition is described in Appendix F, and may be taken as the state-
ment of the condition (i.e., this condition, unlike the earlier ones, does not have
a short / simple statement). Like the test of Section 6.3, this test also strictly
strengthens strong compatibility, but in an independent direction. In this sec-
tion we derive two lemmas that explain the operation of the test, illustrate the
test with examples, and thus justify the algorithm of Appendix F. Deriving
the new test also proves the necessity of strong compatibility for PR; a result
assumed in deriving the test of Section 6.3. We further show that (simple) com-
patibility is necessary even if we allow the rational FB to violate PR but merely
insist that it be an LTI system (i.e., an aliasfree FB) that is not identically zero.

Two key results used by the test

Lemma 2. In Fig. 1, if
∑

kHik(z)Fik(z) = 0 for any set of ik, 0 ≤ ik < M ,
then the FB cannot have PR.

Proof: If the FB of Fig. 1 has PR, (Hik(z)Fik(z)) ↓nik = 1 by biorthogo-
nality (2.2.1). Let L = lcm{ni}, thus (Hik(z)Fik(z)) ↓L = (1) ↓(L/nik) = 1. So

(
∑

kHik(z)Fik(z)) ↓L 6= 0, violating
∑

kHik(z)Fik(z) = 0. 555

Lemma 3. Given rational filters Bi(z), Ci(z), 0 ≤ i < N , let W = e−j2π/M

and Gl(z) =
∑N−1

i=0 Bi(zW
l)Ci(z). If Gl(z) = 0 for N values of l occurring

consecutively in an arithmetic progression, then Gl(z) = 0 for all values of l in
this progression. (The lemma in fact holds for any nonzero complex W .)

Proof: IfN = 1, the lemma must be taken to mean that if B0(zW
l)C0(z) ≡ 0

for some l, then it holds for all l. This is clearly true: Rational filtersB0(z), C0(z)
obey B0(zW

l)C0(z) ≡ 0 iff B0 ≡ 0 or C0 ≡ 0 or both. (Note however that
this is in general false if we remove the rationality constraint.) Hence, let

30 S. Akkarakaran and P.P. Vaidyanathan

N > 1. Let the N given consecutive values of l in arithmetic progression be
s, s+ d, s+ 2d, . . . , s+ (N − 1)d. The lemma can then be restated by defining

b(z) = [B0(zW
s), . . . , BN−1(zW

s)] , c(z) = [C0(z), . . . , CN−1(z)]
T
,

as follows: If b(zWnd)c(z) = 0 for n = 0, 1, . . . , N − 1 then it is true for all
integers n. To show this, form the square matrix B(z) with rows b(zW nd),
0 ≤ n < N . By the premise of the lemma, B(z)c(z) is the zero vector. This
implies linear dependence of the columns of B(z), and hence of its rows, as it

is square. So
∑N−1

n=0 αn(z)b(zW
nd) = 0 for some rational filters αn(z) not all

identically zero. Let r be the maximum n for which αn(z) 6≡ 0. Divide the above
relation by αr(z). (This is allowed solely due to the rationality assumption:
Otherwise αr(e

jω) could for instance be zero in an interval.) This yields

b(zW rd) =

r−1∑

n=0

βn(z)b(zW
nd) for some rational filters βn(z).

Replacing z by zW d and postmultiplying by c(z) shows b(zW nd)c(z) = 0 for
n = r + 1. Using this and repeating the process shows the same for n = r + 2.
Carrying on this way, the result is shown for all n ≥ 0. For n < 0 we use a
similar process, now taking r as the minimum n obeying αn(z) 6≡ 0. 555

Deriving the test from the AC matrix and Lemmas 2, 3

Examine closely Equations (2.2.4),(2.2.5) which are equivalent to PR. Number
the rows of the AC matrix from 0 to L− 1, and the columns from 0 to M − 1,
and let W = e−j2π/L. The l-th row equation in (2.2.4) has form

∑

k

pik Hik(zW
l)Fik(z) = 0 (6.4.1)

The summation here ranges over all indices ik for which the ik-th column in
the AC matrix has a nonzero entry in the l-th row. This happens if and only
if l is a multiple of pik = L/nik . Thus, suppose that for all integers m in some
set S, the number l = mp0 is not a multiple of any pi 6= p0. For all these
l = mp0, (6.4.1) holds with the summation being over the same set of filters,
i.e., those corresponding to decimator value n0. Thus, if N0 is the number of
occurrences of decimator n0, (6.4.1) takes the form

N0−1∑

i=0

p0 Hi(zW
l)Fi(z) = 0, for l = mp0, for m ∈ S (6.4.2)

This is very similar to the system
∑N−1

i=0 Bi(zW
l)Ci(z) = 0 of Lemma 3, with

N = N0. The only difference is that here the premise of the lemma may or

Nonuniform Filter Banks 31

may not hold, i.e., (6.4.2) may or may not hold for N0 values of l occurring
consecutively in an arithmetic progression.

The main idea of the test we are developing is to find all progressions for
which the premise of Lemma 3 actually holds, and then use the lemma. This
may sometimes allow us to deduce that (6.4.2) actually holds for other values
of l too, besides those stated in (6.4.2) itself. If l = 0 turns out to be one
of these, then by Lemma 2 we can conclude that PR is impossible, i.e., the
given set of decimators fails the test. To perform such a test, we must use
the known values of l from (6.4.2) to find progressions obeying the premise of
Lemma 3. From (6.4.2) it clearly suffices to examine progressions of integers
whose common difference d is an integer multiple of p0. There are infinitely
many such progressions, each an infinite sequence. However, since W L = 1, it
suffices to consider the progressions modulo L, and to restrict their common
difference d as d < L. In fact even d ≤ bL/2c suffices, as any progression
with common difference L − d can be generated in reverse order by one with
difference d. We will now show examples of the working of the above test.

Example 1: Compatibility is a special case, and is necessary even for aliasfree
FBs. Suppose p0 occurs only once and is not a multiple of any pi 6= p0. In
other words, n0 occurs only once and does not divide any other ni, i.e., com-
patibility (Section 6.1) is violated. Then (6.4.2) holds with N0 = m = 1, and
a trivial use of Lemma 3 shows that indeed (6.4.2) also holds for l = 0 (i.e.,
H0F0 ≡ 0). Thus by Lemma 2, PR is impossible. Hence, passing our new test
implies compatibility of the decimators. In fact, even if the rational FB does not
have PR but is LTI (i.e., aliasfree) with transfer function T (z), (2.2.4),(2.2.5)
still hold with L replaced by LT (z) in (2.2.4). Hence, if n0 violates compat-
ibility as described above, the conclusion H0F0 ≡ 0 still holds. Thus the FB
input–output relation is preserved even if we drop the 0-th channel, making the
FB overdecimated. As the input of such a FB cannot be recovered from its
output using any LTI system, we must have T (z) ≡ 0 (else we could use the LTI
inverse 1/T (z)). Thus, compatibility is necessary even if all we demand of the
rational FB is that it be aliasfree and not identically zero T (z) 6≡ 0 (as opposed
to having PR).

Example 2: A specific set of decimators. Consider the set {4, 6, 6, 6, 10, 20, 20, 20}.
This has 8 decimators with lcm L = 60, and p5 = p6 = p7 = 60/20 = 3. For
m = 7, 9, 11, the numbers l = 3m are not multiples of any pi 6= 3. Thus for
these l, the l-th row equation in (2.2.4) reads as

7∑

i=5

3Hi(zW
l)Fi(z) = 0 for l = 3m, m = 7, 9, 11 (6.4.3)

The sum has three terms, and the three values of l occur consecutively in an
arithmetic progression. Thus by Lemma 3, (6.4.3) holds for all l in this pro-
gression, specifically for l = 3 × 5 = 15, which is not a multiple of any pi

32 S. Akkarakaran and P.P. Vaidyanathan

besides p5 = 3 and p0 = 15. The 15-th row equation in (2.2.4) initially reads as

15H0(zW
l)F0(z)+3

∑7
i=5 Hi(zW

l)Fi(z) = 0 (for l = 15), but in the light of the
above conclusion it now further says that H0(zW

l)F0(z) = 0. Now another ap-
plication of Lemma 3 (for the trivial case of N = 1) shows that H0(z)F0(z) = 0
and thus PR is impossible by Lemma 2.

Based on the above discussion and examples, Appendix F shows a complete
general algorithm to test the necessary condition derived above using Lem-
mas 2 and 3. This test, called the AC matrix test, implies not merely compat-
ibility (Example 1) but strong compatibility too (Appendix F), and is in fact
strictly stronger than strong compatibility: The decimators of Example 2 are
strong compatible and yet fail the test.

7. Conditions Based on Reductions to Tree Structures

As seen in Section 4.2, a decimator–set may be derivable from trees in many
ways, but a FB using the decimator–set may not be derivable from all of
these trees. However, all PRFBs using decimators obeying certain conditions
must be derivable from certain nontrivial trees associated with the conditions.
Fact 2 is a result of this type for delay-chains. Another example is as fol-
lows: If the decimator–set comes from a dyadic or ‘wavelet’ tree (i.e., has form
{2, 22, . . . , 2r−1, 2r, 2r} for some integer r > 0), then all PRFBs using those
decimators are derivable from this tree. This was proved in [10],[3] for ratio-
nal orthonormal and biorthogonal FBs respectively. It parameterizes all FBs
with dyadic decimator–sets, i.e., solves problem 2 of Section 3.1 for such sets.
However, it does not reveal any new conditions on decimators for existence of
rational PRFBs (problem 1 of Section 3.1). This is because it concerns only
dyadic decimator–sets, which, being derivable from uniform–trees, are already
known to allow building of PRFBs in every FB class of interest here.

Suppose on the other hand that we have a condition on a more general
decimator–set S that allows us to conclude that every rational PRFB using S
is derivable from some (nontrivial) tree. Such a condition provides a parame-
terization result for FBs using such decimator–sets S. Further, it reduces the
problem of existence of rational PRFBs using S to that of existence of rational
PRFBs using the smaller decimator–sets in the units of the tree. We can obtain
a new necessary condition on S for existence of such a FB, by applying all the
known conditions on these smaller sets. In this section, we derive three such
conditions (Theorems 5,6,7) all of which yield as a special case, the result on
dyadic FBs mentioned earlier. We refer the reader to Table 1 (Section 8) for
example decimator–sets showing the use of the new necessary conditions gener-
ated by these results. Finally, we present two other results (Theorems 8,9) that
also pertain to other filter constraints besides rationality such as orthonormality,
stability and the FIR property.

Nonuniform Filter Banks 33

���

����� ���	 �
��

����
���� ���

� � ���

�
���
��

�
��

���

���� � ���

�����
��� ��
�� � ���

��� �
���

���

���

����� ���

��� ���

���

�	 �
��
 	 �
�����

!
��

!
���
�� ����
���� ���

!��!�� �

!����
��
��� ���� ��
�� � ���

�"�� � ���

�# �
�� # �
��# �
��

�%$
 $'&(� *) +�,.-%/�-10%243 5�07698;:

Figure 14. Root extraction test (Theorem 5): Showing equivalent tree structure for
any rational PRFB with decimators obeying the premise (7.0.1) of the test.

Theorem 5: Root extraction test. Let a set of decimators n0, n1, . . . , nM−1

obey

M−1∑

i=k

1

ni
=

1

N
, where N = integer multiple of n0, n1, . . . , nk−1. (7.0.1)

Let there be a rational PRFB using these decimators. Then all ni for i ≥ k are
multiples of N , and the FB is always derivable from a two unit tree structure of
rational PRFBs in which the root has decimators n0, n1, . . . , nk−1, N , as shown
in Fig. 14.

This result is a special case of Theorem 6 (which is proved in Appendix G).
A corollary obtained with N = 2 is that any rational PRFB having a decimator
of value 2 must be derivable from a two unit tree of rational PRFBs in which the
root is a uniform two band FB. Repeated use of this corollary shows the result
of [3] on derivability of rational biorthogonal FBs with dyadic decimators from
trees. The corresponding result of [10] for orthonormal FBs does not directly
follow: Theorems 5,6 do not themselves show how to ensure orthonormality of
all the units of the tree, given that of the overall FB. This can be done using
Theorem 8 which follows later. Finally, note that even nonrational PRFBs with
decimators ni obeying (7.0.1) must be derivable from trees as in Fig. 14, provided
the ni have the property that all ni for i ≥ k are multiples of N . In other words,
this property no longer follows from (7.0.1) (as is clear from Section 3.2), but
the derivability from a tree follows if the property is made an additional premise
(Appendix G).

Theorem 6: Generalized root extraction test. Let the given decimator–set

34 S. Akkarakaran and P.P. Vaidyanathan

D={n0, . . . , nM−1} have disjoint
5 subsets S, T1, T2 such that S is nonempty and

∑

ni∈S

1

ni
=

1

N
for some integer N, (7.0.2)

T1 = {ni : ni ∈ D,ni = factor of N}, (7.0.3)

gcd(ni, nj) = factor of N whenever ni ∈ S ∪ T2, nj ∈ T2, i 6= j, (7.0.4)
∑

ni∈T1

N

ni
+ |T2| = N − 1 (where |T2| = number of elements in T2). (7.0.5)

Then, if a rational PRFB exists with these decimators, all ni ∈ S are multiples
of N , and the FB is derivable from a 2-unit tree of rational PRFBs. This
tree has root decimator–set obtained from D by replacing S ⊂ D by a single
decimator of value N . The leaf–decimator set is derived from S by dividing all
its elements by N .

Comments on Theorem 6. This result, proved in Appendix G, is more
complicated to state but also more general than Theorem 5. Theorem 5 repre-
sents the special case when T2 is empty and S ∪ T1 = D (in which case (7.0.2)
and (7.0.3) imply (7.0.5), due to (1.0.1)). Note that while one of the sets T1, T2

can be empty, (7.0.5) shows that they cannot both be empty except in the triv-
ial case where N = 1 and S = D. With S, T1 defined as in (7.0.2),(7.0.3),
their disjointedness is equivalent to |S| > 1, which ensures that each entry of
T1 is less than all entries of S. Disjointedness of T2 from S, T1 is a separate
requirement that does not follow from (7.0.2)–(7.0.5). Both S and T1 can have
multiple occurrences of a given decimator value; in fact from (7.0.3), every
ni ∈ T1 occurs as many times in T1 as it does in D. However, entries of T2 are
all distinct from each other, for else by (7.0.4), T2 would have some elements
that are factors of N and are hence in T1 too, violating their disjointedness.
Unlike Theorem 5, Theorem 6 is not obeyed by nonrational FBs even if the
condition that all ni ∈ S be multiples of N is made an additional premise
(a counterexample can be created with brickwall FBs).

Theorem 7: AC matrix based leaf extraction test. Consider Fig. 15a,
showing a subset of the channels of some maximally decimated FB. Suppose the
system in Fig. 15a is not identically zero, and all its filters are rational. Then
the following statements are equivalent:

(a) Let W = exp(−j2πKM) and Gl(z)
4
=
∑K−1

i=0 Hi(zW
l)Fi(z). Then, Gl(z) = 0

for all l ∈ {0, 1, . . . ,KM − 1} that are not integer multiples of K (or
equivalently, as WKM = 1, for all such integers l).

5Most ‘sets’ in our work, including D, S, T1 here, are really ‘multisets’, i.e., can contain
multiple occurrences of the same decimator value. However, disjointedness here has its usual
set–theoretic meaning. Thus, here if one of the sets S, T1, T2 has a decimator of value m, the
other two sets cannot have any decimator of value m even if D has several such decimators.

Nonuniform Filter Banks 35

���
���

���
������

��� �	�
��
 �����
 �� �����

����� � �����

���� �����

��� ��� �����
�����

�����
�����������
 ��� � �����

 �����
 � �����

� ���

��� ��� � �� �
� �

���

���� ���
� ��� ���

���

� �
 �����
� �� �����

� ���� � �����

� � �����
���� ���

� ���� ���
� ���

���� ���

��� ���

�
 �����
� � �����

� ��� � �����

Figure 15. Leaf extraction test (Theorem 7). (a) K channels with decimator KM .
(b) Equivalent structure under the premise of the test.

(b) There are rational filtersA,B,H ′
i, F

′
i such that the systems of Figs. 15a, 15b

are equivalent (i.e., for i = 0, 1, . . . ,K − 1, Hi(z) = A(z)H ′i(z
M), Fi(z) =

B(z)F ′i (z
M)) and the H ′i, F

′
i form a K band PRFB.

Application of Theorem 7. The result is proved in Appendix G, we mainly
use the fact that (a) implies (b) in its statement. Suppose preciselyK decimators
of a rational PRFB have value KM . Examine the k-th row on the left side
of the L–row AC matrix equation (2.2.4) of the FB (where L is a multiple
of all decimators in the FB). For k = l(L/(KM)) (l a positive integer), this
evaluates to the sum of Gl(z) (defined in Theorem 7) and other terms coming
from channels whose decimators ni are such that k is a multiple of L/ni. If there
are no such terms, Gl(z) = 0. Even if there are such terms, we have seen in
deriving the AC matrix test (Section 6.4) how one can sometimes deduce that
they sum to zero (and hence that Gl(z) = 0) using filter rationality and the
other rows in (2.2.4). Suppose the decimators are such that such a deduction
of Gl(z) = 0 is possible for all l that are not integer multiples of K. The
condition (a) of Theorem 7 is then obeyed by the K channels with decimator
KM for all rational PRFBs with this set of decimators. Thus, Theorem 7 implies
that all these PRFBs are derivable from a two unit tree of rational PRFBs, in
which the leaf is uniform with decimator K and generates the K channels with
decimator KM . Thus for such a decimator–set, existence of rational PRFBs
is equivalent to existence of rational PRFBs using the smaller decimator–set in
the root of the above–mentioned tree. This technique can be applied to dyadic
decimator sets to deduce the result of [3]. However this result follows more easily
from Theorem 5. Finally, note that even if we remove all rationality restrictions
in the statement of Theorem 7, (b) still implies (a) (Appendix G). The converse
(which is more useful) is however no longer true (a counter example can be
created using brickwall FBs).

36 S. Akkarakaran and P.P. Vaidyanathan

Theorems 5—7 involve a decimator–set D having a subset S whose entries
have reciprocals summing to 1/N for some integer N . Given a rational PRFB
using D, the goal is to derive the subset of its channels corresponding to S from
a single channel with decimator N , by attaching a leaf FB using the decimator–
set S/N . (S/N is obtained from S by dividing each of its entries by N .) The
theorems give various conditions on D under which this can be done for all
rational PRFBs using decimator–set D. That S/N is a set of integers is either
an assumption or a conclusion. Note that certain rational PRFBs are shown to
be derivable from trees whose units are all rational PRFBs. If the original PRFB
obeys a constraint other than (or besides) rationality, such as orthonormality
or the FIR constraint, then can all units of the tree also be chosen to obey this
constraint? A partial answer (for certain constraints) lies in the following result:

Theorem 8. Consider any of the following properties of FBs: (a) PR, (b) or-
thonormality, (c) stable filters, and (d) FIR filters. Suppose a tree structure
of rational FBs yield a (necessarily rational) FB which obeys one particular
property from this list. Then the filters in each unit of the tree can be modified
without changing the overall FB, in such a way that each unit also becomes a
FB that satisfies that property.

This result is proved in Appendix H. There is an important point to note
about the list of properties in its statement. One could consider adding to
the list, combinations of the listed properties, i.e., (e) PR and stable filters,
(f) orthonormality and stable filters, (g) PR and FIR filters, (h) orthonormality
and FIR filters. However, these have not been listed. Thus, for instance if the
overall FB has PR with stable filters, all Theorem 8 assures is that the individual
FBs can be altered to have either PR or stable filters — whether they can
have both is left undecided. Indeed, it is an open problem as to whether or not
Theorem 8 holds with any of the properties (e)–(h) added to its list of properties
(though we believe that it probably does hold even in this case). That it holds
for property (h) has been proved for dyadic trees in [10, Th. 2]. This proof can
be extended to cover both properties (f) and (h) for all uniform–trees in which
no unit has more than one child (dyadic trees being a special case). Further
extensions (to arbitrary trees) are unknown.6

Our last result is one that, given a PRFB with decimator–set S, deduces
existence of another PRFB, which has a possibly different decimator–set S1

and preserves certain properties of the original FB such as rationality and or-
thonormality. Thus, given a necessary condition P on S for existence of a PRFB
using S with such a property, we can get a stronger necessary condition P1 by
applying P not merely to S but also to S1. It may turn out that S1 ≡ S, or
that S1 is derivable from a tree using S as root, in which case P1 is automati-
cally tested once we test for the tree version P ′′ of P (i.e., P ′′ is even stronger

6[10, Th. 4] appears to show Theorem 8 with property (h) for all uniform–trees, but in fact
it does not: In its proof, T ′

i
(z) = Ti(z)/B(zb) has not been shown to be FIR. Similarly, [3,

Sec. 6] seems to account for property (e), but in fact it only covers stability (property (c)).

Nonuniform Filter Banks 37

than P1). However, this does not always happen, i.e., sometimes we indeed get
a new condition. The result is as follows:

Theorem 9: Subset extension test. Consider any subset of channels of
any PRFB. Let the decimators in this subset have lcm L and reciprocals that
sum to p/L. Then there exist L − p channels with decimation L which when
augmented to the chosen subset, extend it into a PRFB. If the original PRFB
has any one of the following properties: (a) rational filters, (b) orthonormality,
(c) orthonormality and rational filters, (d) orthonormality and FIR filters, then
the new ‘extended’ FB can also be chosen to have that property.

Proof: We use the equivalence between the biorthogonality condition (2.2.1)
and the polyphase formulation of the PR condition on the filters. From Sec-
tion 2.2, Fig. 4 and Appendix A, we can see that for a specific i, j, (2.2.1) is
equivalent to pi × pj equations of the form (Si(z)Qj(z)) ↓L = δ(i − j). Here
L = nipi = njpj , and these equations come from choosing Si, Qj respectively as
the delayed versions of Hi, Fj in Fig. 4. The left side of each such equation can
be written as an ‘inner product’ of length L vectors using the polyphase lemma
(Section 1.3). In order to arrange all these equations into a single polyphase
matrix equation, L was chosen in Section 2.2 as a multiple of all decimators
ni. However, if we restrict attention to a subset of channels of the nonuniform
FB (as in Theorem 9), it suffices to let L be a multiple of the decimators in
this subset. Thus, the subset chosen in the theorem statement corresponds
to a matrix equation E(z)R(z) = I where E(z),R(z) are of sizes p × L and
L×p respectively. The theorem then follows by augmenting these matrices into
L × L ones whose product is still the identity. The augmented matrices are
the polyphase matrices of the new FB, and the added rows and columns are
the L-th order polyphase vectors of the filters in the added channels. Clearly if
E(z),R(z) are rational, these vectors can also be chosen to be rational. If the
original FB is orthonormal, E(ejω)E∗T (ejω) = I, so we can extend E(ejω) into
a unitary matrix (for each ω). Further if the original FB is rational or FIR,
the extension can be forced to preserve these properties by using the unitary
statespace realizations [11, Chap. 14] of L× p paraunitary systems.7 555

8. Summary and Comparison of Necessary Conditions

Table 1 lists all currently known necessary conditions on the decimators of ra-
tional PRFBs, many of which have been developed in this paper. The following
remarks are in order:

1. For each of the tests numbered #i = 1, 2, . . . , 11, we have an example
decimator–set Di violating the test. We have chosen Di so that the only
other listed tests it fails are (a) any tests that imply test #i, as shown

7The extension is made by extending their ‘rectangular unitary’ realization matrices into
(square) unitary ones.

38 S. Akkarakaran and P.P. Vaidyanathan

���������	��
�� �������
�� ��� ������� ��������� ���
 ���������� ��
�� � �� !#"%$ �&
%� �' (����� � $ ���*)�+�������,�-. � ��� $ ��� �%/&�������
0�1 $ �)�23� ���'/��� 4 1 $ �)�23� ���5���*�����6
()7� �8���%����� 9;: 4 < =;> ?;> 4*@�> 46@;> 4*@�> 4*@�> 46@A
$ ���� @ 1 $ �)�23� ���'/��� B������� 9;: @ � �DCE:�? � 4 9;> 4�F�> 4�?�> @�4�F�> @�4�F�> :�:�:�> @;46F

= GD����
 $ ��� A � � � �	� 9;: 4 < 9;> 9;> 9�> H�> H;> H;> H�> 46IJ ���%�7) $ � � K�� �%/ ? ����)7�*��/&������
 $ ��� A � � � �	� 9;: 4 = 9;> 9;> 9�> 9�> H;> H;> @�L�> @�L;> ?;M�> @�L*F�> :�:�:�> @�L*F���*�&
 $ ��� A � � � �	� M �N)7��� . ��)���� �*�O��P
 ? 9;: =�>�Q3
%
N: ! =;> ? ?;> 9;> 9�> 4*@�> 469�> 4�9�> 469;> 46I�> 4�I�> L�@�> 46?�?;> 46?�?�> 46?�?9 Q�GR� $ ��)�� " ������� 9;: ?�>�Q3
%
N:%S =;> ? 9;> 9;> 9�> 9�> H;> H;> @�?;> L�@;> L�@�> L�@�> L�@;> L�@
L TU���*��� " ��) $ ����� ��� � T !

� ������� L � �DCN:EM � < ?;> ?;> ?�> 46F;> @�F�> @*F�> @�F�N)7����)��� (V%����� ��� I J ������) $ � � K��� BT ! ������� L � �DCN:�9 � L ?;> ?;> 9�> I�> @*?�> @�?;> @�?�> @*?�> @�?A
$ ���� H Q�GW+ A $ ���� B� � $ PX� " ��) $ ����� ��� L � �DCN:EL � < ?;> 9;> 9�> 4*@�> 4*@;> 46@;> @�F;> @�F�> =�F�> 9�F;> 9�F46F ��V A ������� " �����%��� ���Y������� L � �DCN:�H � < ?;> 9;> 9�> I�> 46@;> 4*@�> =�9�> ?�I�> ?�I;> L�@;> L�@;> L�@�> L�@

4�4 �N)7��� . ��)���� �*�O��P
 @ Z 4*> @ =;> 9;> 9�> 4*@�> 46I�> =�F�> 46I�F�> :�:�:�> 4�I�F�N)7��� . ��)7��� �*��� 4*@ �N)7��� . ��)���� �*�O��P
 9 Z =�> ?;> 9 Z*Z� ��������� �*�O?;: = � 46= �N)7��� . ��)���� �*�O��P
 L6+%46F Z L�+�4�F Z*Z

Table 1. Necessary Conditions on Decimators of Rational PRFBs..

in the second-last column of the table, and (b) possibly one or more of
the tests #11–13, which we have not designed algorithms to perform,
and hence, cannot currently decide whether or not they are violated. This
shows that except for these last three tests, the interdependencies between
the tests are exactly as described in the table (in its second-last column).
For example, passing the AC matrix test implies nothing about passing
the tree version of the strong compatibility test, and vice versa.8

2. The above remark applies in particular to the example set D11, which
passes all tests #1–10. It fails test #11 because attaching a uniform leaf
with decimator 2 to its decimator of value 3 yields a set with a subset
of 7 decimators within which the gcd of any pair is 6. Currently we do
not have such examples for tests #12,13. Though we have not devised an
algorithm to test for the tree version of the pairwise gcd test, the set D11

shows that the tree version is strictly stronger than the original test.

3. The AC matrix test (#6) is also strictly strengthened by forming its tree
version (#12), as shown by the set {3, 4, 8, 12, 12, 24, 24, 24}. This set
passes test #6, but fails its tree version because attaching uniform leaves
with decimator 2 to its decimators of value 12 yields a set that fails test #6.
However, this example also fails another test from Table 1, i.e., pairwise
noncoprimeness.

4. Each test P of rows #11–13 is the tree version of some test P1. As
seen in Section 4.3, the test P is well defined, but involves applying P1

to an infinite family of decimator–sets. Devising a finite algorithm for
this process can take ingenuity or hard work, as seen in Section 6.3 (and
Appendix E) for the tree version of strong compatibility. This is especially

8Example D5 actually also fails test #10, but in a manner that makes the use of test #10
equivalent to using the tree version of another test (see discussion on Theorem 9).

Nonuniform Filter Banks 39

true given the complex nature of some of the P1 (e.g., the AC matrix test).
Design of algorithms for these tests is left for future work.

5. There are decimator–sets that obey all the known necessary conditions
#1–10 which we have algorithms to verify, and yet do not allow building of
delay-chain PRFBs. Examples are the sets {6, 6, 6, 6, 9, 12, 36, 36, 36, 36, 36}
and {4, 6, 6, 12, 12, 12, 16, 24, 48, 48, 48} (all examples have ≥ 11 decima-
tors). Thus, these necessary conditions, taken together, are still not equiv-
alent to the most general known sufficient condition for existence of ratio-
nal PRFBs, namely, existence of PR delay-chains. We currently do not
know whether or not sets of the kind listed above allow building of ratio-
nal PRFBs. Thus, the main problem of this paper (Section 3.1) remains
unsolved for the rational FB class.

9. Concluding Remarks

We have presented several new conditions on the decimators of rational PRFBs,
considerably generalizing many earlier known ones. Our work still leaves neces-
sary and sufficient conditions unknown. The weakest known sufficient condition,
when obeyed, allows the decimators to be used to build PRFBs as specialized
as delay-chains. Thus, if we impose various less restrictive conditions on the
filters of a rational FB (e.g., FIR filters, linear phase filters, orthonormality,
etc.), we get many more FB classes for which we do not know the necessary
and sufficient conditions on the decimators of PRFBs in the class. It has been
shown [4] that existence of rational PRFBs implies that of rational orthonor-
mal FBs with stable filters (i.e., all analysis filters have all poles inside the unit
circle). However, whether this implies existence of FIR orthonormal FBs is
not known. Even when a decimator–set is known to allow building of ratio-
nal PRFBs, complete parameterizations of the possible PRFBs are not known,
except in the restricted cases of uniform and dyadic decimator–sets. Partial
parameterizations using trees have been presented in Section 7. Other specific
open problems encountered in our study are listed below:

1. Non–tree–structured PRFBs with tree structured decimator–sets: Section 4.2
has shown two different constructions leading to such FBs. Are there any
more?

2. Forcing properties of a tree structured FB on all the tree units: Theorem 8
(Section 7) shows that this is possible for rational FBs with certain prop-
erties (e.g., PR, FIR filters), but it is not known whether it is possible for
certain others (e.g., PR and FIR filters).

3. Real coefficient FBs (Section 3.2): Do they always exist? Does existence
of rational PRFBs with decimator–set S imply that of real coefficient
PRFBs (rational or otherwise) using S?

40 S. Akkarakaran and P.P. Vaidyanathan

4. Algorithms for tree versions of necessary conditions: These have not been
designed for certain necessary conditions due to their complicated nature
(e.g., AC matrix test), see Table 1 (Section 8).

Appendix A: Proof of Nonuniform Biorthogonality
Condition (2.2.1)

The (uniform) biorthogonality condition on the uniform FB derived from a
nonuniform one is equivalent to

(
z−nicHi(z)z

nidFi(z)
)
↓L = δ(c− d) (A.1)

(
z−niaHi(z)z

njbFj(z)
)
↓L = 0 if i 6= j (A.2)

Here c, d, a ∈ {0, 1, . . . , pi−1} and b ∈ {0, 1, . . . , pj−1}, where L = nipi = njpj .
We now use the noble identity

(
X(zM)Y (z)

)
↓M = X(z)(Y (z)) ↓M . This shows

that (A.1) is equivalent to
(
(Hi(z)Fi(z)) ↓niz

d−c
)
↓pi = δ(c − d). If c = 0, the

left side here for d = 0, 1, . . . , pi − 1 is the d-th entry in the pi-th order analysis
polyphase vector of (Hi(z)Fi(z)) ↓ni . So the equation is clearly equivalent to

(Hi(z)Fi(z)) ↓ni = 1. (A.3)

Next, having (A.2) hold for the said values of a, b is equivalent to having it hold
for all integers a, b. This is because L = nipi = njpj , and (A(z)) ↓L = 0 is
equivalent to

(
zqLA(z)

)
↓L = 0 for any integer q and transfer function A(z)

(by noble identity). As a, b take all integer values, −nia + njb takes values

k gcd(ni, nj) for all integers k. Thus, using the noble identity, with Aij(z)
4
=

(Hi(z)Fj(z)) ↓gcd(ni,nj), (A.2) is equivalent to

(
Aij(z) z

k
)
↓L/ gcd(ni,nj) = 0 for all integers k if i 6= j (A.4)

The left side here includes all entries of the order L/ gcd(ni, nj) polyphase vector
of Aij(z), so (A.4) is equivalent to

Aij(z) = (Hi(z)Fj(z)) ↓gcd(ni,nj) = 0 if i 6= j. (A.5)

Thus (A.1),(A.2) are equivalent to (A.3),(A.5) respectively; proving the nonuni-
form biorthogonality equation (2.2.1).

Appendix B: Derivability of Decimator–sets from a
Uniform-tree

Claim: If a set S of decimators satisfying (1.0.1) is derivable from a uniform–
tree, then it is derivable from a uniform–tree in which the root has decimator
g, where g is the gcd of all elements of S.

Nonuniform Filter Banks 41

Proof: (Can be skipped without losing continuity.) Use induction on the
number N of units in the tree. Let r be the root decimator in the given uniform–
tree. Clearly r divides all decimators in S, so r divides g. Now the root can
have at most r children. If it has less than r children, then r is a decimator
in S. Hence g <= r, implying g = r, i.e., the root already has decimator g. This
proves the claim for N = 2, as the root of a 2-unit tree has 1 child and 1 < r.
If the root has all r children, consider any child along with all its descendants.
These units form another uniform–tree. All decimators generated by this new
tree are multiples of g/r. Let g′ be their gcd, thus g′ = k(g/r) for some integer k.
The new tree has ≤ N−1 units. So by the induction hypothesis, the decimators
it generates can be rederived from a uniform–tree with root decimator g′. Since
g′ = k(g/r), this root unit can then be rederived from a uniform–tree having
decimator g/r for root and k for all the g/r leaves, each of which is a child of the
root. After making all these replacements on the starting tree, all children of its
root now have decimator g/r, hence the root and its children can be replaced
by a single uniform unit with decimator g. This proves the claim. 555

The above result suggests an algorithm [6] that tries to build a uniform–tree
starting from its root:

Root–to–leaves Algorithm. (Tests derivability of a given set S of
decimators from a uniform–tree)

1. Find gcd g of all elements of S. If g = 1, then S is not derivable from a
uniform–tree.

2. Divide all entries of S by g (represents choosing root decimator g). Find
all possible partitions of the resulting set into g groups each of which is a
valid set of decimators obeying maximal decimation (1.0.1).

3. We can derive S from a uniform–tree if and only if among these partitions,
there is at least one in which each group is derivable from a uniform–tree.

The algorithm is recursive. At Step 2, dividing the entries of S by g
yields a set S′ lower–bounded by unity. In the ensuing partition of S ′, any
unity element in S′ is all by itself a valid group viewed as derivable from
a uniform–tree for purposes of Step 3. Such a group denotes absence of a
child of the root, just as groups with more than one element represent chil-
dren of the root. There may possibly be no valid partition at Step 2, e.g.,
when S = {4, 6, 6, 10, 10, 10, 10, 120, 120}. This of course means that there is no
uniform–tree.

Note that though Step 2 can always be implemented in principle, doing it
with a simple and efficient algorithm can be tricky. An alternative method
builds the tree starting from a leaf and avoids this problem. Its basic idea is
in identifying a leaf: Given an arbitrary decimator d in a set S derivable from
a uniform–tree, it is not clear whether d is obtained at a leaf unit of the tree.

42 S. Akkarakaran and P.P. Vaidyanathan

However, this must be the case if d is the maximum element in S, and further
the leaf decimator must of course then divide d. Based on this, we have:

Leaf–to–root Algorithm. (Tests derivability of a given set S of
decimators from a uniform–tree)

1. If S has no more than two distinct decimators, it is derivable from a tree.

2. Find the maximum entry m in S, and the number of times N that it
occurs. For each factor k of m such that 1 < k ≤ N , form a smaller set
Sk by setting Sk = S and then replacing k of the elements of value m in
Sk by one element of value m/k (i.e., form a leaf unit that is uniform with
decimator k).

3. The set S is derivable from a uniform–tree if and only if at least one of
the Sk above is.

This is another recursive algorithm, more elegant and simpler to imple-
ment, though it may be somewhat unclear whether or not it is faster. Its
only step still requiring justification is Step 1. This is easily done: Suppose S =
{m0, . . . ,m0, m1, . . . ,m1} with mi occurring Ni times (i = 0, 1). Let mi = gdi
where g = gcd(m0,m1). Maximal decimation implies thatN0d1+N1d0 = gd0d1.
As d0, d1 are coprime, this means that Ni = Didi for integers Di, i = 0, 1, where
D0+D1 = g. Thus S is derivable from a uniform–tree in which the root has dec-
imator g, all its children are leaves, and Di leaves have decimator di (i = 0, 1).

Only necessary and only sufficient conditions. Presence of no more than
two distinct decimators, as shown above, is an example of a sufficient condition
for derivability from a uniform–tree. It is by no means necessary. Another such
example is the condition that each decimator divides every decimator larger
than itself (a special case is when all of them are powers of the same number).
This condition neither implies nor is implied by the earlier one, and neither
condition is necessary, as exemplified by the set {4, 4, 6, 6, 12, 12}. Sufficiency of
the new condition is proved using the root–to–leaves algorithm: Clearly g > 1 at
Step 1, as g is the smallest decimator. At Step 2 in formation of the partition, if
we sequentially select elements from the smallest upwards, the condition ensures
that at some stage the reciprocals of the selected elements will sum to unity.
Repeating this process results in a valid partition, and further each of its groups
also satisfies the condition. Thus the proof is completed by induction on the
number of decimators.

Derivability of a set of decimators from uniform–trees implies existence of
various types of PRFBs (including PR delay-chains) using those decimators.
Thus, any conditions necessary for such existence are also necessary for deriv-
ability from uniform–trees. Their necessity is often provable directly from the
above algorithms. For example, without pairwise noncoprimeness (Section 6.1),

Nonuniform Filter Banks 43

g = 1 at Step 1 of the root–to–leaves algorithm. If compatibility (Section 6.1) is
violated, i.e., if a decimator d does not divide any other decimator, then eventu-
ally m = d and N = 1 at Step 2 of the leaf–to–root algorithm, i.e., there are no
sets Sk. As tests for such necessary conditions are inconclusive whenever they
are satisfied, they cannot replace the earlier complete algorithms, though they
can potentially increase their efficiency.

Appendix C: Proof of Fact 3

Let R = {m0, . . . ,mM−1}, S = {k0, . . . , kK−1}. So T = {n0, . . . , nK+M−2}
with ni = m0ki for i = 0, 1, . . . ,K− 1 and nK−1+i = mi for i = 1, 2, . . . ,M − 1.
Let L = lcm{ni}, pi = L/ni. Let ni occur Ni times in T . Let bi be the strong
compatibility lower bound on Ni. The proof is in two parts:

Part 1: Uniformity of S. Suppose S is not a uniform unit, we will then show
that bj ≤ Nj for all j, i.e., T is strong compatible. Indeed for j = 0, 1, . . . ,K−1
we have from (6.1.1),

pjbj = min
pi 6=pj

lcm(pi, pj) ≤ min
pi 6=pj , 0≤i<K

lcm(pi, pj) (C.1)

≤ pjNj (as S is strong compatible) (C.2)

The minimization on the right side of (C.1) is not over an empty set because
S is nonuniform, i.e., pi 6= pj for at least one i such that 0 ≤ i < K. The
right side of (C.1) thus equals pjb

S
j where bSj is the strong compatibility (lower)

bound on the number NS
j of occurrences of kj in S. This bound holds by strong

compatibility of S, and NS
j ≤ Nj . This justifies (C.2), and thus bj ≤ Nj for

0 ≤ j < K. For j ≥ K, if nj = m0 then bj = 1 ≤ Nj , because nj divides
a distinct decimator n0 = njk0. If nj 6= m0, then Nj ≥ NR

j , the number of

occurrences of nj = mj−(K−1) in R. Let bRj be the strong compatibility lower

bound on NR
j . Thus bRj ≤ NR

j ≤ Nj , and with

A = min
pK−1+i 6=pj , i≥1

lcm(pK−1+i, pj) and B = lcm(L/m0, pj), we have (C.3)

pjb
R
j = min(A,B), while pjbj = min

pi 6=pj
lcm(pi, pj) (C.4)

Thus if A ≤ B in (C.3) (e.g., this holds if mi = m0 for some i > 0), then clearly
bj ≤ bRj ≤ Nj . Even if A > B,

pjb
R
j = lcm(L/m0, pj) ≥ min

pi 6=pj , 0≤i<K
lcm(pi, pj) ≥ pjbj ,

as pi = L/(m0ki) for i < K, and nonuniformity of S again ensures that
lcm(pi, pj) is not being minimized over an empty set. (Nonuniformity of S
is not needed here if L/(m0K) 6= pj .) So again bj ≤ bRj ≤ Nj . Thus, bj ≤ Nj

44 S. Akkarakaran and P.P. Vaidyanathan

for all j, i.e., T is strong compatible, contradicting the premise of Fact 3. Hence
S must be a uniform unit, i.e., k0 = k1 = . . . = kK−1 = K. 555

Part 2: Necessary conditions for bj > Nj. We have already shown in Part 1
that if j ≥ K, then bj > Nj is possible only if m0 occurs only once in R and
m0K = nj . The proof of Fact 3 will be completed if we show a similar statement
for j < K, i.e., that bj > Nj is possible only if m0 occurs only once in R and
m0K = ni for some i ≥ K. To show this, note that for all j < K, all the nj are
identical (shown by Part 1), and hence the same holds for the Nj and the bj .
Also Nj ≥ K. Thus it suffices to show that b0 ≤ K if either m0 = ml = nK−1+l

for some l > 0, or m0K 6= mi for all i > 0. If m0 = ml = nK−1+l for some
l > 0, then

p0b0 = min
pi 6=p0

lcm(pi, p0) ≤ lcm(pK−1+l, p0) = lcm

(
L

m0
,

L

m0K

)
=

L

m0
= p0K,

hence b0 ≤ K. If on the other hand m0 occurs exactly once in R, then m0F =
ml = nK−1+l for some F > 1, l > 0 since R is compatible. Thus if m0K 6= mi

for all i > 0, then

p0b0 = min
pi 6=p0

lcm(pi, p0) ≤ lcm(pK−1+l, p0) = lcm

(
L

m0F
,

L

m0K

)
≤

L

m0
= p0K,

hence b0 ≤ K again. This establishes the claim, hence proving Fact 3. 555

Appendix D: Proof of Fact 4

From the premise of Fact 4, there is a tree T ′ in which each unit is either D or
allows building of rational FBs (e.g., uniform units), such that T ′ generates a
set of decimators that is not strong compatible. Note that every unit in T ′ is
strong compatible. We now perform a series of operations on T ′, each yielding
a new tree with all the properties of T ′, until finally we get the tree T with the
desired properties as in Fact 4.

If the root of T ′ has a child that is not a leaf, then this child, along with
all its descendants, forms a tree with fewer units than T ′. We can assume that
this tree generates a strong compatible decimator–set (else we can replace T ′ by
this tree and repeat the process). We then view this tree as a single unit. This
makes every child of the root of T ′ a strong compatible leaf. Next, we delete
any leaf such that the residual tree generates a decimator–set that is not strong
compatible. This yields the desired tree T having all properties of T ′. We now
show that T and the decimator–set T it generates have all the properties listed
in Fact 4.

Properties 1,2,4: For any leaf S of T , we see that T can be redrawn as a 2-unit
tree with strong compatible units R and S. However T itself generates the

Nonuniform Filter Banks 45

set T that is not strong compatible. Thus we can use Fact 3 to conclude the
following: (a) All leaves of T are uniform. (b) For any decimator value obtained
at a leaf of T , decimators of T with that value are the only ones in T that violate
the strong compatibility lower bound on the number of their occurrences in T .
(c) Property 2 of Fact 4 holds. Now (b) implies that all decimators obtained
at the leaves have the same value d. Also, (a) implies that T has root D:
Otherwise the root allows building of rational PRFBs, and hence, so does T
(as all children of its root are uniform leaves); violating the fact that T is not
strong compatible. This completes the proof of property 1. Property 4 follows
from this and conclusion (b) listed above. Thus we have shown properties 1,2,4
of Fact 4. 555

Property 3: Let ki be the decimator value of the leaf attached to di ∈ D to form
T . As diki = d, we have d = C lcm{di} where C = gcd{ki}. We must show
that if d 6∈ D, then C = 1. In fact, this may be false. Our approach is to assume
that d 6∈ D, and then create a new tree T ∗ generating a decimator–set T ∗ with
all the properties of Fact 4. This is done by replacing every leaf decimator
ki with ki/C. (If ki = C this means deleting the leaf.) Clearly property 1
of Fact 4 continues to hold, with the decimators obtained at the leaves now
having value d∗ = d/C = lcm{di}. To prove property 2, let decimator di of
D have a leaf attached to it in T ∗. Then it also has a leaf (uniform with
decimator ki) attached in T . As di 6∈ T (by property 2 for T), the only way
to have di ∈ T ∗ is that di be the newly formed decimator d/C. This however
means that ki = C (as d = diki), i.e., the leaf attached to di in T has been
deleted in T ∗, contradicting the assumption on di. Thus di 6∈ T ∗, i.e., T ∗

obeys property 2. Next we prove property 3. As already seen, if kj = C for
some j, then d∗ = d/C = dj ∈ D. Thus, if d∗ 6∈ D, then kj > C for all
j, i.e., decimators di with leaves attached in T are the same as those with
leaves attached in T ∗. So property 3 holds for T ∗ from d∗ = d/C = lcm{di}.
Lastly, we show property 4, i.e., that d∗ violates the strong compatibility lower
bound b∗ on the number N∗ of its occurrences in T ∗. Let N be the number
of occurrences of d in T , and let b be the strong compatibility lower bound on
N . Let L be any common multiple of the decimators of T . We must show that
b∗ > N∗. Since T obeys property 4, we have b > N . Also, by construction
of T ∗ and the hypothesis d 6∈ D, we have N ∗ ≥ N/C. The inequality is
strict only if d/C ∈ T , but this would imply (by definition (6.1.1) of b) that
b ≤

(
d
L

)
lcm(Ld ,

LC
d) = C. Since N ≥ ki ≥ C, we get b ≤ N , a contradiction.

Thus d/C 6∈ T , and hence N∗ = N/C. Lastly, b∗ =
(

d
LC

)
lcm(LCd , Lm) for

some m ∈ T ∗, m 6= d/C. Thus m ∈ D and m ∈ T too, and m 6= d by the
hypothesis d 6∈ D. So b ≤

(
d
L

)
lcm(Ld ,

L
m) ≤ C

(
d
LC

)
lcm(LCd , Lm) = Cb∗. Hence,

b∗ ≥ b/C > N/C = N∗ (using b > N). Thus b∗ > N∗ as required. 555

46 S. Akkarakaran and P.P. Vaidyanathan

Appendix E: Testing Tree Version of Strong Compatibility

Given a decimator–set D, let V = {v0, v1, . . . , vK−1} be the set of distinct
decimator values in D, with vi occurring Ni times in D. Let L be any multiple
of all the vi, i.e., of lcm{vi}, and let pi = L/vi. Then D satisfies the tree version
of strong compatibility if and only if Routine 1 below returns the value ‘TRUE’
for all vi ∈ V and Routine 2 returns value ‘TRUE’.

Routine 1: (To be performed for all vi ∈ V)

1. Initialization: Set M = Ni, A = V and delete vi from A.

2. If A is empty, return(TRUE). Else, let j = l minimize lcm(pi, pj) over all
j such that vj ∈ A. If M < lcm(pi, pl)/pi, return(FALSE).

3. If vl does not divide vi, return(TRUE). Else, add Nl(vi/vl) to M and
delete vl from A. This represents attaching to every decimator of value
vl, a leaf that is uniform with decimator vi/vl. Then go to Step 2.

Routine 2:

1. Find all subsets S of V having at least two but less than K − 1 elements,
such that the lcm l(S) of all elements of S does not divide any vj ∈ V .

2. For each S of Step 1, let σ(S) be the sum of all the numbers Ni(l(S)/vi)

for all vi ∈ S. Let b(S) be the minimum of
(
l(S)
L

)
lcm(L

l(S) ,
L
vi
) over all

vi 6∈ S. This step represents attaching to every decimator whose value vi
lies in S, a leaf unit that is uniform with decimator l(S)/vi, so that all
decimators thus obtained at the leaves have value l(S). In the resulting
tree structured set of decimators, σ(S) is the number of occurrences of
decimator l(S) and b(S) is the strong compatibility lower bound on σ(S).

3. If σ(S) ≥ b(S) for all S above, return(TRUE). Else return(FALSE).

The action of the routines is independent of which multiple of lcm{vi} we
choose L to be. To explain how the above test works, refer to the statement
of Fact 4. Routine 2 lists all trees T obeying properties 1,2,3 of Fact 4 such
that d 6∈ D (see property 3), and returns a ‘FALSE’ value if any of these obey
property 4. The set S of Step 1 represents choice of the di of property 2. We
demand that S must have at least two elements, and that l(S) 6= vj for all
vj ∈ V , to ensure that property 3 holds with d 6∈ D. In fact we further demand
that l(S) must not divide any vj ∈ V , for if it does, b(S) = 1 at Step 2. We
also exclude sets S with ≥ K − 1 elements, for then T generates a set with at
most two distinct decimators. Such a set, being derivable from a uniform–tree
(Appendix B), is always strong compatible, i.e., σ(S) ≥ b(S) will hold at Step 3.

Routine 1 becomes a test for strong compatibility if we delete Step 3 in it.
Hence we can assume strong compatibility of the given set of decimators. Thus

Nonuniform Filter Banks 47

the only task remaining is to examine whether there is a tree T obeying all
properties of Fact 4 with d ∈ D in property 3. This is achieved by the addition
of Step 3. To see this, let there be such a tree T , with d = vi, producing a
set T of decimators. The quantity b = lcm(pi, pl)/pi of Step 2 is the lower
bound on Ni, which holds by assumption of strong compatibility. Now the
number NT of occurrences of vi in T is at least Ni. Further if vl ∈ T , then the
strong compatibility lower bound on NT does not exceed b, and hence cannot be
violated. Thus vl 6∈ T , i.e., all decimators of value vl must have leaves attached
to them to convert them into decimators of value vi. This justifies Step 3.

In the special case when L
4
= lcm{vj} ∈ V , Routine 2 can be skipped

(it always returns ‘TRUE’), and Routine 1 needs execution only for vj = L
(it returns ‘TRUE’ for all other vj). This is provable from the fact that for
vj = L, pj = 1. In general, Routine 1 appears to be the important part of the
test: There are relatively fewer decimator–sets for which violation of the test
is detected by Routine 2 but not by Routine 1 (examples of such sets being
{2, 3, 24, 24, 36, 36, 36} and {2, 4, 6, 48, 48, 72, 72, 72}).

Appendix F: Algorithm for the AC Matrix Test

In the given set of decimators, let v0, v1, . . . , vK−1 be the distinct decimator
values, with vj occurring Nj times. Let L be any common multiple of the vj ,
and let pj = L/vj . The algorithm is then as follows:

1. Initialization. Create a matrix U with rows numbered 0 to L − 1 and
columns 0 to K − 1, where the lj-th entry ulj is 1 if l is a multiple of pj ,
and zero otherwise. Thus U is initialized to describe the positions of the
zero and nonzero entries in the AC matrix (2.2.4),(2.2.5). In particular,
u0j = 1 for all j.

2. Set U′ = U (saving the current value of U in U′). For all l, j such that
ulj is the only entry in the l-th row having value unity, set ulj = 2. This
identifies sets of filters having the same decimator value vj , and satisfying
an equation of the form

∑
iBi(zW

l)Ci(z) = 0.

3. For each d = kpj for integer k obeying 1 ≤ kpj ≤ bL/2c, let c
d
s(n) = s+nd

for s = 0, pj , 2pj , . . . , d − pj . If ulj = 2 for l ≡ cds(n) (mod L) for Nj

consecutive integers n, set ulj = 2 for l ≡ cds(n) (mod L) for all integers
n. Do this for each j = 0, 1, . . . ,K− 1. (This represents use of Lemma 3.)

4. If u0j = 2 for any j, the given set of decimators fails the AC matrix test.
(This is where we apply Lemma 2.) If U′ = U, the set passes the test. If
neither of these happens, go to Step 2.

Passing the above test is a necessary condition on the decimators of any rational
PRFB, as the discussion of Section 6.4 proves. The test outcome is independent

48 S. Akkarakaran and P.P. Vaidyanathan

of which common multiple of the vj we choose L to be. The above algorithm
may be made more efficient in many ways (e.g., we can declare the test as passed
if U′ = U after Step 2); our main purpose here is to state a correct (rather than
highly efficient) algorithm.

Lastly, we prove that the above test implies strong compatibility. Consider
any fixed j ∈ {0, 1, . . . ,K − 1}, and find the smallest l > 0 such that ulj is not
set to value 2 at Step 2. This is the smallest nonzero multiple of pj that is also
a multiple of some pi 6= pj , i.e., it is minpi 6=pj lcm(pi, pj) = pjbj where bj is as
in (6.1.1). Thus, after Step 2, ulj = 2 for l = kpj for k = 1, 2, . . . , bj − 1. So if
Nj < bj , Step 3 will use the sequence c

pj
0 (n) to set ulj = 2 for all l = npj . In

particular it sets u0j = 2, which means that the test is failed (see Step 4). Hence
if the test is passed, we have Nj ≥ bj for all j, which is the strong compatibility
condition (6.1.1).

Appendix G: Proofs of Theorems 6,7

Proof of Theorem 6: We will prove the claim of the theorem after replacing
its premises (7.0.2)–(7.0.5) about the decimator–set D by the following premise:
The set D has two nonempty disjoint subsets S, T such that

∑

ni∈S

1

ni
=

1

N
for some integer N , (G.1)

|T | = N − 1, and (G.2)

gcd(ni, nj) = factor of N whenever ni ∈ S ∪ T , nj ∈ T , i 6= j (G.3)

This suffices because from a rational PRFB obeying (7.0.2)–(7.0.5), we can
create one obeying (G.1)–(G.3) by inserting in each of its channels with deci-
mator ni ∈ T1, a uniform rational PRFB with decimator N/ni. This process
preserves the channels corresponding to the decimator subset S, and creates(∑

ni∈T2
(Nni)

)
new decimators each of value N . The set T consists of T2 and

these new decimators; thus (G.2) follows from (7.0.5), and (G.3) from (7.0.4)
and the fact that the new decimators have value N . Having proved the claim
using (G.1)–(G.3), we remove the inserted uniform leaf FBs to prove it under
the original premise (7.0.2)–(7.0.5).

Part 1: Proof under additional assumption that all ni ∈ S are multiples of N .
Let us be given a rational PRFB with decimator–set D and filters as in Fig. 1,
such that D has disjoint subsets S, T obeying (G.1)–(G.3). Let E(z),R(z)
respectively be the N -th order analysis and synthesis polyphase matrices of
the analysis and synthesis filters corresponding to channels with decimators
ni ∈ T . Let ei(z) be the N -th order analysis polyphase vector of Hi(z) where
ni ∈ S. From (G.2), E(z),R(z) have sizes (N − 1) × N and N × (N − 1)
respectively. We use (G.3) with the PR condition (2.2.1) and the polyphase

Nonuniform Filter Banks 49

lemma, as in Section 6.2. This shows that ei(z)R(z) = 0, and that E(z)R(z) is
a (N−1)×(N−1) diagonal matrix, none of whose diagonal entries is identically
zero. This implies (using rationality of the filters) that R(z) has N − 1 linearly
independent columns. All the ei(z), being ‘orthogonal’ to all these columns,
must be ‘proportional’, i.e., ei(z) = H ′i(z)a(z) for some rational filtersH ′

i(z) and
vector a(z). Let A(z) be the filter with a(z) as its N -th order analysis polyphase
vector. Computing Hi(z) from ei(z) shows that Hi(z) = A(z)H ′i(z

N). A similar
argument shows that for all i such that ni ∈ S, Fi(z) = B(z)F ′i (z

N) for some
rational B(z), F ′i (z). Thus, under the additional assumption that all decimators
in S are multiples of N , we see that the given rational PRFB is derivable from a
two unit tree of rational FBs. The units of the tree have decimator–sets exactly
as desired, and using Theorem 8, their filters can further be modified so that
they also have PR. This completes Part 1 of the proof.

Part 2: Extending Part 1 to nonrational FBs in the setting of Theorem 5. When
the original premises (7.0.2)–(7.0.5) of Theorem 6 are obeyed in the special
manner that results in the premise of Theorem 5, the effect on (G.1)–(G.3) is to
causeD = S∪T and nj = N for all nj ∈ T . Now in Part 1, the diagonal elements
of E(z)R(z) are (Hj(z)Fj(z)) ↓N where nj ∈ T (by polyphase lemma). Thus,
in the above special case, by (2.2.1), in fact E(z)R(z) is the identity. Hence we
can choose the A(z), B(z) of Part 1 to have N -th order analysis and synthesis

polyphase vectors a(z),b(z) respectively, such that theN×N matrices

[
E(z)
a(z)

]

and
[
R(z) b(z)

]
have product equal to identity. This possible even without

any rationality restriction on the filters (of course A,B are then nonrational
in general). These matrices now become the polyphase matrices of the root
FB. Thus, the root automatically has PR, and hence so does the leaf (since
the overall FB has PR), without the need to use Theorem 8 (which requires
filter rationality). Thus, for the special case of Theorem 5 (as distinct from the
general setting of Theorem 6), we have extended Part 1 to nonrational FBs.

Part 3: Proving the additional premise used in Part 1, using filter rationality.
For each i such that ni ∈ S we insert a qi channel uniform rational PRFB
within the i-th channel of the given PRFB, where qi = lcm(N,ni)/ni. This
forms qi new decimators of value niqi. Let S′ be the set of these decimators.
Then, the newly formed tree–structured rational PRFB also has a decimator–set
satisfying the premises (G.1)–(G.3), with S replaced by S ′ and T unchanged.
Indeed, (G.1),(G.2) obviously hold, while (G.3) follows from the observation that
if gcd(ni, nj) is a factor of N and qi contains precisely the factors of N that are
not present in ni (i.e., qi = lcm(N,ni)/ni) then gcd(niqi, nj) is also a factor ofN .
Further S′ also obeys the additional assumption that its elements are multiples
of N , by the choice of the qi. Let qi > 1 and consider two analysis filters
Cl
i(z), l = 0, 1 of the qi band leaf FB inserted in the channel with decimator

ni ∈ S. The corresponding analysis filters of the new tree–structured FB are

50 S. Akkarakaran and P.P. Vaidyanathan

Hi(z)C
l
i(z

ni). However, using Theorem 6 (which Part 1 has proved for the
new FB), these filters have the form A(z)Dl

i(z
N) for some rational Dl

i(z), A(z)
where A(z) is independent of l, i. Taking ratios of these filters (a crucial step
that requires filter rationality) shows that

C0
i (z

ni)

C1
i (z

ni)
=

D0
i (z

N)

D1
i (z

N)
, (G.4)

which implies that each equals Xi(z
lcm(N,ni)) for some rational Xi(z). Replac-

ing z by z1/ni and using the definition of qi, we have
C0
i (z)

C1
i
(z)

= Xi(z
qi). This

means that the qi-th order analysis polyphase vectors eli(z) of Cl
i(z), l = 0, 1,

are linearly dependent, as e0i (z) = e
1
i (z)Xi(z). Thus, the inserted qi band uni-

form leaf FB with the filters C l
i(z), while assumed to have PR, has an analysis

polyphase matrix that is not invertible (since it contains the rows eli(z), l = 0, 1).
This contradiction disproves the assumption that qi > 1. Hence qi = 1, or in
other words, ni is a multiple of N . 555

Proof of Theorem 7: We first write the input–output relations, analogous
to (2.1.2), of the systems of Fig. 15:

X̂(z) =
1

KM

KM−1∑

l=0

X(zW l)Gl(z) for Fig. 15a (G.5)

X̂(z) =
1

M

M−1∑

l=0

A(zWKl)B(z)X(zWKl) for Fig. 15b (G.6)

Here Gl are as defined in statement (a) of Theorem 7, and (G.6) uses the
PR property of the FB formed by the H ′

i, F
′
i . That (b) implies (a) in Theo-

rem 7 follows directly by comparing (G.5) and (G.6), and holds even without
any rationality requirements on the filters. We now prove that (a) implies
(b) (for which the rationality is essential). Form the M -th order AC matrix
H(z) (of size M × K) using analysis filters Hi(z), i.e., let the q-th row of
H(z) be (H0(zW

Kq), H1(zW
Kq), . . . , HK−1(zW

Kq)) for q = 0, 1, . . . ,M − 1.
Let f(z) = (F0(z), F1(z), . . . , FK−1(z))

T . Thus, the condition (a) is equiv-
alent to H(zW l)f(z) = 0 for l = 1, 2, . . . ,K − 1. Replacing z by zW−l,
H(z)f(zW−l) = 0. Now the K − 1 columns f(zW−l), l = 1, 2, . . . ,K − 1
are linearly independent. For otherwise, there are rational filters αl(z) such

that
∑K−1

l=j αl(z)f(zW
−l) = 0 for all z, where 1 ≤ j < K and αj(z) 6≡ 0.

Dividing this by αj(z) and replacing z with zW j shows that H(z)f(z) = 0
too. This would mean that Gl(z) = 0 for all integers l. This shows, by (G.5),
that the system of Fig. 15a is identically zero, contradicting the premise of the
theorem. Thus, the K − 1 columns f(zW−l), l = 1, 2, . . . ,K − 1 are linearly in-
dependent, and each row of H(z) is ‘orthogonal’ to all these columns (i.e., their
product is identically zero). Hence all these rows must be ‘proportional’ to each

Nonuniform Filter Banks 51

other, i.e., h1(z) = C(z)h0(z) for some scalar filter C(z), where hi(z) is the i-th

row of H(z). This means that Hi(zW
K)/H0(zW

K) = Hi(z)/H0(z)
4
= Di(z),

i.e., D0(z) = 1 and for i = 1, 2, . . . ,K − 1, Di(e
jω) = Di(e

j(ω+ 2π
M

)), i.e.,
Di(e

jω) is periodic with period 2π
M . So Di(e

jω) = Pi(e
jωM), i.e., by ratio-

nality, Di(z) = Pi(z
M). Thus, Hi(z) = A(z)H ′i(z

M) where A(z) = H0(z) and
H ′i(z) = Pi(z), showing that the analysis banks of Figs. 15a and 15b can be
made equivalent. Next, replacing z with zW−l in condition (a) of the theorem
shows that the condition holds even if each Hi is interchanged with Fi. Hence
the same process can be repeated for the synthesis banks.

The above process may not ensure PR for the K band FB formed by the
H ′i, F

′
i (which we will refer to as the leaf FB). However, Gl now takes the

form Gl(z) = A(zW l)B(z)
∑K−1

i=0 H ′i(z
MWMl)F ′i (z

M) = A(zW l)B(z)G′l(z
M),

where G′l(z) =
∑K−1

i=0 H ′i(zW
l
K)F ′i (z) (where WK = WM = exp(−j2πK)). Thus,

condition (a) implies that G′l(z) = 0 for l = 1, 2, . . . ,K − 1. (The alternative
A(zW l)B(z) = 0 is infeasible as it makes the systems identically zero.) Now

the input–output relation of the leaf FB is V̂ (z) = 1
K

∑K−1
i=0 V (zW l

K)G′l(z)
(analogous to (2.1.2)). Thus the leaf FB is LTI with (rational) transfer function
U(z) = G′0(z)/K. Hence, dividing all the H ′

i(z) by U(z) and multiplying A(z)
by U(zM) gives a new system with all the properties desired in condition (b).
This proves that (a) implies (b). 555

Appendix H: Proof of Theorem 8

It suffices to prove the result for 2–unit trees, as we can continue by induc-
tion. A general 2–unit tree is specifiable as follows: The triples of (analysis
filter, synthesis filter, decimator) are (Hi(z), Fi(z),mi), i = 0, 1, . . . ,M − 1 for
the root and (Ai(z), Bi(z), ki), i = 0, 1, . . . ,K − 1 for the leaf, which is attached
to decimator m0 of the root. Thus the filters allowing and requiring modifica-
tion are H0, F0 and the leaf filters Ai, Bi. The overall FB is unaffected iff the
modifications preserve all the products H0(z)Ai(z

m0) and F0(z)Bi(z
m0).

Realizing stability, FIR filters: Let all the H0(z)Ai(z
m0) be stable. Then for

every unstable pole z = p of Aj(z), there are m0 unstable poles in Aj(z
m0), one

at each m0-th root of p. To cancel these, we must have H0(z) = H ′0(z)C(zm0)
where H0, H

′
0 have the same set of poles and C(z) = (1−z−1p), so that C(zm0)

is FIR with m0 zeroes at the right places. Hence, replacing H0 by H ′0 and the
Ai by AiC removes the unstable pole of Aj and preserves the analysis filters
of the overall FB. Thus all Ai can be made stable. Similarly if H0 has an
unstable pole p, each Ai(z

m0) must have a zero at p, and hence for each i,
Ai(z) = A′i(z)(1 − pm0z−1) where Ai, A

′
i have the same set of poles. Thus,

replacing Ai by A′i and H0(z) by H0(z)(1 − pm0z−m0) removes the unstable
pole of H0. Thus all filters can be made stable while preserving the overall FB.
Similarly, if all the H0(z)Ai(z

m0) are FIR, the above argument can be repeated

52 S. Akkarakaran and P.P. Vaidyanathan

for all poles (rather than just the unstable ones), and all analysis filters can be
made FIR.

Realizing PR, orthonormality: If the overall FB has PR, from (2.2.1) we get

(H0(z)Ai(z
m0)F0(z)Bj(z

m0)) ↓gcd(m0ki,m0kj) =

((H0(z)F0(z)) ↓m0
Ai(z)Bj(z)) ↓gcd(ki,kj) = δ(i− j) (H.1)

With rational filters X(z), Y (z) defined such that XY = (H0F0) ↓m0
, let A′i =

AiX, B′i = BiY for all i. Thus from (H.1),
(
A′i(z)B

′
j(z)

)
↓gcd(ki,kj) = δ(i − j),

i.e., replacing each Ai by A
′
i and Bi by B

′
i causes the leaf FB to obey (2.2.1) and

hence to have PR. The overall FB is preserved on replacing H0(z) by H ′0(z) =
H0(z)/X(zm0) and F0(z) by F ′0(z) = F0(z)/Y (zm0). Since now both the leaf
and the overall FB have PR, the root must have PR too. Thus the root and
leaf have been modified as desired. Further if the overall FB is orthonormal,
then it has PR with F0(z)Bi(z

m0) = T̃i(z) where Ti(z) = H0(z)Ai(z
m0) (and of

course, Fi = H̃i for i > 0). Using P̃Q = P̃ Q̃, this means that (H.1) holds with

F0, Bi replaced by H̃0, Ãi respectively. So we repeat with these substitutions,
the earlier arguments used to make the root and leaf PR, and choose X such

that Y = X̃, i.e., such that XX̃ =
(
H0H̃0

)
↓m0

4
= W (z). (This is possible

by spectral factorization, as W (z) is rational and W (ejω) ≥ 0.) This ensures

that the root and leaf are modified to be PR with F ′0 = H̃ ′0 and B′i = Ã′i. In
other words, for all FBs, PR is obeyed and the synthesis filter corresponding to
a given analysis filter D is D̃. Thus both the root and leaf have been modified
to be orthonormal rational FBs.

References

[1] S. Akkarakaran and P.P. Vaidyanathan, New results and open problems on
nonuniform filter banks, in Proc. IEEE ICASSP, Phoenix, AZ, Mar. 1999.

[2] T. Chen and L. Qiu, General multirate building structures with application
to nonuniform filter banks, IEEE Trans. Ckts. Syst.–II, 45 (1998), 948-958.

[3] S. Dasgupta and A. Pandharipande, On biorthogonal nonuniform filter

banks, preprint.

[4] I. Djokovic and P.P. Vaidyanathan, Results on biorthogonal filter banks,
Appl. Comp. Harmonic Anal., 1 (1994), 329-343.

[5] P.-Q. Hoang and P.P. Vaidyanathan, Non-uniform multirate filter banks:
Theory and design, in Proc. IEEE ISCAS, Portland, Oregon, May 1989,
pp.371-374.

Nonuniform Filter Banks 53

[6] J. Kovačević and M. Vetterli, Perfect reconstruction filter banks with ra-

tional sampling factors, IEEE Trans. Sig. Proc., 41 (1993), 2047-2066.

[7] J. Li, T.Q. Nguyen, and S. Tantaratana, A simple design method for near-

perfect-reconstruction nonuniform filter banks, IEEE Trans. Sig. Proc., 45
(1997), 2105-2109.

[8] K. Nayebi, T.P. Barnwell,III, and M. Smith, Nonuniform filter banks: A

reconstruction and design theory, IEEE Trans. Sig. Proc., 41 (1993), 1114-
1127.

[9] R.G. Shenoy, Multirate specifications via alias–component matrices, IEEE
Trans. Ckts. Syst.–II, 45 (1998), 314–320.

[10] A.K. Soman and P.P. Vaidyanathan, On orthonormal wavelets and parau-

nitary filter banks, IEEE Trans. Sig. Proc., 41 (1993), 1170-1183.

[11] P.P. Vaidyanathan, Multirate Systems and Filter Banks, Englewood Cliffs,
NJ: Prentice-Hall, 1993.

[12] M. Vetterli and J. Kovačević, Wavelets and Subband Coding, Englewood
Cliffs, NJ: Prentice-Hall, 1995.

Sony Akkarakaran and P.P. Vaidyanathan
Department of Electrical Engineering 136-93
California Institute of Technology
Pasadena, CA 91125
{sony,ppvnath}@systems.caltech.edu

