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Abstract—We have recently made explicit the precise connec- A generic signal processing scheme usin hannel uni-

g gnalp g
tion between the optimization of orthonormal filter banks (FBs)  form perfect reconstruction FB is shownin Fig. 1. The FB is said
and the principal componentproperty: The principal component 4, yegrthonormal[1] if the (A x M) analysis polyphase matrix

filter bank (PCFB) is optimal whenever the minimization objective N . . .
is a concave function of the subband variances of the FB. This ex- E(CN) is unitary for allw. The input VECtom(”) is the M -fold

plains PCFB optimality for compression, progressive transmission, Plocked version of the scalar inpitn). We assume that(n) is
and various hitherto unnoticed white-noise suppression applica- a zero mean wide-sense stationary (WSS) random process with
tions such as subband Wiener filtering. The present work examines g given power spectral density (psd) matﬂg(x(ej‘“'). We are
the nature of the FB optimization problems for such schemes when also given a clas€ of orthonormal uniformd-channel FBs

PCFBs do not exist. Using the geometry of the optimization search . . . o
spaces, we explain exactly why these problems are usually analyt- Examples are the class of FBs in which all filters are finite im-

ically intractable. We show the relation between compaction filter Pulse response (FIR) with a given bound on their order, or the
design (i.e., variance maximization) and optimum FBs. A sequen- class of unconstrained FBs (in which there are no constraints on
tial maximization of subband variances produces a PCFBIif one ex- the filters besides those imposed by orthonormality). The FB op-
ists, but is otherwise suboptimal for several concave objectives. We yimization problem is that diinding the best FB frord for the

then study PCFB optimality for colorednoise suppression. Unlike . . - o . .
the case when the noise is white, here the minimization objective given input statistics;(c’*), for use in the system of Fig. 1.

is a function of both the signal and the noise subband variances. The term “best FB” here means one that minimizes a well-de-
We show that for the transform coderclass, if acommonsignal and  fined objective function over the clags To formulate this ob-
noise PCFB (KLT) exists, it is optimal for a large class of concave jective, we need to describe the purpose or application of the FB
objectives. Common PCFBs for general FB classes have a consid-In Fig. 1, and the nature of the subband proces&brs

erably more restricted optimality, as we show using the class of '
unconstrained orthonormal FBs. For this class, we also show how .
to find an optimum FB when the signal and noise spectra are both A. Relevant Earlier Work

piecewise constantith all discontinuities at rational multiples of Consider, for example, the case when fReare quantizers

i for signal compression. A commonly used quantizer model [10]

Index Terms—Filter bank (FB), majorization, noise suppression, replaces eack; by an additive white noise of variangg(b;)o?.

optimal basis, principal component. Here b; is the number of bits allotted to the quantizef, is
its input variance and; is the normalized quantizer function
|. INTRODUCTION which is assumed not to depend on the input statistics. If the

quantization noise processes are uncorrelated to each other, the

F ILTER bank (FB) optimization has been a problem of conyerall mean-square reconstruction error can be shown to be
siderable interest in recent literature, with many notable re-

sults and open problems. In a companion paper [1], we have MLy )
presented a number of results on the optimalitypdhcipal 9= Z Mfi(bi)ffi~
componenEBs (PCFBs) for several signal processing schemes, =0

especially involving suppression of additive white noise. THehe minimization objective here is this errgr It is shown in

present paper aims to extend and generalize these results in EE8tthat for any given set of bitl, the best FB for this problem

eral directions. We first examine the nature of the FB optimizés aPCFBfor the clas€ for the given input spectruti,,(¢/«).

tion when PCFBs do not exist, and explain why many of theseThe notion of a PCFB will be reviewed in Section II-C.

problems become analytically intractable. We then consider tREFBs for certain classes of FBs have been studied earlier.

problem ofcolorednoise suppression, and show the optimalitFor example, consider the orthogonal transform coder ¢lass

of simultaneous signal and noise PCFBs in certain situationshaving all FBs as in Fig. 1 wherE(z) is a constant unitary

matrix I". The Karhunen-Loeve transform (KLT), which diag-
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Fig. 1. Generic FB based signal processing scheme. (a) Analysis and synthesis filters. (b) Polyphase representation.

whenever the minimization objective is a concave function Section IV studies PCFB optimality farolored noise sup-

of the subband variances of the FB. This result explains thesssion. With white noise, the minimization objectiyés a
known optimality properties of PCFBs for compression anfdinction of only the signal subband variances. The signal PCFB
progressive transmission. It also shows the hitherto unnotidsdoptimal if g is concave [1]. With colored noise, however,
optimality of PCFBs for various noise-suppression schem#g objective depends on both the signal and noise subband
[1]. Suppose the FB input(n) in Fig. 1 is a signal corrupted by variances. So the results of [1] no longer hold. We show that
uncorrelated additive white noise, and the subband procesdorsthe transform coderclass, if acommonsignal and noise

P, are aimed at rejecting the noise components in their inpuBCFB (KLT) exists, it minimizes a large class of concave ob-
If the P, are chosen as any combination of constant multiplieijgctives. Common PCFBs for a general FB class do not have
zeroth-order Wiener filters, and hard thresholds (explained snch optimality, as we show using the unconstrained FB class

Section 1I-B), the PCFB is the optimum FB. C*. We show how to find the optimum FB i@* for certain
piecewise-constant input spectra. We conclude with some open
B. Paper Outline problems, especially on biorthogonal FBs and PCFB existence.

Section |l describes the general structure of the FB op§_ome of our results appear in preliminary form in [2], [3].

mization problems, with specific signal processing situations

resulting in such problems. It also reviews the definitiong. Notations

properties, and optimality of PCFBs [1]. Section Il studies

the nature of these FB optimizations when a PCFB does notSuperscript§x) and(7") denote the complex conjugate and
exist. It shows that a PCFB exists if and only if (iff) there is anatrix (or vector) transpose, respectively, while supers¢tipt
single FB that simultaneously minimizes all concave functiordenotes the conjugate transpose. Boldface letters are used for
of the subband variances. By studying the structure of a certamatrices and vectors. Lower case letters are used for discrete
convex set associated with the optimizations, we show exacsigquences while upper case letters are used for Fourier trans-
why they are usually analytically intractable in absence offarms. R denotes the set af/-tuples of real numbers, and
PCFB. We explain the relation between compaction filters ar‘ij denotes that oM -tuples of nonnegative real numbers. We
FB optimization. We show that a sequential maximization afenote bydiag (A4) the column vector consisting of the diag-
subband variances always yields a PCFB if it exists, but @mal entries of the square mattik The convex hull of a seb
suboptimum for large classes of concave objectives if a PCkBdenoted by c@)). The Cartesian product of two sets B is

does not exist. denoted by4 x B.
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Il. REVIEW OF PCFB CPTIMALITY Compression:Here the desired FB outpuin) equals the

FB inputz(n), and the subband processdfsare quantizers.

) We model the quantizers as a set of jointly stationary additive
We are given a class of orthonormal uniformiZ-channel ngise sources which thus represent the subband error signals

FBs Recall that an FB is fully specified by its analysis,(<).,) The noise variance is proportional to the variangef

polyphase matrixE(z), or alternatively, by the orderedye quantizer input. The proportionality constdib;) is called

set of analysis and synthesis filter paif#fx(z), Fi(2)), the normalized quantizer function, and depends on the number

k=0,1,...., M —1(seeFig. 1). We are also given subbang s s, allotted to the quantizer. Thus, the error variance has
processord’, i =0, 1, ..., M — 1, wherePF; is the processor ine form of ), i.e.

acting on theth subband. Each; is simply a function mapping
input sequences to output sequences. The specification of thi e 2 9 . .
function may or may not depend on the input statistics. %S{ o )(n)‘ } = filbioi [asin ) withh; () = fi(bi)z]
The system of Fig. 1 is built using an FB ¢hand the pro- (4)
cessord’;. Its aim is to produce a certatfesired signal(n) at
the FB output. For example, for signal compression,fthare The standard high bit rate quantizer model [20] chooses
quantizers and the desired outputis the input,dfeg.) = x(n).  fi(b;) = 272. Here the arithmetic mean—geometric mean
For noise reduction, the inputn) = s(n)+pu(n) whereu(n)is  (AM—GM) inequality can be used to explicitly compute the
additive noise, the desired outpi(tz) = s(n), the pure signal; optimal allocation of bitsh; (minimizing the overall error
and theP; could, for instance, be Wiener filters. The FB opti-L S =+ E[|v{“)(n)|?] subject to a total bit rate constraint
mization problem is to find an FB i@ minimizing some mea- Eﬁ‘ial b; = B). With this optimal allocation, minimizing the
sure of the error signat(n) £ d(n) — y(n), wherey(n) is overall error is equivalent to minimization of the GM of the
the true FB output. To formulate the error measure, we impogariancess?, or, equivalently, of its logarithm. Thus, we can
random process models afin) andd(n). We assume that the rewrite the objective as in (3) with; (x) = log(x) for all 4.
blocked inputz(n) (see Fig. 1) is a WSS vector process with Discrete Multitone (DMT) Communicationsfhis is the
given psd matrixS.(e’*). Equivalently,z(n) is CWSSM), “dual”’ of the compression problem. The system setup differs
i.e., wide-sense cyclostationary with peridfl (in particular, it somewhat from that in Fig. 1: The analysis and synthesis banks
could be WSS). All processes are assumed zero mean unke&shange positions, and the “subbands” are now “subchannels”
otherwise stated. In all our problems, ttig:) and theP; are (or “tones”) carrying digitally modulated data. These are
such that the erraf(n) is also a zero mean CWEH ) random multiplexed by the FB into a single stream and sent on the
process. Thus, we choose exsor measures, the variance of “full band” communications channel which is represented by
e(n) averaged over its period of cyclostationarity. a transfer functionC(e?«) followed by WSS additive noise
As shown in Fig. 1, we denote byi(“”)(n) the ith sub- with psd S.(e*). Each subchannel is associated with a bit
band signal produced when the FB input is the scalar sigmate, power requirement, and probability of error. We refer the
x(n). If the error e(n) is CWSSM), the signals%@e)(n), reader to [9], [22] for details on the setup. Here, we merely
i=0,1,..., M — 1 are jointly WSS; and orthonormality of mention that given the error probabilities, both the total power
the FB can be used to show that the error measure becomedor given bit rates (to be minimized) and the total bit rate for
1 Mt ) given subchannel powers (to be maximized) are objectives of
e— — Z E { vfe)(n)‘ } 7 the form (3), where the? are the subband variances of the FB
M = when its input has psd.(c/“)/|C(e?*)]? [22].
where v (n) = v (n) — v (n). (1) Noise SuppressionSuppose the input;”’(n) to each
. ,Subband processoF; is the sum of a signal component
H(E)nce,the progess@; musttry'Fo produ(cet)e othput as close to Z(s)(n) and a zero mean noise componefé‘t‘)(n). The P,
v; *(n) as possible, i.e., to minimiz&{|v;" (n)[*]. aims at rejecting the noise component, i.e., its desired output
is v§d> (n) = U§S>(n). We study the case when all thé are
memoryless multipliers;. The subband errovge)(n) of (1)

A. FB Optimization Problem Formulation

B. General Form of Optimization Objective

In many signal processing pro_blems_[l],the procesBpese s equaISzzi(S)(n) _ kivg“’)(n). We assume that the M
such that the subband error variance is signaISz/gS)(n), e (n);i =0, ..., M — 1 are jointly WSS;
Ui(e)(”)ﬂ = hi(0?). (2) hence so are thaf errorsv{(n). Let o2, 72 be the variances
of v (n), v (n), respectively, and let each”(n) be
Here,o? = E[|v§“’)(n)|2] is the variance of,i(“‘)(n); andh; uncorrelated twg”) (n). We consider three different schemes
is some function whose specification depends only on the pto-choose thé;, each yielding an error variandé[|v§€')(n)|2]

|
cessorP; and not on the choice of FB. Thus, the minimizatioof the form (2) for appropriate functions.

objective over the class of FBs is « Constants independent of choice of FB. Here
M-1
1
2 2 2 _ 2 2
9(007 T1y vy UAl—l)_ M ; hl(gi)' (3) E |:‘U7(€)(7’L)‘ :| = |1—k1|20'12—|—|k1|277127

We now summarize several such examples. i.e., hi(z) = |1 —ki|?x + |k:|*n?.  (5)
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Zeroth-order Wiener filters , k; = % These mini- 6355(6]“), whereS, (e/), SHH({zj‘“) are the psd ma-
mize the error variancE[|v§€)(n)|2] Heré trices of theA/-fold blocked versions of(n) andu(n),
t ' respectively. If all FBs in the given clagshave memo-
E {v@(n)ﬂ _ ain; e hy(z) = il ryless polyphase matrices, it suffices that the respective
i o2 +nt’ ’Z z+n? autocorrelation matriceR;,, R,,, satisfyR,,,, = cR;;.
. o (_6) Due to the general form (3) of the objective, the following
Hard thresholds, which keep the subband if its signalyefinitions and observations become important.
component is stronger than its noise component, and drop
it otherwise. Similar thresholds, applied separately to eachThe Subband Variance VectoF:or each FB in the given class

elementin the subband sequences (rather than to the erfiirthe subband variance vector associated with the input process

subband), have been extensively studied by Doredtas.  #(n) is defined as the vecter= (o3, of, ..., o3, ;)" where

[5]. In this case o2 is the variance of the procesg)(n). Herevi(’”)(n) is theith

N { 1, if 02 > 72 @) subband signal generated by feedir{g) as input to the FB.

‘ 0,  otherwise The FB optimization objective of (3) is purely a function

and of the subband variance vector of the FB; this function is fully
E [ U(e)(n)ﬂ = min(c?, n?) specified given the description of the subband procesBars
’ B Given the FB analysis polyphase matd®(z) and the psd
i.e., hi(z) = min(z, n?). (8) matrix Sz5(e/*) of the vector inputz(n) in Fig. 1, the vector
. : o rocess (v$”(n), v\(n), ..., v\%_(n))T has psd matrix
The above noise suppression problem could arise in many way 0 e Pt TM—L

1)

2)

3)

) _ . ﬁeiw)sm(ejw)ET(ejw). Hence, the subband variance vector
Whenthe FBinputis(n) = s(n), and the corresponding ;¢

subband signalei(s)(n) are transmitted on separate com- o

munication lines. Here™ (n) represents the noise inthe v = 7 diag (E(ej“)S,,,,(ej“)ET(ej“)) dw. (10)

ith line, and its variance? (which affects the functioh;) T Jo

is assumed to be independent of choice of FB. The Search SpaceThe optimization search space is defined
When the FB inputis(n) = s(n)+pu(n) and the desired as the sef of all subband variance vectors corresponding to all
output iss(n). Here pu(n) is zero mean additivevhite  FBs in the given clas€. Sos is fully specified given the class
noise with variance;®, and is uncorrelated to the purec and the input statistic§,, (¢’ ). With objectives of the form
signals(n). Thus,v{"(n) is theith subband signal cor- (3), the FB optimization problem is reduced to that of finding
responding tqu(n), with variance;; = »* independent the minima of the real-valued functigron the setS; hence, the
of the FB. Here a minor difference from (2) is that themportance ofS. As we will see in Section I1-D, the optimality
variancess; now correspond not to the FB inpu{n) of PCFBs is mainly due to a very special structure tfdtas

but tos(n). whenever a PCFB exists.
In item 1) above, if the line noise variangg depends on

choice of FB, (2) no longer holds, as the functfonthen
depends on the FB. However, in some cases this can
accounted for by a modified; that is independent of the
FB. For example, suppose the noi)éé)(n) arises due to
quantization of the signaigs)(n). By the usual quantizer
model (4)n? = f;(b;)o?, which depends on the FB only

Some General Properties 6t We haves ¢ RY c RM
(Ry definition). AlsoS is boundedandlies entirely on am/ —1-
dimensional hyperplane i®*. (This follows from (10) using
the fact thatE(¢/«) is unitary for allw, i.e., that the FB is or-
thonormal [1].) FinallyS has gpermutation symmetigyroperty.
Any permutation of any vectar € Sis also inS. To understand
through the subband signal variance Substituting this this, recgll t_hat anFBis qlefine_d by ard_eredset O_f analysis and
. ) (), vi27  Synthesis filters. Changing this ordering technically produces a
in (5), (6), and (8) for the error variances{|v; " (n)I"] o\ FB, which we call permutationof the original FB. Dif-
s:hows that they still have the form of (2), with the mOd'ferent permutations of an FB have subband variance vectors that
fied h; given by are corresponding permutations of the variance vector of the
(11— Ks|? + ksl 2 fi(bi)] =, original FB, and could thus achieve different values for the op-
for constant multiplief; timization objective. However, they are all essentially the same

14 £:(b:)

hi(z) = [ fi(bi) } z, for zeroth-order Wiener filtek; ~ FB in the sense of being equally easy to implement. Hence, we

[min(1, fi(b:))]e, for hard threshold:; assume that any permutation of any FB in the given alaiss
s ’ v (9) alsoinC. This most reasonable assumption akdeauses the

4) Likewise, if the input noisei(n) in item 2) iscolored Permutation symmetry of.

the subband noise variancg$ depend on the FB (just o _
as the signal variances? do), rendering (2) invalid in €. PCFBs: Definition and Properties
general. Section IV is devoted to analyzing this situation. Definition—Majorization: Let
Again, as in item 3), modifying thg; solves the problem

in some very restricted cases; e.g., dhean be modified
exactly as in item 3) if)? = co? for somec independent and
of FB. This happens in the special case wigp(ci) = B ={bg, b1, ..., bp—1}

A = {ao, at, ..., a]w_l}
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be two sets each havinyy real numbers (not necessarily disAn FB in the transform coder clas¥ is a PCFB forC! for
tinct). The setd is defined tanajorizethe setB if the elements the given input psd iff itdecorrelateshe input, i.e., its anal-

of these sets, ordered so that > a1 > --- > ap 1 and ysis polyphase matri¥ diagonalizeshe autocorrelation matrix
bop > by > --- > bp;_1, Obey the property that R, of the vector inpuk(n) of Fig. 1(i.e.,TRmTT is diagonal)
P P [8]. An FB in the unconstrained clag¥ is a PCFB forC* iff
a; > Z b;, foral P=0,1,..., M —1, its subband processes satisfy two properties [20]. Total decorre-
i=0 i=0 lation, i.e., the polyphase matrE(e’) diagonalizes the input

with equality holding whe” = M — 1. (11) psdS,.(c’*) for all w; and spectral majorization, i.e., if the
Given two vectora, v, in RM, we will say thatw, majorizes subbands are numbered in decreasing order of variances, their
v, when the set of entries e, majorizes that of,. Evidently, SPectras;(¢’) satisfy
|;fth|s case, any permutation ef majorizes any permutation So(@) > Sy () > -+ > Spr_y ()
U3,

_ ) for all w.
Definition—PCFBs: LetC be the given class of orthonormal

uniform M-channel FBs, and lef,. () be the power-spec- Uniqueness of PCFBFrom the definition of majorization
trum matrix of the vector process inputn) (shown in Fig. 1). We see that any permutation of a PCFB is also a PCFB. Further,
An FB in C is said to be @CFB for the class’ for the input it is also possible that two different FBs which are not permu-
psdS..(c?*), if its subband variance vector (defined in Sedations of each other are both PCFBs, i.e., the PCFB need not
tion 11-B) majorizes the subband variance vector of every FB #€ unique. However, all PCFBs must produce the same subband
the clas<. variance vector up to permutation. This is becausesets ma-
jorizing each other must be identic@irectly from the defini-

tion of majorization). Since all our FB optimization problemsin-
&Rle not the actual FB but only its subband variance vector, we
will often speak othe PCFB even though it may not be unique.

PCFB Optimality for Progressive Transmissiomn Fig. 1,
suppose the FB has subbands numbered in decreasing ord
their variances?, i.e.,02 > 0% > ... > 03, |, and theP; are
constant multipliersn; susch that

e — { 1, foro0<:<P-1 12) D Principal Components, Convex Polytopes, and PCFB
‘ 0, forP<i<M-—1 Optimality
for a fixed integer” (0 < P < M). This system keeps the | et ¢ be the given class of orthonormal unifothi-channel
strongest (largest variance) subbands, discarding the others. P8 andS$,,(c/~) the psd matrix of the vector input(n)
to FB orthonormality, the expected mean square error betwe@ﬂown in Fig. 1). The search spaSes the set of all subband
the output and input is then variance vectors of all FBs id for the inputz(n). The fun-
ML , 1 r-1 ) M—1 ,  damental explanation of PCFB optimality (the core result of
I Z SOy Z i | wherec = Z T [1]) involves connections between convexity and majorization
i=r =0 i=0 theory, and is summarized by the following theorems.
andc is the same for all orthonormal FBs. Thus, by definition,
the PCEB minimizes this error for af. Theorem 1—Optimality of Extreme Points of Polytop&st
] . ] / be a function whose domaih is a convex polytope. If is
Existence of PCFB:Given the clas€’ of FBs and the input concave orP, at least one of the extreme pointsittains the
psdSss(c’), a PCFB forC may not always exist. The PCFBminimum of f over P. Further, if f is strictly concave, its min-
and its existence depends on bGtandS..(¢’“). For a white  jmum overP has to beat an extreme point aP (see Fig. 21
input (i.e., wherS,,(¢’“) is the identity matrix), PCFBs always
exist. In fact, in this case all FBs ihare PCFBs, no matter what  Theorem 2—PCFBs and Convex Polytop@sPCFB for the
C is. There are three important clas§efer which PCFBs exist ¢lassC for input psdS..(c’) exists if and only if the convex

irrespective of the input psd [1]. These are hull co(S) is a polytope whose extreme points consist of all
permutations of a single vector,. Under this conditiony, is
1) any class ofwo-channebrthonormal FBs; the subband variance vector produced by the PCFB. [

2) the orthogonal transform coder cl&éswhich has all FBs
as in Fig. 1 where the analysis polyphase maFEix) is
a constant unitary matri¥’;

Theorem 3—Optimality of PCFBsThe PCFB for the clas3
(if it exists) is the optimum FB i€ whenever the minimization
) ] objective is a concave function on the domeir(S). Further, if
3) the unconstrained class’, which hasall orthonormal injs function is strictly concave, the optimum FB is necessarily

M-channel FBs with no constraints on the filters besidgspcgg. O
those that orthonormality imposes (thtis contains FBs o )
having ideal brickwall filters). Theorem 3 shows PCFB optimality for several signal pro-

. cessing problems. In Section 1I-B, we saw many situations in
The DFT and cosine-modulated FB classes do not have PCRfi§ich the minimization objective had the general form of (3).

for large sets of input psds, as shown in [1]. It can further be verified [1] that in all these cases, the functions
Construction of PCFB:For classes of two-channel FBs, 4 in (3) are concave on the nonnegative real line. This implies

PCFB is simply an FB that maximizes its larger subband vari-iye refer the reader o [1] for detailed explanations of terms such as concavity
ance (thus minimizing the smaller one) over all FBs in the classd polytopes, and for proofs of the theorems.
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f(z,y)| (concave on P)

y
f(z)| (concave on R)
I
I
e 4o hemisphere
. . R
) i olytope P
polytope P (segment) polytop .
@ = extreme point of P (square centered at origin)
® = extreme points of P
minimum of f over P = minima of f over P

Fig. 2. Optimality of extreme points of polytopes (Theorem 1).

thatg is concave on the domaiw (S), and hence, that a PCFB interior

is optimal for all these problems (Theorem 3). .
Theorem 3 evidently follows directly from Theorems 1 and

2. The FB optimization involves finding the best vector frém

but Theorem 1 is used here to find the best one feoif®) > S. bounépary boundary = ) bolindary

However, Theorem 2 shows that the best vector froriS) is (edges)  extreme points

in fact in S, hence it must be optimum ové. Also note that

all permutations of a PCFB are PCFBs, and the above results

do not specify which of them is the optimum. In general, they ! ;

are not all equally good, but as they are finitely many, it is easy - /" L

to pick the best one. For the objective (3), if AJlare identical

then all permutations are equally good, whilexjfz) = k;z

for all ; then we assign the largest to the least;, and so on.

More generally, finding the best permutation of the PCFB is an

instance of thessignment problenwell studied in operations th€ relation between PCFBs and “compaction filters” that max-
research literature [4]. imize their output variance among certain classes of filters.

boundary (faces)

¢ = extreme point

Fig. 3. Extreme points of compact convex sets.

A. Arbitrary Convex Sets: Extreme Points and Their Optimality

[ll. WHAT IF THERE Is No PCFB? Definition [7]: For a convex seB c R*, a pointz € B is

_ - said to be amxtreme pointor acornerof B if
When a PCFB exists, the search sp&aeonsisting of all re- .
e:a:c—l—(l—a)y with « € (0, 1), 2z, y € B

alizable subband variance vectors has a very special structdré.

Its convex hullco (S) is a polytope whose extreme points are implies z = y (=2).

all permutations of the PCFB subband variance vector (Th@eometrically, no line-segment passitigough z (i.e., con-
orem 2). The optimality of PCFBs under concave objectiveaining z but not as an endpoint) can lie wholly in the g&t
(Theorem 3) follows from this structure and the optimality oT he interior of B cannot have any extreme points, since around
extreme points of polytopes (Theorem 1). If a PCFB does ne&ch point in the interior there is a ball lying wholly# So all
exist, S does not have this structure. Thus,(S) is a general extreme points lie on the boundary, though all boundary points
convex set. For such sets too there is a notion of extreme poimsed not be extreme points.¥is a polytope, the above defini-
which coincides with the usual definition when the convex seti®n can be verified to coincide with the usual definition of ex-
are polytopes, and further allows the following generalizatiameme points of a polytope. Fig. 3 illustrates these facts, showing
of Theorem 1. If a functiorf is concave over a compact convexhe extreme points of some closed and bounded (or compact)
domainD, at least one extreme point &f is a minimum off  convex sets. It is not hard to show that every (nonempty) com-
over D. Thus, in this case, to minimizg over D it suffices to pact convex set is the convex hull of its boundary, and that it has
minimize f over the extreme points @b. Polytopes are exactly at least one extreme point. A stronger result is true.

the compact convex sets havifigitely manyextreme points. #(rein—MiIman Theorem (Internal Representation of Convex

This section uses these observations to study the effect } ;
. P ts) [7], [16]: Every compact convex sél is the convex hull
nonexistence of PCFBs on the FB optimizations. When a PCEB. . o

of its extreme points. Hence, the set of extreme poinf3 ixthe

exists, all the (finitely many) extreme points of the se(5) minimal subset of) having D as its convex hull. This fact can

correspond to the PCFB. So the PCFB is alway's optimailfor rve as an equivalent definition of extreme points of compact
concave minimization objectives. On the other hand, if a PC%nvex sets q P P

does not exist;o (S) could in general have infinitely many ex-
treme points. This explains the analytical intractability of many This result evidently holds for polytopes, and is verifiable in
FB optimizations when PCFBs do not exist. Finally, we explaithe examples of Fig. 3. Thus it is intuitive, though its formal
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Now for “almost every” extreme poirtin E there is a concave

f(z,y)| (concave on D) (in fact, linear) function that is minimized oves (S) uniquely
::—:"’____:7 fa: plane by z.2 So without further information on the specific concave
Lj y objective, nothing can be said about its minima o$eapart
from the fact that a search ovErwill yield at least one of them.
fi: hemisphere When a PCFB existg|l points inE correspond to it. This ex-
- plains the remarkable optimality of PCFBs falt concave ob-
Domain D = ¢ jectives. If there is no PCFBE has at least two points that are
\ unit disk in R not permutations of each other, i.e., that correspond to essen-
minimum of fo | unit circle = extreme points of D tially different FBs. Thus, no single FB can be simultaneously
= minima of f; optimal for all concave objectiveg. If E is finite, the optimal

FB for any given concavg can still be found by a finite exhaus-
Fig. 4. Optimality of extreme points of compact convex sets (Theorem 4). tive search ovel. Unfortunately, in general there is no reason

to expectE to be finite, hence a numerical search is required.
proof [16] may not be trivial. It is important as it immediatelyAny derivation of analytical results on the optimum FB will have
proves the following. to take into account the specific nature of both the concave ob-

jective at hand and the sé&t (which depends on the FB claSs

Theorem 4—Optimality of Extreme Pointta functiong is 514 input psd at hand). This explains why these optimizations
concave on a compact convex éatat least one of the extreme, o usually analytically intractable.

points of D is a minimum ofg over D. Further, ifg is strictly

concave, its minimurhas to beat an extreme pointab. O C. The Sequential Compaction Algorithm

This result reduces to Theorem Yifis a polytope, andisil-  Thjs is an algorithm that has sometimes been proposed [20],
lustrated in Fig. 4 for a compact convéxthat isnota polytope. [13] to find a “good” FB in classe€ that may not have PCFBs.
Proof: Let ., minimize g overD. (Existence o, is e firststate the algorithmin a precise manner that holds for any

either assumed or follows if is assumed continuous.) By thegeneral class. We then show that it produces FBs for which the
Krein—Milman theoremy,. is a convex combination of somecorresponding subband variance vedtoan extreme point of

extreme points oD, i.e., co(S). We examine the optimality of the algorithm in this light.
J J Let C be the given class of FBs, aitithe corresponding op-
Vopt = Zﬁizﬂ" where 0 < 3; < 1, Z B;=1 (13) timization search space. The algorithm involves rearranging all
et =1 vectorsinS in decreasing order of their entries, and then picking
for some distinct extreme points of D. If none of thesez;  from these the vectos, € S defined as the greatest one in
minimizesg over D, g(2;) > g(vop) for all j, so the “dictionary ordering” orR™ . This means that the greatest
J J (first) entry ofv,, is greater than or equal to the greatest entry of
_ . i any of the other vectors. Among vectors for which equality pre-
9(vopt) =9 ;ﬁ] %)= ;ﬁ] 9(2)) vails, the second greatest entryf is greater than or equal

J to the second greatest entry of the other vectors, and so on.
The output of the algorithm is any FB with subband variance
> 3: g (Vopt ) = §(Vorn 14 . . .
; Bi9(opt) = 9(vept) (14) vectorwy,, (or any of its permutations). The vectay is well-de-
ined, and finding it involves a sequential maximization of sub-

. - i

i.e., g(vop) > glwopt), @ contradiction. Hence, at least om—IB ) o S .

extremelpoint ofD isl, a minimum ofg over D. If g is strictly and variances giving the algorithm its name. (Existence of the
ta\xima follows from compactness 6&f)

concave, the first inequality above (Jensens inequality) is strit . ; i : N
d Y ( g Y) Relation to Compaction FiltersTheideal compaction filter

unlessg; = 1 for somey. So in this case,,, = 2, i.e., the 201 f ) is defined he fi L
minimum is necessarily at an extreme point/of [ ] for an m_put process Is define as the filter maximizing
its output variance among all filtetd (¢’“) whose magnitude
squaredH (e?~)|? is Nyquist(M ). The Nyquis{ M) constraint
isimposed because these filters are used to build an orthonormal
In our FB optimizations, the objective is concave on the sgf_channel FB, and any filter in such an FB obeys this con-
co (S) whereS is the search space. We seek its minima @ver straint [19]. For WSS inputs, a procedure from [20] finds the
We assume from now on that(and henceo (5)) is compact. compaction filter given the input psd. It always yields a “brick-
Thisis true for mostinput power spectra and practical FB classgg)” filter, i.e., one with constant magnitude on its support. If
(Appendix ), and allows use of Theorem 4. LEtbe the set gych a filter is to be an analysis filter in an orthonormal FB,
of extreme points ofo (). From Theorem 4, for any concaveijts sypport cannot overlap with that of any other analysis filter.
objective overo (S), at least one of its minima lies iff (and  Thys the FB can be built by a sequential design of compaction

all them do if the concavity is strict). From the definition ofjiters: The next filter maximizes its output variance among all
extreme points, we can show th&atc S. So the minima over

co (5) 5 S found by minimizing overE in fact lie in S. and 2This is because for any compact convexBethe set of extreme points is the
' closure of the set aéxposegoints [16], which by definition are points € D

are hence minima ovef too. Thus, minimizatiqn oveS has for which there is a linear function minimized (or maximized) oZeuniquely
been reduced to one over the &ebf extreme points ofo (S). by w.

B. FB Optimization and Extreme Points of Convex Sets
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filters that have a Nyquist}M) magnitude squared and a sup-
port that does not overlap with the supports of the previously g 1—i
designed filters. HIRAE
This FB design method from [20] is exactly the sequential T I
algorithm described above, applied to the unconstrained FB q
classC* when the input is WSS (as distinct from CW&F)).
The variance maximization in the algorithm corresponds to an =
ideal compaction filter design. This connection has motivated TR : .
the study and design dfIR compaction filterg[12]. These " i
are defined as filters maximizing their output variance among |
all filters of order not exceedingy whose magnitude squared B r = 2 . 8= B= Trg W&
is Nyquist (M). It was believed that such filters would play ) o
a role in PCFB design for the clagg™ of all M-channel Fig. 5. Suboptimality of sequential compaction algorithm.
orthonormal FBs in which all filters are FIR with order not

exceedingV (IV > M). Indeed, it may seem that the first steqsection I1). The subband variance vector produced by the

in the sequential algorithm for the clas¥ is to design an FIR 4igorithm here has an additional property. If its entries are ar-

compaction filter. However, this is not true for a genetdl anged inincreasing order then, in fact, it becomes tHeast

and input psd, as there may not even be an FBhaving yector inS in the dictionary ordering. On the other hand, if

the FIR compaction filter as one of its filters. The correct firs{ pcEB does not exist, then there will be at least two extreme

step in the sequential algorithm for a general FB CIass to  qints that do not correspond to essentially the same FB, i.e.,

design a filter maximizing its output varianeenong all filters  \yhose coordinates are not permutations of each other. The al-

belonging to FBs irt’. It seems quite infeasible to propose anysrithm of Section 111-C produces one extreme point, but the

variant of the sequential algorithm or the cl&@88in which FIR  inimum could easily be at another one. Thus, the algorithm

compaction filters will play any serious role. The only notablg,,id be suboptimum.

exception is whem/ = 2, where the FB is fully determined ¢ following hypothetical example with/ = 4 chan-

by any one of its filters. Thus, a clear relation between the,|s illustrates this point: Let ¢§) = co(E) where E is

sequential algorithm and compaction filters exists only for thge set of all permutations of; = (25, 10, 10, 2)7 and

unconstrained clas$* when the input is WSS (as opposed tq,, = (24, 17, 3, 3)T. This would happen for a WSS input with

CWSS(M)). psd shown in Fig. 5, when the clagsas exactly the two FBs

in the figure. AsE is finite, co (S) is a polytope whose extreme

points lie in E. In fact, all points inE are extreme points
The optimality properties of the sequential algorithm of Seef co (S) as neither ofy;, vo majorizesthe other. A PCFB

tion 111-C follow easily from the following result. does not exist, as; is not a permutation of,. Now consider

the high bit-rate coding problem of [20]. Here the objective

to be minimized ovesS is #(v), the geometric mean of the

=, = Hs

m-H B=H

= input pad

D. Is the Sequential Algorithm Optimal?

Assertion 1: The subband variance vector

vo = (g, ai, ..., apy 1) €8 entries ofv € S. (As noted in Section II-B, this is equivalent
(with ceg > - -~ > aps—1) produced by the sequential algorithnio minimizing an objective that is concave on (S)'.)_ Now
is an extreme poindf co (S). [r(v1)]* = 5000 > [r(v2)]* = 3672, SOw, is the minimum.

Proof: Letw, = vz + (1 — ~)y for v € (0, 1) and However, the algorithm of Section IlI-C yields, = v, and
x, ¥ € co(S). By definition of an extreme point (Section 111-A), is thus suboptimum. Further, it remains so even if it is run to
showing thate = y = v, will complete the proof. Now by def- sequentially minimize rather than maximize variances (again,
inition of the convex hulko (S), we see that, y, and, hence, giving in general some extreme point@f(S), in this case,).
v, can be written as convex combinations of elements, ofe., In fact, one can even create a family of (necessarily artifi-
— E}Ll B;v’ for somew’ = (v}, vi, ..., v3,_,) € Sand cial) concave objectives that the algorithm actually maximizes
3; € (0, 1] satisfyingy>7_, 3; = 1. We now showz =y = v, instead of minimizing. LeP C co (S) be the polytope with ex-
by showinge’ = ., forja_ll j=1,2, ..., .J.Tothis end, since treme points as permutations ofth_e veetgoutput by the algo-
v, exceeds (or equals) all thé in the dictionary ordering on "lthm. S0” = co (5) iff a PCFB exists. Lef(v) = —d(v, ),

RM, we havero > v, butay is a convex combination of the where

v). Hence,oy = v for all j. This, in turn, leads tey; > v, d(v, P) = min{|lv — z|: z € P}

and, hence, ter; = v{, and so on; until finallw,, = v for all ’

i=1,2,...,J. v is the minimum distance fromto P (well-defined, sinceP is

. : M : )
When the clasg€ has a PCFB, all extreme points of(¢) ;oglggﬁtg:vséngﬁgg}/ E’Z“dgr?(;m”“()mﬁé dé,f\ilr?i\?il gnlssﬁgc\}'snﬁ]z;s
correspond to the PCFB. Hence, the sequential algorithm an pp '

ways yields the PCFB and is thus optimal for many problems?However, the fact that,, has this property does notimply that a PCFB exists,
unless the number of channelsii§ < 3. Majorizationis a stronger require-
SEquivalently, it is an ideal compaction filter for the psd that is obtained byent. For exampley; = (25, 10, 10, 2) exceedw, = (24, 17, 3, 3) and
setting to zero the bands of the original input psd falling within the supports § permutations, and also becomes less than them if its entries are rearranged
the previously designed filters. in increasing order; but stith; does not majorize..
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is constant (zero) o, and that if a PCFB does not exig?, optimal? Here we answer these questions. At the outset, re-ex-
is actually the set ofnaximaof f overco (S). Thus, FBs with amine the two special cases noted above where a PCEBrfor
subband variance vecta, € P or its permutations (output is still optimal. When.(n) is white, since any FB is a PCFB for

by the sequential algorithm) perform the worst. Even if thesewhite input, the optimum FB is actuallyyammonPCFB for
examples may seem artificial, they should convince the readetloé signak(») and the noisg(n) (and s, in fact, also the PCFB
the total absence of intrinsic connection between FB optimalityr z(n) = s(n) + u(n)). Whenn? = co?, this relation itself

and variance maximization/compaction filter desmggcept if ensures (by definition of PCFBs) that a PCFB for any one of
a PCFB existsin which case the sequential algorithm yieldshe signalss(n), u(n) andz(n) is also a PCFB for the others.

exactly the PCFBs. So, in both these cases, the optimum FBéemmorsignal and
noise PCFBIs this true in greater generali®/\We answer this
IV. OPTIMUM FBs FORCOLORED NOISE SUPPRESSION question in detail. We show thé&tr the transform coder class

This section considers the case when the FB input in Fig. 1C;s’ the_ common PCFB (if it exists) is indeed optimal; Wh"_? the
. . . same is not always true for other classes of FBs, specifically,
x(n) = s(n)+up(n), wheres(n) is the pure signal desired at the

. » 4 for the unconstrained FB clag¥. We also show how to find
FB output, and:(n) is zero mean additive noise uncorrelated t%e optimum FB inC* when the input signal and noise spectra
s(n). BOths.(”) andy:(n) are assumed .CW$.M ) raqdom IO are bothpiecewise constarwith all discontinuities at rational
cesses. This problem has been described in Section II-B. Usmgm les ofr
the same notation, le’, n? be the variances of th¢h subband P '
signa!smgs)(n) andv{"’(n) corresponding te(n) andj(n), re- A, Notation and Study of Search Spaces
spectively. The subband processors are memoryless mu|t|p|lel’§.0 study the issues mentioned above, we need notations
k; which could be constants, zeroth-order Wiener filters or ha](gr ce !

thresholds (Section 11-B). We have already seen that the mean _rtam sets associated W'th the _opt|m|.zat|on problem. We
. . now introduce these notations, which will hold throughout
square error between the true and desired FB output is

Section IV.
ML , 1) Signal and Noise Variance Spaces:, S,,. The set of all
Fo, vg) = 7 > filed nd) (15) realizable subband signal variance vectyss denoted
:=0

by S,.. Similarly, the set of all realizable subband noise
variance vectors,, is denoted bys,,.

2) Optimization Search Spacs;,. We denote bys,, the set
of all realizablepairs of signal and noise variance vec-
tors (¥~). The minimization objectives for the problems
vy = (15, 5. - )’ o :
n 05 s -+ Mr—1 studied here have the form (15), i.e., they are real-valued
functions ons,,. Thus,S,, is the “search space” for these
problems, just a$,, is for those of Section II. As both

where

Vo = (Og, 012a A 012\/[—1)T

are, respectively, the signal and noise subband variance vectors,

and v, andw,, have entries whose sum is independent of the
11— &i|2z + |ki|2y,  for constant multiplief; F_B, the setS, is bqunded and lies on®\f — 2-o!imen-

filz,y) = ¢ 235 for zeroth-order Wiener filtek; sional hy_perplar_le iRZM. Italso has a permutation sym-

e ﬁiﬁ(x ”) for hard threshold:: metry, slightly different from that of,, but arising from
(e ¢ (16) the same reason (see end of Section II-B). It is expressed

In Section II-B, f; (a2, n?) was denoted byt;(o?) with the de- as

pendence of the functioh; on»? being implicit. PCFB opti- U, Py,

mality was shown only if all thé:; were concave anidepen- <,,,n> €5 = <p,,n> €5

dent of choice of FBThis happens, for example, if the noise ) )

1(n) is white, in which case for all FBs we havg = 72, for any permutation matridP. Also, v, € So, v, € 5,

the variance ofi(n). It also happens if)? = co? for constant does not always imply;”) € Sy; i.e., S, is some subset

¢ independent of the FB, which would happen for a very re-  Ofthe Cartesian produst, x 5,,, usually a proper subset.

stricted class of input signal and noise psds. As explained in ~ We also assumé, (and henceo (S.,)) to be compact,

Section II-B, in this case, the dependencé.obn#? can be ac- for similar reasons as in Section IlI-B.

counted for by a modified; that is independent of?. In both 3) Objective Function Domairil’. We will consider general

these cases, the results of Section 1I-D can be used to show that minimization objectives concave over the set

a PCFB for the input signaln) is optimum in the sense of min- N

imizing (15). T'=co(Ss)xco(Sy,) =co(Ssx8y) Dco(S,). (17)
For general input signal and noise psds, the minimization ob- ) ) )

jective f of (15) indeed depends on both the signal and noise ~ (We have used above, and will freely use the set identity

subband variances. So, the problem is outside the scope of Sec- €0 (A x B) = co(4) x co(B).) Note that if all thef; in

tion 11, and is the topic of the present one. Possible questions ~ (15) are concave OR?, the objectivef of (15) is concave

that arise are as follows. Is the PCFB fgn) still optimal? Or 55 _ 5 5 onlyin artificialidegenerate cases, e.guif) (or s(n)) is

is itthe PCFB foru(n) (or forz(n) = s(n) 4+ u(n)) thatis now  white. (For whiteu(n), S,, has only one element.)
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Fig. 6.

4)

5)
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T £ co(S,) x co(S,) = co(E, x Ej) 7 = co(S,)
@ o € E, x E, (= extreme point of T)

co(Sy): E.=(E, xE,)NS,
polytope,
extreme
points
E, (o)
/ general class C of FB’s. C = transform coder class.
co(85): polytope, E,#E, E,=E,
extreme points B, (X)
separate but no common signal common signAal, noise PCFB exists: E. nonempty
and noise PCFB’s exist: E, empty E, C E, = set of extreme points of co(S,)

Colored noise suppression: geometry of search space.

on R%rM and hence off". Also, thef; of (16) arising for is a concave objective minimized ov&y uniquely byz. Thus,

the noise suppression problems above are indeed concéiheecommon signal and noise PCFB will minimize all concave
onR3 (Appendix B). We know that minimizing a con- objectives ovef’ if and only if E. = E,. For the transform
cave function ovess, is reducible to minimizing it over coder clas<’, it turns out that indeed’, = E, whenever a

the set of extreme points @b (S,,) (Section 1ll). So we common signal and noise PCFB (KLT) exists. For the uncon-
will try to study the structure of this set of extreme pointsstrained clas€* on the other hand, even when a common PCFB
Extreme Point Setst,, E,, E,. We denote byg, C S, exists (i.e..E. is nonempty).E; # E., in general, except for

E, C S,  E, C S, the sets of extreme points ofSOMe very re§tr|cted input spectra (f.or example, withstant

0 (S,), €0 (Sy,), co(S,), respectively. (Extreme points signal and noise psd matrices, in which case the PCFBs are the
of co(A) always lie in A.) From definitions it is easily correésponding KLTs). We formally state results on PCFB op-
shown thatF,, x E, is the set of extreme points of thetimality for colored noise suppression in the next section, their
set? of (17). In all problems in this section, we assum@roofs follow from the above comments on the relation between
that separate PCFBs for the signal and noise psds alwdysand £, which will be proved later. Fig. 6 shows the various
exist (otherwise, most optimizations are analytically ind€ometries of5, as a subset df’ arising in the different situ-
tractable for similar reasons as explained in Section I1§tions discussed above. (The figure only serves as illustration.
Thus, E,, E, are both finite sets, each one being the séctually, 7" lies in R*% and notR® as the figure shows.)

of all permutations of a single vector that corresponds

to the relevant PCFB. Alsd is a polytope, as its set of B. Statement and Discussion of Results

extreme points, x E, is also finite. Theorem 5-Optimality of Common KLTonsider any min-
Common PCFB Point Sef’... We denote by, the set imization objective that is concave on the §ébf (17). The

of all points in.S, that correspond to aommonsignal common signal and noise PCFB for the transform coder €lass
and noise PCFB for the given FB cla&yE. is empty iff (i.e., the common KLT) if it exists, is the optimum FBdH for

there is no such PCFB.) From earlier discussions, an i these problems. Thus, itis optimum in the mean square sense
in C will be such a common PCFB iff its correspondindor the noise-suppression system using any combination of con-
point in the search spack lies in the finite sef, x £,,.  stant multipliers, zeroth-order Wiener filters and hard thresholds
However, even when a common PCFB exists, in genei@ection [I-B) in the subbands. O

all points of £, x E,, will not correspond to such PCFBs.
In fact, usually many of them will be unrealizable, i.e.
outside the search spa$g. Thus,E. = (E, x F;)NS,,
i.e., E. consists of the extreme points of the polytdpe
that lie in S, C 7. Points inE, are hence also extreme
points of cd¢S,,), i.e.,E. C E,.

Theorem 6-Suboptimality of Common PCFBhe opti-
mality of the common signal and noise PCFeB the transform
coder clas¥’* (Theorem 5yoes not holdor all classes of FBs.
In particular, it is violated for large families of input signal and
noise spectra for the clagd* of unconstrained two-channel
FBs. O

From the above definitions and discussions, the optimum FBTheorem 7—Optimality for a Restricted Class of Concave Ob-
for minimizing functions that are concave on the dont&iof jectives: For any FB class’, the common signal and noise
(17) can be found by a search over the FBs correspondingRGFB if it exists is always optimal for a certain well-defined
points in £, C S.. On the other hand, common signal andubset of the minimization objectives that are concave over the
noise PCFBs correspond to points in the finite BgtC F,. domainl of (17). There is a finite procedure to identify whether

Now,

as noted in Section IlI-B, for almost evegye E, there or not a given concave objective falls in this subset. O
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Theorem 7 is easily proved. As long as separate PCFBs exist
for the signal and noise, the sEtof (17) is a polytope, and a
search over the finite set, x £, of its extreme points will )
yield a minimumz; of any concave objectivg overl'. If 2
lies in the true search spacg, C 7', then it also minimizeg
overS,, andis inE,, i.e., corresponds to a common signal and
noise PCFB. In generat,; does not lie inS,,, but the common
PCFB minimizes all concave objectivé$or which it does, thus
proving Theorem 7.

As explained in Section IV-A, we will complete the proof
of Theorem 5 (in Section IV-C) by showing that if a common
signal and noise KLT exist&, = E, for the clas’. Sec-
tion IV-C also proves Theorem 6, using a specific illustration
of PCFB suboptimality. We may also note here another spe-
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has|F| = (MY FBs, and for each point df, there is
an FB inF corresponding to it.

For fixedM , though the size aF is exponential inV, the
number of FBs inF that actually correspond to points in
E, is polynomial:|E,| < K N?M=3 where

Ky = 4(2M — 3)(M(M! — 1)/2)*M =3,

These FBs can be extracted fromF in
CyN2M=2(M1)4M =5 grithmetic operations i/ > 2
and in CyN log N operations if A 2 (where
constantsCy, Cy are independent ofA/, V), again
polynomial inN. O

ciality of the classC* besides that shown by Theorems 5 and pijscussion on Theorem 9:

6. The common signal and noise PCFB &r (i.e., common
KLT)is also the PCFB (i.e., KLT) for the noisy FB inputn) =

s(n) + p(n). This need not be true for a general FB clég$or
example, for the unconstrained cl&%9. For the noise suppres-
sion problems, we have already shown in Section Il and [1], the
restriction of Theorem 5 to the case when the noise is white.
Even with colored noise, if all subbands use zeroth-order Wiener
filters, a stronger result is shown in [1]:

1

Theorem 8-Optimality over Biorthogonal Clas€onsider
the (colored) noise suppression system using zeroth-order
Wiener filters in all subbands. For this scheme, the common
signal and noise KLT, if it exists, is the mean square sense2
optimum memorylesbiorthogonal transform (i.e., FB as in
Fig. 1 with a constant but not necessarily unitary polyphase
matrix). O

However, with other subband operations (e.g., constant mul-
tipliers or hard thresholds), it is an open problem as to whether
this optimality over the biorthogonal class still holds (even if the
noise is white).

The above results show that PCFB optimality for noise sup-
pression is considerably restricted when the noise is colored
rather than white. If the PCFB is not optimal, can we find the
true optimal FB? We know that searching the extreme point set
E,, suffices to find an optimal FB, butin gene&}, may be infi-
nite, making analytical solutions difficult. However, for one spe-
cial case involving unconstrained FBs apigcewise-constant
spectra E, is finite and easily characterized, as shown by the
next result (proved in Section IV-D).

3)

4)

Theorem 9—-Optimum Unconstrained FB for Piecewise Con-
stant Spectra:Consider the problem of finding within the un-
constrainedM -channel orthonormal FB clag¥’, a FB mini-
mizing an objective function that is concave on theiSef (17).

From Section IV-A, this is reducible to a minimization of the
objective over the sel, of extreme points of the convex hull
co(S, ) (whereS, is the search space, defined in Section IV-A).
Suppose the input signal and noise are WSS with psds that are
constant on all interval§2zk | 22+ for | integersk for

. e MN’»  MN
some fixed positive intege¥N. Then,

1) S, is a polytope, i.e.S, = co(S,) and £, is finite.
Further, letF be the set of abrick-wall FBs inC* having
all filter band edges at integer multiples%. ThenF

5)

On Brick-Wall Orthonormal M Channel FBs[20],
[19]: In these FBs, all filters have piecewise-constant
responsedd;(¢/*) € {0, /M} for all w. Their sup-
ports are nonoverlapping and alias-fré&/), i.e., for

any w, exactly one of thel/ numbersHi(ej(‘”QJ\L;)),

k =10,1,..., M — 1 is nonzero. If further all filter
band edges (i.e., points of discontinuity &f;(c’*))
are integer multiples 0%, the number of such FBs
is evidently finite and not hard to compute; our proof

(Section IV-D) gives a way to compute it.

) Result Appeals but is Not ObviouBhe theorem shows

that the optimum FB can always be chosen to liFin
i.e., to be brick-wall with nonoverlapping filter responses
having shapes similar to the input spectra (i.e., piecewise
constant with the same allowed discontinuities). While
intuitively very appealing, this is certainly not obvious;
e.g., itis in general not true without the concavity of the
objective.

Bounds on|E,|: ltems 1) and 2) of the theorem state-
ment give two different bound§M!")" (=|.F|) and

Ky N2?M=3 respectively, on the size df,. The latter
bound is stronger whei > M, while the former is
whenM > N. There are no bounds that are polynomial
in both M and V.

Common PCFBs and the Case &f = 1: Theorem 9
holds whether or not a common signal and noise PCFB
for C* exists for the given spectra. If such a PCFB ex-
ists, it also corresponds to pointsB8f, (often, itis also in

F). However, it need not always be optimal (Theorem 6),
asE, could, in general, have other points as well. In the
special case whelN = 1, however|F| = M!, and all el-
ements ofF are permutations of the same FB, namely, the
usual contiguous-stacked brick-wall FB, which is hence
always optimal. This FB is a common signal and noise
PCFB in this case; it produceghite and totally decorre-
lated signal and noise subband processes. The comments
after the proof of Theorem 5 in Section IV-C provide
an independent proof of the optimality of FBs producing
such subband processes.

Approximating Optimum FBs for Arbitrary Spectidost
spectra can be approximated by the piecewise-constant
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ones in the premise of Theorem 9, to any desired acdle.,co(S,) = co (E£”), which is thus a polytope whose extreme
racy by sufficiently increasing/ and/orN. Thus, The- points lie inE’. But E, is by definition the set of these extreme
orem 9 in principle allows approximation of the optimurnpoints, soF,, C E’. Together withE, C FE. C E,, this gives
FB in C* for any input spectra to any desired accuracy,. — F,, as desired. v
However, the complexity of the algorithm for this is poly-
nomial in N but super-exponential id. Thus, we have
good algorithms for lowd (especiallyd = 2, where the
complexity of orderV log N). For sufficiently largeM, . )
we get good enough approximations of the true spectra by S0 = {Qz,: @ orthostochastig

taking N = 1. The earlier remark then gives, at no cost, = {Qz,: Q doubly stochaste = co (S,).  (20)

the optimum FB inC*, i.e., the usual contiguous-stacked . .
brick-wall FB. There are no good algorithms if baii S v cOnvex too? For dimensiof/ < 2, every doubly sto-

We may note here that the s€t of realizable subband signal
variance vectors,, is convex [1], and that

and N are large. chastic matrix is_ or_thostochastic [1]. So from (19), = A =
co(S,), i.e., S, is indeed convex, as we also verify in Sec-
C. Proof and Comments on Theorems 5 and 6 tion IV-E by explicitly computings,,. Even for general, the

Proof of Theorem 5:Using the notations and discussiorfame argument that proves convexitySgfalso shows thas,
of Section IV-A, we need to show that for the transform codd$ convex in two very special cases: 1) if all entrieszgf(or
classCt, E, = E, whenever a common signal and noise PCFB-) are equal, i.e.R,, (respectivelyR,) is the identity matrix
(KLT) exists. LetR,, R, be the autocorrelation matrices ofup to scale—the “white noise” case, and 2¢if = cz, (i.e.,
the M -fold blocked versions of the signafn) and noisgu(n), R, = cR;). However, ifM > 2, 5, is notconvex for several
respectively. Let the unitari be a common KLT. Its subband pairs of values ok, z, (some shown in Appendix C).
signal and noise variance vectors are thys = diag(A,) We can try to modify the above proof to show thiat = £,

and z, = diag(A,), respectively, where\, = KR, Kt for the clasg* too. To do this, we replace the autocorrelation
A, = KR,K' are both diagonal. The set of points #h, MmatricesR,, R, with psd matricesS,(e/*), §,,(¢/*) and try
corresponding to the KLK and its permutations is thus to use the earlier arguments at eachWe cannot complete

the proof forall psd matrices, for else a common signal and
) P, 0 2z, noise PCFB would always be optimal for the class too,
E. = {[ 0 P} [ } y=12 .. M!} (18) contradicting Theorem 6. However, we can in fact complete
J the proof for some restricted classes of psds. 8,fe’~) (or

where P; are theM x M permutation matrices. Now. is So(c™))Is the }fe”t“y matri;(wup to scale—the "white noise”
the set of points irb,, corresponding to any common KLT, sot3se 2) it8y(c 2 - CS,‘.L(C ) and 3) if the .dlagonallzed
E' C E,. (itwill turn out thatE”. = E., but this needs proof Yo'>'0NS 0fS, (), 5y(c’*) are bothconstant(independent
due to possible nonuniqueness of the KKT) We now compute of w). We' have Seen cases 1) .and 2) earller,. as situations
S,. Note that(v?, v1)T € S, iff there is a transform coder where a S|gr|1|al PCFB |sba_1utct)_mat|c?lz alfso a nlc;sel PCFB %nd
producingv,, v, as signal and noise subband variance vector{ﬁgg';ﬁsoi ;gg‘éa;’;f r::(s:v:/\;eitsegn d Sng(;:?e(latgd gu%?)?n d)’
respectively, i.e., iff there is a unitary matfxsuch that . _ )
signal and noise components. Examples of this case are a)
if S,(c?“), S,(c’*) are themselves independent ©f—the

C
Zn

diag (TRUTT> =v, = diag (TKTAUKTT) PCFBs forC* are then the corresponding KLTs, and b) if
and N = 1 in Theorem 9—the common PCFB f6t# is then the
diag (T&TT) — v, = diag (TKTA KTT) usual contiguous-stacked brick-wall FB.
< —_— 77 — {e »,7 .

Proof of Theorem 6:We provide a specific example of
Let Q be the orthostochastic matrix [1], [7] corresponding t&CFB suboptimality. For the clagd* of unconstrained two-
TK', i.e., the doubly stochastic matrix formed by replacinghannel FBs, consider the input signal and noise spectra and
each entry of the unitatf K by the square of its absolute valuethe two FBs fronC* shown in Fig. 7. The figure also shows the

Thenwv, = Qz, andv, = Qz,. Thus resulting subband spectra and signal and noise variance vectors.
As the analysis filters are nonoverlapping, the subbands are to-
Q 0 2, . tally decorrelated. From Fig. 7, the subband¢'@* also obey
Sy = {{0 Q} L } : Qorthostochas'u} spectral majorization (Section 1I-C), while thosefaB? do not.
n

Thus FB® is a common signal and noise PCFB whild3® is
c {[Q 0} [z"} : Q doubly stochasti} 2 A. (19) neitherasignal PCFB nor a noise PCFB for the clatssHow-
0 QJ Lz, ever, consider the concave objectives of the noise suppression
problem with either zeroth-order Wiener filters or hard thresh-
By Birkhoffs theorem [1], [7], we can expre€3 above as a olds inbothsubbands (see (15), (16)). By evaluation using the
convex combination of permutation matrices, thus obtainirgibband variances in Fig. Z.B* achieves a lower value than
A = co(E]). SinceE, C S, € A = co(E]), we have F B forthese objectives. Thus the common PCFB is not always
optimal. More examples of PCFB suboptimality can be created
co(E.) Cco(S,) Cco(A)=co(E)) by slight perturbations of the spectra of Fig. 7. %
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28 — = signal psd 28
-. = noise psd
24
22
20 -
18
16 - w w

0 m 2w 0rm2r 07w 2r

\/51 Fge for signal  for noise for signal  for noise
== For FB®: For FBY;
‘? LR = H, =(23,17)7, va = (24,16)T vi=(19,21)T, vi =(22,18)T
VI = | FB
0 T 2|7r=w subband spectra
2 2
— = 0-th subband, -___ = 1-st subband

Input spectra and FB’s

Fig. 7. Suboptimality of common unconstrained signal and noise PCFB.

The spectra in Fig. 7 are piecewise-constant and Theorend < f;;, < 1, for all ¢, k (for which f;; is defined)  (25)
can be applied to them (withf = N = 2). This shows thatone ,,_,
of the two FBs {'B* and F'B®) in Fig. 7 is optimum inC* for fin =1, for all k (26)

any concave minimization objective. Thus, in the example in the

proof of Theorem 6, not only i$'B* better than the common .

signal and noise PCFE{B?), but itis, in fact, the best possible Z Fiann =1
(I+N -

) forall 7, f h=0,1,..., N—1.
two-channel (unconstrained orthonormal) FB. orafls, foreac
(27)

Here (25) follows from0 < |H;(¢’*)|?> < M for all 4, w
(which follows from (23) or (24)), while (26) and (27) follow
from (23) and (24), respectively. Define thé x M matrix G

D. Proof of Theorem 9

Let H;(¢’*), i =0, 1, ..., M — 1 be the analysis filters of
a M-channel orthonormal FB (i.e., an FB frofit). Fori =
0,1,....M—1andk=0,1,..., MN — 1, define

to have entriegg,? = fia+nw) (Wherei, k€ {0, 1, ..., M —
2”(’“?1) 1}),forl=0,1,..., N — 1. Then (25)—(27) are equivalent to
A N MN g
Fn= o fom |H(e")|” dw. (21)  the following:
MN
0 . .
Let the constant values of the input signal and noise psdsG( )is doubly stochastic foralll=0,1, ..., N — 1.
D,(¢/*) and D,(¢**) on the interval (27k  2(:41)y e _ (28)
ax, be, respectlvely Let2, 72, respectively be the signal and- t(o g (l)be the(:N_SoIIectlon of all ordered sets
noise variances in thaéh subband. Then (69, 6%, ..., ") corresponding to all FBs ic".
MN—1 Instead of studymg the set of all arrays,, we can studyg
o2 = i |H (e7) | D, () dw = 1 Z Fina. (as S, is also the. image of under a linear transform). Let
2m N o Q and P, respectively, denote the sets of afl x A7 doubly
(22) stochastic matrices and permutation matrices. From (28),
Similarly GCcAV (=QxQx---x Q).
MN—1 Claim: G = @Y, which (by Birkhoff’s theorem [1], [7]) is
n = N Z firb. a polytope withP™ as its set of extreme points. Also, FBs in

the setF (defined in stating Theorem 9) correspond directly

. . ) one-to-one) with points i .
Thus, all subband variances are linear functions offtheSo ( ) P

the search spac, (Section IV-A) is the image under a linear Showing this claim will prove item 1) in the statement of The-
transformation of the set of all possible arrgjjscorresponding orem 9. Recall thab,, is the image oy under a linear trans-
to all FBs inC*. Hence, we now proceed to study this set. Bform £. So if G is a polytope, so is5,,; further, all its extreme

FB orthonormality, from [19] points are images of some extreme pointgaiinderL. The
Mol claim above thus means that there is an FBifior every ex-
. N
Z |Hi(cjw)|2 —M (power complementarity), and (23)treme point ofS,,. The correspondence betwegrandP* also
= means thatr" has
= NN [F| = 1PN =|PIY = (M)~
> Hi<ej(“"+/\4)> =M, fori=0,1,...,M—1
k=0 FBs (counting separately all permutations of each FB in

(Nyquist(M) constraint), hence (24) F—else we must divide the number By!).
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Proof of Claim: We show thatG = QY by building a where
brick-wall FB inC* corresponding to any given
o . N1 a¥) = (@, aen,s -, al-l—(M—l)N)T/N
G= (G( )’ G' )’ U G )) e Q% bV = (b, brgny - bl+(Mfl)N)T/N'

;r(?[_do ]Ehis,t_letam, mth: Oq’qé’ S MJ!\/[_ 1 ?}e tSeMt!hpernju— Forany fixedl =0, 1, ..., N — 1, asG'” can be any element
ation functions on the s — 1}. Now there is a ; Da®\

AT o of Q, the set of possible valuesé 2 )IS itself a polytope
one-to-one correspondence between brick-wall FBs and func-Q P g(%(” polytop

tions ¢ mapping eachs € [0, 2%) to one of thes,,. This is 7O Itlies on a2M —2 dimensional hyperplane iR**, and its

. . . l
described by the following construction of the analysis filter@Xtreme points correspond to thé! possible choices @ €
H;(e’*),i=0,1, ..., M —1of the FB given the functiog: 7+ Thus
Letw € [0, 27) and¢(w) = o,,,. Then N-1

SR
. 27k ;
H, () (@t M) =vM, fork=0,1,...,M—1. 1=0
In other words, the permutation,, = ¢(w) decides which of which is known as thélinkowski sunof the polytopes_T(”.
the M filter responses is nonzero at thé frequencies+ 2% Minkowski sums have been well studied in computational ge-

The construction ensures nonoverlapping alias-fr&g) - ometry[6], [15], e.g., in context of robot motion planning algo-

ter responses resulting in a valid FB @. Now for each rithms in two and three dimensions [15]. Gritzmann and Sturm-
I = 01L.. . N—1 let 29 be the fraction of length of fels [6, Theorem 2.1.10, Corollary 2.1.11] bound the number of
the intér\;al[ o) 277(}+1)) that is mapped by 10 o,,, for extreme points of the Minkowski sum éfpolytopes of dimen-

MN?®» MN : . .
m = 0,1,.... M~ 1. For a brick-wall FB, f;;. of (21) is sion d with not more tharp extreme points each. In [6, The-

the fraction of length of the interva=: 27r(k-|:1)) on which °rem 2.3.7, Proposition 2.3.9], with their proofs, they outline
Hi(c3) is nonzero (i.e.=v/M) Thf‘a’s\‘ ’theMé\hoseﬂb yields algorithms to find the extreme points of this Minkowski sum,

’ SN Ve "N : thus bounding the number of arithmetic operations needed for
an FB corresponding to the givér € Q* (i.e., given set of the same. Applying these bounds with= N, d = 2M — 2,

gfi (())bi'ylng (%5):(5?,\),23 I:a?:’ k=01,...,M~1and andp = M! yields item 2) of the statement of Theorem 9v

. A Note that likeS,,, the setS,, of realizable signal subband vari-
> 28 = fiaann ( = ik ) . (29) ance vectors is also the imagegftinder a linear mag,, given
all m obeying o, (k)=1 by

Thus, given@, we must findz? € [0, 1] obeying (29). This is ity
easy ifG € PV. Here, for eacti, G (with entriesg'’) is a £,(G) = GYal.
permutation matrix, i.e., there is an.. (/) such tha‘rgi(,? is 1 if =0
O(m. 1y (k) = i and0 otherwise. We then simply set) to be However, whileG has(M!)™ extreme points (i.e., points in
1 for m = m, (1) ando for all otherm. Note that this yields an P%), andS,, has|E,| < Ky N2 =3 of them, we know from
FB in the setF defined in stating Theorem 9. For a gendiag  [1] that .S, has at mosi/! of them—its extreme points are the
ON . we use Birkhoff’s theorem to write”) ¢ Q as a convex permutations of the signal PCFB subband variance vagtor
combination of elements @f. The same convex combination ofindeed, herer, = £,(G) when eactG" is a permutation ma-
the solution vectorgz, &", ..., 2{),_,) corresponding to trix rearranging the entries @") in decreasing order. It is not
each element dP yields the corresponding solution vector fohard to see (by definition of majorization) that majorizes all
G"Y. Repeating the process foe= 0, 1, ..., N — 1 completes points£,(G) for G € PV (i.e., for all choices ofF as extreme
the solution. This shows th&t = QV, a polytope with?"  points ofG). Hence [1], all these points are some convex combi-
as its set of extreme points. The proof has also associatech@dions of the permutations of. Thus, these permutations are
each of these extreme points a unique FBAnConversely, the only extreme points of,,. Note thatS,, too is expressible
for any FB inF, the f;; of (21), and hence all entries of theas a Minkowski sum of pontopéEﬁl), whereZ" is the set of
doubly stochastic matrice€"), are either0 or 1. Hence, the all permutations o&®. Using [6] to bound the number of ex-
corresponding point i is in V. This proves the one-to-onetreme points ofS,, gives a bound that grows with bofid and
correspondence betwedghandP?™ . v  N,whereasthe true number is independenYoT he tightening
of the bound of [6] has been achieved by exploiting the special
structure of the summand polytopES’. The summandg® of
S, also have a special structure (different from that onﬂﬁlé),
G=GY, aY, ... a"V"eg but it is not clear whether the bound ¢H,| can be similarly
tightened using this structure.

Proof of Item 2) of Theorem 9 StatemerBy (22), the map
£ from

to the corresponding point ifi,, is given by
E. Study ofS, for Two-Channel Transform Coders

N—-1
L(G) = Z <G(1)“(l)) This subsection explicitly computes for the cl@¥sof two-

{ {
P GpY channel transform coders, the s&t ¢ R* of all realizable
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a=2,b=3,c=6,7»1 =3,A2=5

m=Ibl

»
[¢/]
T

A = optimum for hard thresholding, O = optimum for Wiener filtering.
+ = signal KLT, x = signal + noise KLT, o = noise KLT.
E = search space for which common PCFB exists (), but is not always optimal.

Fig. 8. Search spacg,.,, for two-channel transform coders.

pairs of subband signal and noise variance vectogs o%)% If there is no common KLTS,, is an elliptical disk—a com-
and(n¢, n?)*, respectively. Since pact convex set whose extreme points are the points on its ellip-
) ) ) ) tical boundary. ThusS,U isa cqmpact convex_set with infinitely
o5 +o1 =k, and ng+ni =k, (30) many extreme points. The minima ov&y of different concave

) ) .. Objectives are at different extreme points. Fig. 8 shows a plot of
are constants (independent of choice g’f FB fréf), it is S,.; the parameters, b, c, etc., are constants depending on the
enough to study instead the s&, C R* of all realizable o5t spectra (defined shortly). The individual signal and noise
pairs(g, n3)". Unlike S, the setS,,, can be plotted, and (30) k| T are extreme points of,,,—respectively, the points at
directly relates the properties 6}, andS,,. For exampleS, \yhich the vertical and horizontal tangents to the disg touch
is convex iff S, is convex, there is an obvious correspondencg Ths verifies a general fact. The individual signal PCFB for
between the extreme points of the set$S,) andco(Ssy),  any class of FBs corresponds to boundary pointe@f, ), and
and the permutation symmetry &f is equivalently restated asther. if it uniquely defines the subband noise variance vector,
it actually corresponds to an extreme pointcof(.S,). How-
ever, the individual signal and noise KLTs need not be optimum:
Fig. 8 shows that different concave objectives yield different
minima, all lying on the disc boundary. The figure also shows

Theorem 10-Search Space for Two-Channel TransfodBntrived examples of FB classes for which common signal and
Coders: Consider the clasg’* of two-channel transform noise PCFBs exist but do not minimize all concave objectives.
coders, and the associated $gf, C R?* defined above. If a The classes are defined as sets of all FB&iwhose variance
common signal and noise PCFB (KLT) exists & thenS,,,  pairs (52, 72)” lie in well-chosen subsets ,.,, marked as
is aline segmentvhose endpoints correspond to the commagotted areas in the figure. Note that these subsets obey the re-
PCFB. Otherwise, it is aalliptical disk U quired permutation symmetry property. These examples are ar-

Discussion: When a common KLT existsco (S,.,), and tificial, due to the choice of these subsets, and also because the

hence ¢6S,), is a polytope ¢o(S,,) is a one-dimensional FB class definition depends on the input spectra.

polytope, i.e., a line segment). Further, the extreme points proof of Theorem 10:Let the input signal and noise au-
of the polytope are precisely the points corresponding to th&orrelation matrice®,, R,, and a general elemefft € C*

common KLT. This corroborates for two-channel FBs, thg.e. agenerat x 2 unitary matrix), respectively, be given by
result £. = F, proved in Section IV-C for any transform

(03’ US)T € S{m = (/f,, - U(%a kn - US)T < 5'777'

The result of computation df,,, is summarized as follows.

coder class with a common signal and noise KLT. Recall (from R — [ a b} R — [)\1 0 }

Section IV-A) that this result was the key to the optimality of T K 0 A

the common KLT (Theorem 5). Also note th§,, = co (S4), cos(6) sin(6)e 7%

; i ; i e T=| . : (31)
i.e., S, is convex, and hence so &,. This also was inde sin(f)ci® — cos (0)

pendently proved earlier fotwo-channeltransform coders,
though it does not always hold with more than two channeléerea, c, A1, A2 > 0, andac > |b]? asR,, R, are positive
(Section IV-C). semidefinite. By initially passing the noisy input through the
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KLT for the noise,R,, can be assumed diagonal without loss dbr every point in the interior of the ellipse fen, > 0 there
generality. A common signal and noise KLT exists iff one (ois another ellipse forr; > 0 (for somem; < my) passing
both) of the following hold: 1)R, is diagonal too, i.e = 0, through it (the “ellipse” form = 0 is the line segment =

or 2) R, is the identity matrix up to scale (so that any unitar“=5-y with endpoints having = £|A; — A2|/2). Since the
matrix diagonalizes it), i.,eA1 = A2 (e.g., this happens with range of values ofn is [—[b], [b]], we conclude that), Z; is
white input noise). Also in (31}, ¢ € [0, 27), and the uni- an elliptical disc whose boundary is the ellipse corresponding
tary T is fully general up to multiplication by diagonaluni- tom = |b]. v

tary matrix, WhiCh does not affec_t its subbant_j variances. By di- For the present example, with certain concave objectives of

re?} COQmTp uta‘ugn, the sut;band S|anaI2ar%d noise vananc? VeCtt%'és'form (15),itiseasyto ex,plicitly compute the optimumFB

Egg’ gét)ivelz ilrzg(TR"T ) and (g, n7)” = diag(TR,T"), (31), by inserting the variances of (32) into the objective and
P Y. analytically optimizing? and¢. For example, it can be done for

o2\ acos?(0) + csin?(6) + sin(26)Re(be/?) noise suppression using constant multipliers in both subbands
02 ) 7 \gsin2 8) + ccos?(6) — sin(20)Re(bei®) (see (16)). This will verify that the optimum FB indeed corre-
2 e cos2(8) + A sin(6) sponds toa bc.)undary.p.omt .SL,,,.ar)d further that the common
, | = o ) (32) signal and noise KLT if it exists is indeed optimum.
ni A1 sin®(8) 4+ Az cos?(6)
Note thatZ’ is the signal KLT iffbe’® is real (i.e.|Re (be’#)| is V. CONCLUSION

maximized) and the choice éfthen maximizes (or minimizes)
o. Of course T is the noise KLT iff it is diagonal or antidiag-  we have extended the study of principal component FBs [1]

onal, i.e., iffcos(f) sin(6) = 0. Y or in many ways. A central theme in our analysis is to study the
From (32),5,, is the set of al(og, 75)" satisfying for some geometry of the relevant search spaces of realizable subband
0, ¢, the equation variances, and to exploit concavity of the minimization objec-
a2 cos(26) tive on these spaces. However, many interesting issues are still
2 | —€= . ) unresolved.
Ui sin(26) : L
—c 2Re(bei®) . An important question is whether there are any useful classes
WhereA¢:1 [ ae } e== < atce ) . of FBs for which PCFBs exist for all (or large families of)
2 [ =X 0 2 \ A1t input spectra. Indeed, it seems possible that the two-channel,

(33) the transform coder, and the unconstrained classes may be
the only such classes (ruling out contrived situations where
the class definition depends on the input spectrum). However,
this has not been proved. Analytical study of PCFB existence
and FB optimization for classes of FIR FBs has proven to be
very complicated. The problem stated in most general form is
as follows. Given a class of orthonormal FBs, find all input
ggectra for which a PCFB exists.

egarding the FIR classes, we could reach a partial solu-
tion by solving the following problem. Find a family of input
spectra for which there is no PCFB for some general FIR class,
say that of all FBs with a given bounl on the McMillan de-
gree or order of the polyphase matrix. At present, a few such
results are known for specific low values of the boukd for

For each fixedp, let Z,; be the set of vectors iR? given by the
right side ag varies. ThenS,,, is the union of these sef,
as¢ varies, with origin shifted te. As e is constant, it suffices
to prove Theorem 10 replacirfg,,, by the uniorLJ¢I¢. From
(33),Z, is the image of the unit circle under a linear map.
SoZ, is a line segment with midpoint at the origin A, is
singular, and an ellipse centered at the origin otherwise. Supp
a common signal and noise KLT exists, i.&,= Ao orb =0
(or both). ThenA, is singular for allg. If Ay = Ao, Zy is
horizontal, while ifb = 0, it lies along the lingd\; — X2)z =
(a—c)y,forall . So, in either casg), Z; is aline segment with
midpoint at the origin. Its endpoints correspond to extremu

) . N > -
(maximum or minimum) values of botsy; andr, €., to the isolated input spectra [13], [11]. Even in these cases, the proofs

common KLT. . . S
N . . .0{ PCFB nonexistence need numerical optimizations. Further,
ow suppose a common signal and noise KLT does not exist.

Then,Z, is an ellipse centered at the origin for genepalit orie of these, from [11], is suspect due to the assumption that
degeﬁeqrbates into a line segment for exactly two values iof the FB maximizing its largest subband variance must contain an
[0, 2r) atwhichRe (be’*) — 0, i.e., A, is singular. To compute FIR compaction filter. Some insight may possibly be obtained

U, Z.,, we write (using (33)) the nonparametric equation of th%y analytical computation of the search spaces for simple ex-
elﬁpse% amples of these classes (e.g., the class of all three-channel FIR

FBs with polyphase matrices of McMillan degree unity).

I — ( a—c ) 2 9 Another area of open issues involves biorthogonal FBs.
e )Y + < 2y ) -1 The compression and noise reduction systems of this paper

m AL — A2 ’ remain well-defined if the FB used is biorthogonal rather than

2 orthonormal; however, the FB optimization objective no longer

where m = Re(be’?)  and <x> = <US ) —e. (34) depends purely on the subband variances. We have seen certain

4 (e cases where the best orthonormal FB is also the best biorthog-

This shows that 1) the ellipses farm and —m are the same, onal one. For example, the KLT is not only the best orthogonal
2) the ellipse forn; > 0 lies inside that forn, > mq, and 3) transform but also the best memoryless biorthogonal one for
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both the high bitrate coding problem with optimal bit allocation Functions of (16): Linear functions and the minimum of

and for noise reduction with Wiener filters in all subbandsoncave functions are concave [16], so

However, it is not known whether this is true with other subband ) )

operations, e.g., low bit-rate coding and noise reduction by hard filz, y) = [1 = kil "z 4 [ki[ "y

thresholds. For the unconstrained biorthogonal FB class, ewan

for the high bit-rate coding problem the best FB was known

only in certain cases [21] until recently when [14] has claimed

a full solution. are concave oR?. For f;(x, y) = % we need to show that
With regard to noise suppression, we have considered only

Wiener filters of ordetN' = 0 in the subbands. IV > 0, the [ + (1 — ajaf[ay + (1 — a)b]

objective depends not only on the subband variances but also s + (1 — @)a + ay + (1 — a)b

filw, y) = min(z, y)

other coefficients in the autocorrelation sequences of the sub- xy ab

. . . > o +1l-a)—), when0<a<1.
band processes. In this case, analytical results on the optimum T4y a+b
FB are not known. The performance gain due to increasing the (35)

order of the subband Wiener filters could instead be obtained by o o
using an FB with more channels, however, the exact naturelbfz; ¥, @, b > 0, by cross-multiplying and definind. =
this tradeoff is not known. a?ry + (1 — «)?ab, this is equivalent to proving that

[+ a(1 - a)(ab+ ya)l(z + y)(a + b)

APPENDIX A > [azyla +b) + (1 — a)ab(z + y)]
COMPACTNESS OFSEARCH SPACE Nalz + 1)+ (1 —a)a+b)].

Here we justify the assumption of Section III-B that thel_
search spacé is compact, i.e., closed and bounded. (In fact,
we already know [1] that it is bounded.) Many FB clasSese Lz +y)(a+b) + a(l — a)ab(z + 1) + zy(a + b)?]
parameterized by a vector of real numbers, that is free to take
any values in a se? which may be called the parameter spacéience asx € [0, 1], it suffices to show that
It often happens thaP is compact, and that for any bounded ) )
nonimpulsive input spectrum, there is a continuous function (¢ +¥a)(@ +y)(a+0) = ab(z +y)” +zy(a +b)
mapping parameter vectors (frof) to the subband variance. : T
vectors (inS) produced by the corresponding FB. Thu, I-e. (expanding and simplifying) that

he right side is

is the continuous image of the compact $&tand is hence 220? + y*a® — 2zyab = (b —ya)* > 0
compact. This reasoning works, for example, wiies the set o , S _
of all FIR orthonormalV/-channel FBs with a given McMillan Which is true. Thusf;(z, y) = ;%% arising in colored noise

degree. Here( is parameterized by a finite set of unit nornreduction (see (16)) is concave & . However, it is nostrictly
vectors inRM and a unitary matrix [19]. Thus? is compact, concave as equality holds in (35) wheh = ya. Note that
being the Cartesian product of finitely many sphere surfacesfixing z (ory) in f;(x, y) yields univariate functions that appear

RM and the set o/ x M unitary matrices. in white noise reduction and astrictly concave oriR ;. [1].
APPENDIX C
APPENDIX B NONCONVEXITY OF SEARCH SPACE S, (SECTION IV-C)
CONCAVITY PROOFS FORSOME FUNCTIONS IN THE PAPER
For M = 3, let
f(v) = —d(vw, P) (Section llI-D): Continuity of f follows
from that of the norm. To show concavity ¢f we must show 05 05 0
that Q.=105 0 05
0 05 0.5
d(z, P) < ad(z, P)+ (1 - a)d(y, P) which is doubly stochastic but not orthostochastic [1]. t.et=

a, b, c)T, z, = (k, 0,07 wherek(b — c) # 0. By (19)
wherez:a:r+(1—a)y,for0§a§1,z,yeRM.Let( )ha = ) ( )

a, b be the points inP that are closest to andy, respectively. v 2 Q. 0 Zo | _ |V | c g co(Sy)
(They exist becaus® is compact.) Thus * 0 Q. 2y v, v

wherev, = 0.5(a + b, a + ¢, b+ ¢)¥, v, = k(0.5, 0.5, 0)7".
Now », € S, iff Qz, = v, and an = w, for some or-
thostochasti@); but it can be verified that a doubly stochastic

ad(z, P)+ (1 — a)d(y, P)
= aflz —all + (1 — o)|ly — b

>|a®—a)+ (1 —a)(y-b)||=]2z—| Q satisfies these equations @ = @, which is not orthos-
tochastic. Sar,. ¢ S, proving thatS,, is not convex. A some-
wheree = aa+(1—a)b € PsincePisconvex. Thuiz—e|| > what more restricted class of paits = (a, 0, ..., 0)1, 2, =

d(z, P), which completes the proof. (0,0, 0, ...,07T (with ab # 0) also produces nonconve,
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for any M > 2. To show this we use the earlier argument re- [8] Y. Huang and P. M. Schultheiss, “Block quantization of correlated
placing@, by

a.-% 1§

(11]

wherel is the identity and th@'s are zero matrices of suitable
sizes. Here, a doubly stochas@k satisfying@Qz, = v, and

Qz, = v, neednotb@, ., butmustagree withitinthe firsttwo [13]

columns. This already prevents it from being orthostochastic.
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