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Abstract—We have recently made explicit the precise connec-
tion between the optimization of orthonormal filter banks (FBs)
and the principal componentproperty: The principal component
filter bank (PCFB) is optimal whenever the minimization objective
is a concave function of the subband variances of the FB. This ex-
plains PCFB optimality for compression, progressive transmission,
and various hitherto unnoticed white-noise suppression applica-
tions such as subband Wiener filtering. The present work examines
the nature of the FB optimization problems for such schemes when
PCFBs do not exist. Using the geometry of the optimization search
spaces, we explain exactly why these problems are usually analyt-
ically intractable. We show the relation between compaction filter
design (i.e., variance maximization) and optimum FBs. A sequen-
tial maximization of subband variances produces a PCFB if one ex-
ists, but is otherwise suboptimal for several concave objectives. We
then study PCFB optimality for colorednoise suppression. Unlike
the case when the noise is white, here the minimization objective
is a function of both the signal and the noise subband variances.
We show that for the transform coderclass, if acommonsignal and
noise PCFB (KLT) exists, it is optimal for a large class of concave
objectives. Common PCFBs for general FB classes have a consid-
erably more restricted optimality, as we show using the class of
unconstrained orthonormal FBs. For this class, we also show how
to find an optimum FB when the signal and noise spectra are both
piecewise constantwith all discontinuities at rational multiples of

.

Index Terms—Filter bank (FB), majorization, noise suppression,
optimal basis, principal component.

I. INTRODUCTION

F ILTER bank (FB) optimization has been a problem of con-
siderable interest in recent literature, with many notable re-

sults and open problems. In a companion paper [1], we have
presented a number of results on the optimality ofprincipal
componentFBs (PCFBs) for several signal processing schemes,
especially involving suppression of additive white noise. The
present paper aims to extend and generalize these results in sev-
eral directions. We first examine the nature of the FB optimiza-
tion when PCFBs do not exist, and explain why many of these
problems become analytically intractable. We then consider the
problem ofcolorednoise suppression, and show the optimality
of simultaneous signal and noise PCFBs in certain situations.
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A generic signal processing scheme using an-channel uni-
form perfect reconstruction FB is shown in Fig. 1. The FB is said
to beorthonormal[1] if the analysis polyphase matrix

is unitary for all . The input vector is the -fold
blocked version of the scalar input . We assume that is
a zero mean wide-sense stationary (WSS) random process with
a given power spectral density (psd) matrix . We are
also given a class of orthonormal uniform -channel FBs.
Examples are the class of FBs in which all filters are finite im-
pulse response (FIR) with a given bound on their order, or the
class of unconstrained FBs (in which there are no constraints on
the filters besides those imposed by orthonormality). The FB op-
timization problem is that offinding the best FB from for the
given input statistics , for use in the system of Fig. 1.
The term “best FB” here means one that minimizes a well-de-
fined objective function over the class. To formulate this ob-
jective, we need to describe the purpose or application of the FB
in Fig. 1, and the nature of the subband processors.

A. Relevant Earlier Work

Consider, for example, the case when theare quantizers
for signal compression. A commonly used quantizer model [10]
replaces each by an additive white noise of variance .
Here is the number of bits allotted to the quantizer, is
its input variance and is the normalized quantizer function
which is assumed not to depend on the input statistics. If the
quantization noise processes are uncorrelated to each other, the
overall mean-square reconstruction error can be shown to be

The minimization objective here is this error. It is shown in
[10] that for any given set of bits , the best FB for this problem
is aPCFBfor the class for the given input spectrum .

The notion of a PCFB will be reviewed in Section II-C.
PCFBs for certain classes of FBs have been studied earlier.
For example, consider the orthogonal transform coder class
having all FBs as in Fig. 1 where is a constant unitary
matrix . The Karhunen–Loeve transform (KLT), which diag-
onalizes the autocorrelation matrix of the blocked input of
Fig. 1, is the PCFB for [8]. For the class of all FBs with
no constraints on filters (besides those imposed by orthonor-
mality), PCFB construction has been studied in [20] and [17].
Some optimality properties of PCFBs have been studied in [18].
A more recent work [1] by the authors has made explicit the
precise connection between FB optimization and the principal
component property: We have shown that the PCFB is optimal
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(a)

(b)

Fig. 1. Generic FB based signal processing scheme. (a) Analysis and synthesis filters. (b) Polyphase representation.

whenever the minimization objective is a concave function
of the subband variances of the FB. This result explains the
known optimality properties of PCFBs for compression and
progressive transmission. It also shows the hitherto unnoticed
optimality of PCFBs for various noise-suppression schemes
[1]. Suppose the FB input in Fig. 1 is a signal corrupted by
uncorrelated additive white noise, and the subband processors

are aimed at rejecting the noise components in their inputs.
If the are chosen as any combination of constant multipliers,
zeroth-order Wiener filters, and hard thresholds (explained in
Section II-B), the PCFB is the optimum FB.

B. Paper Outline

Section II describes the general structure of the FB opti-
mization problems, with specific signal processing situations
resulting in such problems. It also reviews the definition,
properties, and optimality of PCFBs [1]. Section III studies
the nature of these FB optimizations when a PCFB does not
exist. It shows that a PCFB exists if and only if (iff) there is a
single FB that simultaneously minimizes all concave functions
of the subband variances. By studying the structure of a certain
convex set associated with the optimizations, we show exactly
why they are usually analytically intractable in absence of a
PCFB. We explain the relation between compaction filters and
FB optimization. We show that a sequential maximization of
subband variances always yields a PCFB if it exists, but is
suboptimum for large classes of concave objectives if a PCFB
does not exist.

Section IV studies PCFB optimality forcolorednoise sup-
pression. With white noise, the minimization objectiveis a
function of only the signal subband variances. The signal PCFB
is optimal if is concave [1]. With colored noise, however,
the objective depends on both the signal and noise subband
variances. So the results of [1] no longer hold. We show that
for the transform coderclass, if acommonsignal and noise
PCFB (KLT) exists, it minimizes a large class of concave ob-
jectives. Common PCFBs for a general FB class do not have
such optimality, as we show using the unconstrained FB class

. We show how to find the optimum FB in for certain
piecewise-constant input spectra. We conclude with some open
problems, especially on biorthogonal FBs and PCFB existence.
Some of our results appear in preliminary form in [2], [3].

C. Notations

Superscripts and denote the complex conjugate and
matrix (or vector) transpose, respectively, while superscript
denotes the conjugate transpose. Boldface letters are used for
matrices and vectors. Lower case letters are used for discrete
sequences while upper case letters are used for Fourier trans-
forms. denotes the set of -tuples of real numbers, and

denotes that of -tuples of nonnegative real numbers. We
denote by the column vector consisting of the diag-
onal entries of the square matrix. The convex hull of a set
is denoted by co . The Cartesian product of two sets is
denoted by .
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II. REVIEW OF PCFB OPTIMALITY

A. FB Optimization Problem Formulation

We are given a class of orthonormal uniform -channel
FBs. Recall that an FB is fully specified by its analysis
polyphase matrix , or alternatively, by the ordered
set of analysis and synthesis filter pairs ,

(see Fig. 1). We are also given subband
processors , where is the processor
acting on theth subband. Each is simply a function mapping
input sequences to output sequences. The specification of this
function may or may not depend on the input statistics.

The system of Fig. 1 is built using an FB inand the pro-
cessors . Its aim is to produce a certaindesired signal at
the FB output. For example, for signal compression, theare
quantizers and the desired output is the input, i.e., .
For noise reduction, the input where is
additive noise, the desired output , the pure signal;
and the could, for instance, be Wiener filters. The FB opti-
mization problem is to find an FB in minimizing some mea-
sure of the error signal , where is
the true FB output. To formulate the error measure, we impose
random process models on and . We assume that the
blocked input (see Fig. 1) is a WSS vector process with
given psd matrix . Equivalently, is CWSS ,
i.e., wide-sense cyclostationary with period(in particular, it
could be WSS). All processes are assumed zero mean unless
otherwise stated. In all our problems, the and the are
such that the error is also a zero mean CWSS random
process. Thus, we choose aserror measure , the variance of

averaged over its period of cyclostationarity.
As shown in Fig. 1, we denote by the th sub-

band signal produced when the FB input is the scalar signal
. If the error is CWSS , the signals ,

are jointly WSS; and orthonormality of
the FB can be used to show that the error measure becomes

where (1)

Hence, the processor must try to produce output “as close to”
as possible, i.e., to minimize .

B. General Form of Optimization Objective

In many signal processing problems [1], the processorsare
such that the subband error variance is

(2)

Here, is the variance of ; and
is some function whose specification depends only on the pro-
cessor and not on the choice of FB. Thus, the minimization
objective over the class of FBs is

(3)

We now summarize several such examples.

Compression:Here the desired FB output equals the
FB input , and the subband processorsare quantizers.
We model the quantizers as a set of jointly stationary additive
noise sources which thus represent the subband error signals

. The noise variance is proportional to the varianceof
the quantizer input. The proportionality constant is called
the normalized quantizer function, and depends on the number
of bits allotted to the quantizer. Thus, the error variance has
the form of (2), i.e.,

as in (2) with

(4)

The standard high bit rate quantizer model [20] chooses
. Here the arithmetic mean–geometric mean

(AM–GM) inequality can be used to explicitly compute the
optimal allocation of bits (minimizing the overall error

subject to a total bit rate constraint
). With this optimal allocation, minimizing the

overall error is equivalent to minimization of the GM of the
variances , or, equivalently, of its logarithm. Thus, we can
rewrite the objective as in (3) with for all .

Discrete Multitone (DMT) Communications:This is the
“dual” of the compression problem. The system setup differs
somewhat from that in Fig. 1: The analysis and synthesis banks
exchange positions, and the “subbands” are now “subchannels”
(or “tones”) carrying digitally modulated data. These are
multiplexed by the FB into a single stream and sent on the
“full band” communications channel which is represented by
a transfer function followed by WSS additive noise
with psd . Each subchannel is associated with a bit
rate, power requirement, and probability of error. We refer the
reader to [9], [22] for details on the setup. Here, we merely
mention that given the error probabilities, both the total power
for given bit rates (to be minimized) and the total bit rate for
given subchannel powers (to be maximized) are objectives of
the form (3), where the are the subband variances of the FB
when its input has psd [22].

Noise Suppression:Suppose the input to each
subband processor is the sum of a signal component

and a zero mean noise component . The
aims at rejecting the noise component, i.e., its desired output
is . We study the case when all the are
memoryless multipliers . The subband error of (1)
thus equals . We assume that the
signals ; are jointly WSS;
hence so are the errors . Let be the variances
of , respectively, and let each be
uncorrelated to . We consider three different schemes
to choose the , each yielding an error variance
of the form (2) for appropriate functions .

• Constants, independent of choice of FB. Here

i.e., (5)
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• Zeroth-order Wiener filters , . These mini-

mize the error variance . Here

i.e.,

(6)
• Hard thresholds, which keep the subband if its signal

component is stronger than its noise component, and drop
it otherwise. Similar thresholds, applied separately to each
element in the subband sequences (rather than to the entire
subband), have been extensively studied by Donohoet al.
[5]. In this case

if
otherwise

(7)

and

i.e., (8)

The above noise suppression problem could arise in many ways.

1) When the FB input is , and the corresponding
subband signals are transmitted on separate com-
munication lines. Here represents the noise in the
th line, and its variance (which affects the function )

is assumed to be independent of choice of FB.
2) When the FB input is and the desired

output is . Here is zero mean additivewhite
noise with variance , and is uncorrelated to the pure
signal . Thus, is the th subband signal cor-
responding to , with variance independent
of the FB. Here a minor difference from (2) is that the
variances now correspond not to the FB input
but to .

3) In item 1) above, if the line noise variancedepends on
choice of FB, (2) no longer holds, as the functionthen
depends on the FB. However, in some cases this can be
accounted for by a modified that is independent of the
FB. For example, suppose the noise arises due to
quantization of the signal . By the usual quantizer
model (4), , which depends on the FB only
through the subband signal variance. Substituting this
in (5), (6), and (8) for the error variances
shows that they still have the form of (2), with the modi-
fied given by

for constant multiplier

for zeroth-order Wiener filter

for hard threshold
(9)

4) Likewise, if the input noise in item 2) iscolored,
the subband noise variances depend on the FB (just
as the signal variances do), rendering (2) invalid in
general. Section IV is devoted to analyzing this situation.
Again, as in item 3), modifying the solves the problem
in some very restricted cases; e.g., thecan be modified
exactly as in item 3) if for some independent
of FB. This happens in the special case when

, where are the psd ma-
trices of the -fold blocked versions of and ,
respectively. If all FBs in the given classhave memo-
ryless polyphase matrices, it suffices that the respective
autocorrelation matrices satisfy .

Due to the general form (3) of the objective, the following
definitions and observations become important.

The Subband Variance Vector:For each FB in the given class
, the subband variance vector associated with the input process

is defined as the vector where

is the variance of the process . Here is the th
subband signal generated by feeding as input to the FB.

The FB optimization objective of (3) is purely a function
of the subband variance vector of the FB; this function is fully
specified given the description of the subband processors.
Given the FB analysis polyphase matrix and the psd
matrix of the vector input in Fig. 1, the vector
process has psd matrix

. Hence, the subband variance vector
is

(10)

The Search Space:The optimization search space is defined
as the set of all subband variance vectors corresponding to all
FBs in the given class. So is fully specified given the class

and the input statistics . With objectives of the form
(3), the FB optimization problem is reduced to that of finding
the minima of the real-valued functionon the set ; hence, the
importance of . As we will see in Section II-D, the optimality
of PCFBs is mainly due to a very special structure thathas
whenever a PCFB exists.

Some General Properties of: We have
(by definition). Also, isboundedandlies entirely on an -
dimensional hyperplane in . (This follows from (10) using
the fact that is unitary for all , i.e., that the FB is or-
thonormal [1].) Finally, has apermutation symmetryproperty.
Any permutation of any vector is also in . To understand
this, recall that an FB is defined by anorderedset of analysis and
synthesis filters. Changing this ordering technically produces a
new FB, which we call apermutationof the original FB. Dif-
ferent permutations of an FB have subband variance vectors that
are corresponding permutations of the variance vector of the
original FB, and could thus achieve different values for the op-
timization objective. However, they are all essentially the same
FB in the sense of being equally easy to implement. Hence, we
assume that any permutation of any FB in the given classis
also in . This most reasonable assumption aboutcauses the
permutation symmetry of .

C. PCFBs: Definition and Properties

Definition—Majorization: Let

and
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be two sets each having real numbers (not necessarily dis-
tinct). The set is defined tomajorizethe set if the elements
of these sets, ordered so that and

, obey the property that

for all

with equality holding when (11)

Given two vectors in , we will say that majorizes
when the set of entries of majorizes that of . Evidently,

in this case, any permutation of majorizes any permutation
of .

Definition—PCFBs: Let be the given class of orthonormal
uniform -channel FBs, and let be the power-spec-
trum matrix of the vector process input (shown in Fig. 1).
An FB in is said to be aPCFB for the class for the input
psd , if its subband variance vector (defined in Sec-
tion II-B) majorizes the subband variance vector of every FB in
the class .

PCFB Optimality for Progressive Transmission:In Fig. 1,
suppose the FB has subbands numbered in decreasing order of
their variances , i.e., , and the are
constant multipliers susch that

for
for

(12)

for a fixed integer . This system keeps the
strongest (largest variance) subbands, discarding the others. Due
to FB orthonormality, the expected mean square error between
the output and input is then

where

and is the same for all orthonormal FBs. Thus, by definition,
the PCFB minimizes this error for all .

Existence of PCFB:Given the class of FBs and the input
psd , a PCFB for may not always exist. The PCFB
and its existence depends on bothand . For a white
input (i.e., when is the identity matrix), PCFBs always
exist. In fact, in this case all FBs inare PCFBs, no matter what

is. There are three important classesfor which PCFBs exist
irrespective of the input psd [1]. These are

1) any class oftwo-channelorthonormal FBs;

2) the orthogonal transform coder class, which has all FBs
as in Fig. 1 where the analysis polyphase matrix is
a constant unitary matrix ;

3) the unconstrained class , which hasall orthonormal
-channel FBs with no constraints on the filters besides

those that orthonormality imposes (thuscontains FBs
having ideal brickwall filters).

The DFT and cosine-modulated FB classes do not have PCFBs
for large sets of input psds, as shown in [1].

Construction of PCFB:For classes of two-channel FBs, a
PCFB is simply an FB that maximizes its larger subband vari-
ance (thus minimizing the smaller one) over all FBs in the class.

An FB in the transform coder class is a PCFB for for
the given input psd iff itdecorrelatesthe input, i.e., its anal-
ysis polyphase matrix diagonalizesthe autocorrelation matrix

of the vector input of Fig. 1 (i.e., is diagonal)
[8]. An FB in the unconstrained class is a PCFB for iff
its subband processes satisfy two properties [20]. Total decorre-
lation, i.e., the polyphase matrix diagonalizes the input
psd for all ; and spectral majorization, i.e., if the
subbands are numbered in decreasing order of variances, their
spectra satisfy

for all .

Uniqueness of PCFB:From the definition of majorization
we see that any permutation of a PCFB is also a PCFB. Further,
it is also possible that two different FBs which are not permu-
tations of each other are both PCFBs, i.e., the PCFB need not
be unique. However, all PCFBs must produce the same subband
variance vector up to permutation. This is becausetwo sets ma-
jorizing each other must be identical(directly from the defini-
tion of majorization). Since all our FB optimization problems in-
volve not the actual FB but only its subband variance vector, we
will often speak ofthePCFB even though it may not be unique.

D. Principal Components, Convex Polytopes, and PCFB
Optimality

Let be the given class of orthonormal uniform-channel
FBs, and the psd matrix of the vector input
(shown in Fig. 1). The search spaceis the set of all subband
variance vectors of all FBs in for the input . The fun-
damental explanation of PCFB optimality (the core result of
[1]) involves connections between convexity and majorization
theory, and is summarized by the following theorems.1

Theorem 1—Optimality of Extreme Points of Polytopes:Let
be a function whose domain is a convex polytope. If is

concave on , at least one of the extreme points ofattains the
minimum of over . Further, if is strictly concave, its min-
imum over has to beat an extreme point of (see Fig. 2).

Theorem 2—PCFBs and Convex Polytopes:A PCFB for the
class for input psd exists if and only if the convex
hull co is a polytope whose extreme points consist of all
permutations of a single vector . Under this condition, is
the subband variance vector produced by the PCFB.

Theorem 3—Optimality of PCFBs:The PCFB for the class
(if it exists) is the optimum FB in whenever the minimization
objective is a concave function on the domain . Further, if
this function is strictly concave, the optimum FB is necessarily
a PCFB.

Theorem 3 shows PCFB optimality for several signal pro-
cessing problems. In Section II-B, we saw many situations in
which the minimization objective had the general form of (3).
It can further be verified [1] that in all these cases, the functions

in (3) are concave on the nonnegative real line. This implies

1We refer the reader to [1] for detailed explanations of terms such as concavity
and polytopes, and for proofs of the theorems.



1008 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 3, MARCH 2001

Fig. 2. Optimality of extreme points of polytopes (Theorem 1).

that is concave on the domain , and hence, that a PCFB
is optimal for all these problems (Theorem 3).

Theorem 3 evidently follows directly from Theorems 1 and
2. The FB optimization involves finding the best vector from,
but Theorem 1 is used here to find the best one from .
However, Theorem 2 shows that the best vector from is
in fact in , hence it must be optimum over. Also note that
all permutations of a PCFB are PCFBs, and the above results
do not specify which of them is the optimum. In general, they
are not all equally good, but as they are finitely many, it is easy
to pick the best one. For the objective (3), if allare identical
then all permutations are equally good, while if
for all then we assign the largest to the least , and so on.
More generally, finding the best permutation of the PCFB is an
instance of theassignment problem, well studied in operations
research literature [4].

III. W HAT IF THERE IS NO PCFB?

When a PCFB exists, the search spaceconsisting of all re-
alizable subband variance vectors has a very special structure.
Its convex hull is a polytope whose extreme points are
all permutations of the PCFB subband variance vector (The-
orem 2). The optimality of PCFBs under concave objectives
(Theorem 3) follows from this structure and the optimality of
extreme points of polytopes (Theorem 1). If a PCFB does not
exist, does not have this structure. Thus, is a general
convex set. For such sets too there is a notion of extreme points,
which coincides with the usual definition when the convex sets
are polytopes, and further allows the following generalization
of Theorem 1: If a function is concave over a compact convex
domain , at least one extreme point of is a minimum of
over . Thus, in this case, to minimize over it suffices to
minimize over the extreme points of . Polytopes are exactly
the compact convex sets havingfinitely manyextreme points.

This section uses these observations to study the effect of
nonexistence of PCFBs on the FB optimizations. When a PCFB
exists, all the (finitely many) extreme points of the set
correspond to the PCFB. So the PCFB is always optimal forall
concave minimization objectives. On the other hand, if a PCFB
does not exist, could in general have infinitely many ex-
treme points. This explains the analytical intractability of many
FB optimizations when PCFBs do not exist. Finally, we explain

Fig. 3. Extreme points of compact convex sets.

the relation between PCFBs and “compaction filters” that max-
imize their output variance among certain classes of filters.

A. Arbitrary Convex Sets: Extreme Points and Their Optimality

Definition [7]: For a convex set , a point is
said to be anextreme point, or acornerof if

with

implies

Geometrically, no line-segment passingthrough (i.e., con-
taining but not as an endpoint) can lie wholly in the set.
The interior of cannot have any extreme points, since around
each point in the interior there is a ball lying wholly in. So all
extreme points lie on the boundary, though all boundary points
need not be extreme points. If is a polytope, the above defini-
tion can be verified to coincide with the usual definition of ex-
treme points of a polytope. Fig. 3 illustrates these facts, showing
the extreme points of some closed and bounded (or compact)
convex sets. It is not hard to show that every (nonempty) com-
pact convex set is the convex hull of its boundary, and that it has
at least one extreme point. A stronger result is true.

Krein–Milman Theorem (Internal Representation of Convex
Sets) [7], [16]: Every compact convex set is the convex hull
of its extreme points. Hence, the set of extreme points ofis the
minimal subset of having as its convex hull. This fact can
serve as an equivalent definition of extreme points of compact
convex sets.

This result evidently holds for polytopes, and is verifiable in
the examples of Fig. 3. Thus it is intuitive, though its formal
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Fig. 4. Optimality of extreme points of compact convex sets (Theorem 4).

proof [16] may not be trivial. It is important as it immediately
proves the following.

Theorem 4—Optimality of Extreme Points:If a function is
concave on a compact convex set, at least one of the extreme
points of is a minimum of over . Further, if is strictly
concave, its minimumhas to beat an extreme point of .

This result reduces to Theorem 1 if is a polytope, and is il-
lustrated in Fig. 4 for a compact convexthat isnota polytope.

Proof: Let minimize over . (Existence of is
either assumed or follows if is assumed continuous.) By the
Krein–Milman theorem, is a convex combination of some
extreme points of , i.e.,

where (13)

for some distinct extreme points of . If none of these
minimizes over , for all , so

(14)

i.e., , a contradiction. Hence, at least one
extreme point of is a minimum of over . If is strictly
concave, the first inequality above (Jensens inequality) is strict
unless for some . So in this case , i.e., the
minimum is necessarily at an extreme point of.

B. FB Optimization and Extreme Points of Convex Sets

In our FB optimizations, the objective is concave on the set
where is the search space. We seek its minima over.

We assume from now on that(and hence ) is compact.
This is true for most input power spectra and practical FB classes
(Appendix I), and allows use of Theorem 4. Letbe the set
of extreme points of . From Theorem 4, for any concave
objective over , at least one of its minima lies in (and
all them do if the concavity is strict). From the definition of
extreme points, we can show that . So the minima over

found by minimizing over in fact lie in , and
are hence minima over too. Thus, minimization over has
been reduced to one over the setof extreme points of .

Now for “almost every” extreme point in there is a concave
(in fact, linear) function that is minimized over uniquely
by .2 So without further information on the specific concave
objective, nothing can be said about its minima overapart
from the fact that a search overwill yield at least one of them.

When a PCFB exists,all points in correspond to it. This ex-
plains the remarkable optimality of PCFBs forall concave ob-
jectives. If there is no PCFB, has at least two points that are
not permutations of each other, i.e., that correspond to essen-
tially different FBs. Thus, no single FB can be simultaneously
optimal for all concave objectives. If is finite, the optimal
FB for any given concave can still be found by a finite exhaus-
tive search over . Unfortunately, in general there is no reason
to expect to be finite, hence a numerical search is required.
Any derivation of analytical results on the optimum FB will have
to take into account the specific nature of both the concave ob-
jective at hand and the set (which depends on the FB class
and input psd at hand). This explains why these optimizations
are usually analytically intractable.

C. The Sequential Compaction Algorithm

This is an algorithm that has sometimes been proposed [20],
[13] to find a “good” FB in classes that may not have PCFBs.
We first state the algorithm in a precise manner that holds for any
general class. We then show that it produces FBs for which the
corresponding subband variance vectoris an extreme point of
co . We examine the optimality of the algorithm in this light.

Let be the given class of FBs, andthe corresponding op-
timization search space. The algorithm involves rearranging all
vectors in in decreasing order of their entries, and then picking
from these the vector defined as the greatest one in
the “dictionary ordering” on . This means that the greatest
(first) entry of is greater than or equal to the greatest entry of
any of the other vectors. Among vectors for which equality pre-
vails, the second greatest entry of is greater than or equal
to the second greatest entry of the other vectors, and so on.
The output of the algorithm is any FB with subband variance
vector (or any of its permutations). The vector is well-de-
fined, and finding it involves a sequential maximization of sub-
band variances giving the algorithm its name. (Existence of the
maxima follows from compactness of.)

Relation to Compaction Filters:The ideal compaction filter
[20] for an input process is defined as the filter maximizing
its output variance among all filters whose magnitude
squared is Nyquist . The Nyquist constraint
is imposed because these filters are used to build an orthonormal

-channel FB, and any filter in such an FB obeys this con-
straint [19]. For WSS inputs, a procedure from [20] finds the
compaction filter given the input psd. It always yields a “brick-
wall” filter, i.e., one with constant magnitude on its support. If
such a filter is to be an analysis filter in an orthonormal FB,
its support cannot overlap with that of any other analysis filter.
Thus the FB can be built by a sequential design of compaction
filters: The next filter maximizes its output variance among all

2This is because for any compact convex setD, the set of extreme points is the
closure of the set ofexposedpoints [16], which by definition are pointsvvv 2 D
for which there is a linear function minimized (or maximized) overD uniquely
by vvv.
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filters that have a Nyquist magnitude squared and a sup-
port that does not overlap with the supports of the previously
designed filters.3

This FB design method from [20] is exactly the sequential
algorithm described above, applied to the unconstrained FB
class when the input is WSS (as distinct from CWSS ).
The variance maximization in the algorithm corresponds to an
ideal compaction filter design. This connection has motivated
the study and design ofFIR compaction filters[12]. These
are defined as filters maximizing their output variance among
all filters of order not exceeding whose magnitude squared
is Nyquist . It was believed that such filters would play
a role in PCFB design for the class of all -channel
orthonormal FBs in which all filters are FIR with order not
exceeding . Indeed, it may seem that the first step
in the sequential algorithm for the class is to design an FIR
compaction filter. However, this is not true for a general
and input psd, as there may not even be an FB inhaving
the FIR compaction filter as one of its filters. The correct first
step in the sequential algorithm for a general FB classis to
design a filter maximizing its output varianceamong all filters
belonging to FBs in . It seems quite infeasible to propose any
variant of the sequential algorithm or the class in which FIR
compaction filters will play any serious role. The only notable
exception is when , where the FB is fully determined
by any one of its filters. Thus, a clear relation between the
sequential algorithm and compaction filters exists only for the
unconstrained class when the input is WSS (as opposed to
CWSS ).

D. Is the Sequential Algorithm Optimal?

The optimality properties of the sequential algorithm of Sec-
tion III-C follow easily from the following result.

Assertion 1: The subband variance vector

(with ) produced by the sequential algorithm
is an extreme pointof .

Proof: Let for and
. By definition of an extreme point (Section III-A),

showing that will complete the proof. Now by def-
inition of the convex hull , we see that , and, hence,

can be written as convex combinations of elements of, i.e.,
for some and

satisfying . We now show
by showing for all . To this end, since

exceeds (or equals) all the in the dictionary ordering on
, we have , but is a convex combination of the

. Hence, for all . This, in turn, leads to ,
and, hence, to , and so on; until finally for all

.

When the class has a PCFB, all extreme points of co
correspond to the PCFB. Hence, the sequential algorithm al-
ways yields the PCFB and is thus optimal for many problems

3Equivalently, it is an ideal compaction filter for the psd that is obtained by
setting to zero the bands of the original input psd falling within the supports of
the previously designed filters.

Fig. 5. Suboptimality of sequential compaction algorithm.

(Section II). The subband variance vector produced by the
algorithm here has an additional property. If its entries are ar-
ranged inincreasing order, then, in fact, it becomes theleast
vector in in the dictionary ordering.4 On the other hand, if
a PCFB does not exist, then there will be at least two extreme
points that do not correspond to essentially the same FB, i.e.,
whose coordinates are not permutations of each other. The al-
gorithm of Section III-C produces one extreme point, but the
minimum could easily be at another one. Thus, the algorithm
could be suboptimum.

The following hypothetical example with chan-
nels illustrates this point: Let co where is
the set of all permutations of and

. This would happen for a WSS input with
psd shown in Fig. 5, when the classhas exactly the two FBs
in the figure. As is finite, is a polytope whose extreme
points lie in . In fact, all points in are extreme points
of as neither of majorizesthe other. A PCFB
does not exist, as is not a permutation of . Now consider
the high bit-rate coding problem of [20]. Here the objective
to be minimized over is , the geometric mean of the
entries of . (As noted in Section II-B, this is equivalent
to minimizing an objective that is concave on .) Now

, so is the minimum.
However, the algorithm of Section III-C yields , and
is thus suboptimum. Further, it remains so even if it is run to
sequentially minimize rather than maximize variances (again,
giving in general some extreme point of , in this case ).

In fact, one can even create a family of (necessarily artifi-
cial) concave objectives that the algorithm actually maximizes
instead of minimizing. Let be the polytope with ex-
treme points as permutations of the vectoroutput by the algo-
rithm, so iff a PCFB exists. Let ,
where

is the minimum distance from to (well-defined, since is
compact) using any valid norm on . Now is continuous
and concave on (Appendix II). Its definition shows that

4However, the fact thatvvv has this property does not imply that a PCFB exists,
unless the number of channels isM � 3. Majorization is a stronger require-
ment. For example,vvv = (25; 10; 10; 2) exceedsvvv = (24; 17; 3; 3) and
its permutations, and also becomes less than them if its entries are rearranged
in increasing order; but stillvvv does not majorizevvv .
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is constant (zero) on , and that if a PCFB does not exist,
is actually the set ofmaximaof over . Thus, FBs with
subband variance vector or its permutations (output
by the sequential algorithm) perform the worst. Even if these
examples may seem artificial, they should convince the reader of
the total absence of intrinsic connection between FB optimality
and variance maximization/compaction filter designexcept if
a PCFB exists, in which case the sequential algorithm yields
exactly the PCFBs.

IV. OPTIMUM FBS FORCOLOREDNOISESUPPRESSION

This section considers the case when the FB input in Fig. 1 is
, where is the pure signal desired at the

FB output, and is zero mean additive noise uncorrelated to
. Both and are assumed CWSS random pro-

cesses. This problem has been described in Section II-B. Using
the same notation, let be the variances of theth subband
signals and corresponding to and , re-
spectively. The subband processors are memoryless multipliers

which could be constants, zeroth-order Wiener filters or hard
thresholds (Section II-B). We have already seen that the mean
square error between the true and desired FB output is

(15)

where

are, respectively, the signal and noise subband variance vectors,
and

for constant multiplier
for zeroth-order Wiener filter

for hard threshold .
(16)

In Section II-B, was denoted by with the de-
pendence of the function on being implicit. PCFB opti-
mality was shown only if all the were concave andindepen-
dent of choice of FB. This happens, for example, if the noise

is white, in which case for all FBs we have ,
the variance of . It also happens if for constant

independent of the FB, which would happen for a very re-
stricted class of input signal and noise psds. As explained in
Section II-B, in this case, the dependence ofon can be ac-
counted for by a modified that is independent of . In both
these cases, the results of Section II-D can be used to show that
a PCFB for the input signal is optimum in the sense of min-
imizing (15).

For general input signal and noise psds, the minimization ob-
jective of (15) indeed depends on both the signal and noise
subband variances. So, the problem is outside the scope of Sec-
tion II, and is the topic of the present one. Possible questions
that arise are as follows. Is the PCFB for still optimal? Or
is it the PCFB for (or for ) that is now

optimal? Here we answer these questions. At the outset, re-ex-
amine the two special cases noted above where a PCFB for
is still optimal. When is white, since any FB is a PCFB for
a white input, the optimum FB is actually acommonPCFB for
the signal and the noise (and is, in fact, also the PCFB
for ). When , this relation itself
ensures (by definition of PCFBs) that a PCFB for any one of
the signals and is also a PCFB for the others.
So, in both these cases, the optimum FB is acommonsignal and
noise PCFB.Is this true in greater generality? We answer this
question in detail. We show thatfor the transform coder class

, the common PCFB (if it exists) is indeed optimal; while the
same is not always true for other classes of FBs, specifically,
for the unconstrained FB class . We also show how to find
the optimum FB in when the input signal and noise spectra
are bothpiecewise constantwith all discontinuities at rational
multiples of .

A. Notation and Study of Search Spaces

To study the issues mentioned above, we need notations
for certain sets associated with the optimization problem. We
now introduce these notations, which will hold throughout
Section IV.

1) Signal and Noise Variance Spaces: . The set of all
realizable subband signal variance vectorsis denoted
by . Similarly, the set of all realizable subband noise
variance vectors is denoted by .

2) Optimization Search Space: . We denote by the set
of all realizablepairs of signal and noise variance vec-
tors . The minimization objectives for the problems
studied here have the form (15), i.e., they are real-valued
functions on . Thus, is the “search space” for these
problems, just as is for those of Section II. As both

and have entries whose sum is independent of the
FB, the set is bounded and lies on a -dimen-
sional hyperplane in . It also has a permutation sym-
metry, slightly different from that of but arising from
the same reason (see end of Section II-B). It is expressed
as

for any permutation matrix . Also,
does not always imply ; i.e., is some subset
of the Cartesian product , usually a proper subset.5

We also assume (and hence ) to be compact,
for similar reasons as in Section III-B.

3) Objective Function Domain: . We will consider general
minimization objectives concave over the set

(17)

(We have used above, and will freely use the set identity
.) Note that if all the in

(15) are concave on , the objective of (15) is concave

5S = S � S only in artificial/degenerate cases, e.g., if�(n) (or s(n)) is
white. (For white�(n), S has only one element.)
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Fig. 6. Colored noise suppression: geometry of search space.

on and hence on . Also, the of (16) arising for
the noise suppression problems above are indeed concave
on (Appendix B). We know that minimizing a con-
cave function over is reducible to minimizing it over
the set of extreme points of (Section III). So we
will try to study the structure of this set of extreme points.

4) Extreme Point Sets: . We denote by
, the sets of extreme points of

, respectively. (Extreme points
of always lie in .) From definitions it is easily
shown that is the set of extreme points of the
set of (17). In all problems in this section, we assume
that separate PCFBs for the signal and noise psds always
exist (otherwise, most optimizations are analytically in-
tractable for similar reasons as explained in Section III).
Thus, are both finite sets, each one being the set
of all permutations of a single vector that corresponds
to the relevant PCFB. Also, is a polytope, as its set of
extreme points is also finite.

5) Common PCFB Point Set: . We denote by the set
of all points in that correspond to acommonsignal
and noise PCFB for the given FB class. ( is empty iff
there is no such PCFB.) From earlier discussions, an FB
in will be such a common PCFB iff its corresponding
point in the search space lies in the finite set .
However, even when a common PCFB exists, in general
all points of will not correspond to such PCFBs.
In fact, usually many of them will be unrealizable, i.e.,
outside the search space. Thus, ,
i.e., consists of the extreme points of the polytope
that lie in . Points in are hence also extreme
points of co , i.e., .

From the above definitions and discussions, the optimum FB
for minimizing functions that are concave on the domainof
(17) can be found by a search over the FBs corresponding to
points in . On the other hand, common signal and
noise PCFBs correspond to points in the finite set .
Now, as noted in Section III-B, for almost every there

is a concave objective minimized over uniquely by . Thus,
the common signal and noise PCFB will minimize all concave
objectives over if and only if . For the transform
coder class , it turns out that indeed whenever a
common signal and noise PCFB (KLT) exists. For the uncon-
strained class on the other hand, even when a common PCFB
exists (i.e., is nonempty), in general, except for
some very restricted input spectra (for example, withconstant
signal and noise psd matrices, in which case the PCFBs are the
corresponding KLTs). We formally state results on PCFB op-
timality for colored noise suppression in the next section; their
proofs follow from the above comments on the relation between

and which will be proved later. Fig. 6 shows the various
geometries of as a subset of arising in the different situ-
ations discussed above. (The figure only serves as illustration.
Actually, lies in and not as the figure shows.)

B. Statement and Discussion of Results

Theorem 5–Optimality of Common KLT:Consider any min-
imization objective that is concave on the setof (17). The
common signal and noise PCFB for the transform coder class
(i.e., the common KLT) if it exists, is the optimum FB in for
all these problems. Thus, it is optimum in the mean square sense
for the noise-suppression system using any combination of con-
stant multipliers, zeroth-order Wiener filters and hard thresholds
(Section II-B) in the subbands.

Theorem 6–Suboptimality of Common PCFB:The opti-
mality of the common signal and noise PCFBfor the transform
coder class (Theorem 5)does not holdfor all classes of FBs.
In particular, it is violated for large families of input signal and
noise spectra for the class of unconstrained two-channel
FBs.

Theorem 7–Optimality for a Restricted Class of Concave Ob-
jectives: For any FB class , the common signal and noise
PCFB if it exists is always optimal for a certain well-defined
subset of the minimization objectives that are concave over the
domain of (17). There is a finite procedure to identify whether
or not a given concave objective falls in this subset.
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Theorem 7 is easily proved. As long as separate PCFBs exist
for the signal and noise, the setof (17) is a polytope, and a
search over the finite set of its extreme points will
yield a minimum of any concave objective over . If
lies in the true search space , then it also minimizes
over , and is in , i.e., corresponds to a common signal and
noise PCFB. In general, does not lie in , but the common
PCFB minimizes all concave objectivesfor which it does, thus
proving Theorem 7.

As explained in Section IV-A, we will complete the proof
of Theorem 5 (in Section IV-C) by showing that if a common
signal and noise KLT exists, for the class . Sec-
tion IV-C also proves Theorem 6, using a specific illustration
of PCFB suboptimality. We may also note here another spe-
ciality of the class besides that shown by Theorems 5 and
6. The common signal and noise PCFB for (i.e., common
KLT) is also the PCFB (i.e., KLT) for the noisy FB input

. This need not be true for a general FB class(for
example, for the unconstrained class). For the noise suppres-
sion problems, we have already shown in Section II and [1], the
restriction of Theorem 5 to the case when the noise is white.
Even with colored noise, if all subbands use zeroth-order Wiener
filters, a stronger result is shown in [1]:

Theorem 8–Optimality over Biorthogonal Class:Consider
the (colored) noise suppression system using zeroth-order
Wiener filters in all subbands. For this scheme, the common
signal and noise KLT, if it exists, is the mean square sense
optimum memorylessbiorthogonal transform (i.e., FB as in
Fig. 1 with a constant but not necessarily unitary polyphase
matrix).

However, with other subband operations (e.g., constant mul-
tipliers or hard thresholds), it is an open problem as to whether
this optimality over the biorthogonal class still holds (even if the
noise is white).

The above results show that PCFB optimality for noise sup-
pression is considerably restricted when the noise is colored
rather than white. If the PCFB is not optimal, can we find the
true optimal FB? We know that searching the extreme point set

suffices to find an optimal FB, but in general may be infi-
nite, making analytical solutions difficult. However, for one spe-
cial case involving unconstrained FBs andpiecewise-constant
spectra, is finite and easily characterized, as shown by the
next result (proved in Section IV-D).

Theorem 9–Optimum Unconstrained FB for Piecewise Con-
stant Spectra:Consider the problem of finding within the un-
constrained -channel orthonormal FB class , a FB mini-
mizing an objective function that is concave on the setof (17).
From Section IV-A, this is reducible to a minimization of the
objective over the set of extreme points of the convex hull
co (where is the search space, defined in Section IV-A).
Suppose the input signal and noise are WSS with psds that are
constant on all intervals for all integers for
some fixed positive integer . Then,

1) is a polytope, i.e., and is finite.
Further, let be the set of allbrick-wallFBs in having
all filter band edges at integer multiples of . Then

has FBs, and for each point of there is
an FB in corresponding to it.

2) For fixed , though the size of is exponential in , the
number of FBs in that actually correspond to points in

is polynomial: , where

These FBs can be extracted from in
arithmetic operations if

and in operations if (where
constants are independent of ), again
polynomial in .

Discussion on Theorem 9:

1) On Brick-Wall Orthonormal Channel FBs [20],
[19]: In these FBs, all filters have piecewise-constant
responses for all . Their sup-
ports are nonoverlapping and alias-free , i.e., for

any , exactly one of the numbers ,
is nonzero. If further all filter

band edges (i.e., points of discontinuity of )
are integer multiples of , the number of such FBs
is evidently finite and not hard to compute; our proof
(Section IV-D) gives a way to compute it.

2) Result Appeals but is Not Obvious: The theorem shows
that the optimum FB can always be chosen to lie in,
i.e., to be brick-wall with nonoverlapping filter responses
having shapes similar to the input spectra (i.e., piecewise
constant with the same allowed discontinuities). While
intuitively very appealing, this is certainly not obvious;
e.g., it is in general not true without the concavity of the
objective.

3) Bounds on : Items 1) and 2) of the theorem state-
ment give two different bounds and

, respectively, on the size of . The latter
bound is stronger when , while the former is
when . There are no bounds that are polynomial
in both and .

4) Common PCFBs and the Case of : Theorem 9
holds whether or not a common signal and noise PCFB
for exists for the given spectra. If such a PCFB ex-
ists, it also corresponds to points of (often, it is also in

). However, it need not always be optimal (Theorem 6),
as could, in general, have other points as well. In the
special case when , however, , and all el-
ements of are permutations of the same FB, namely, the
usual contiguous-stacked brick-wall FB, which is hence
always optimal. This FB is a common signal and noise
PCFB in this case; it produceswhiteand totally decorre-
lated signal and noise subband processes. The comments
after the proof of Theorem 5 in Section IV-C provide
an independent proof of the optimality of FBs producing
such subband processes.

5) Approximating Optimum FBs for Arbitrary Spectra: Most
spectra can be approximated by the piecewise-constant
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ones in the premise of Theorem 9, to any desired accu-
racy by sufficiently increasing and/or . Thus, The-
orem 9 in principle allows approximation of the optimum
FB in for any input spectra to any desired accuracy.
However, the complexity of the algorithm for this is poly-
nomial in but super-exponential in . Thus, we have
good algorithms for low (especially , where the
complexity of order ). For sufficiently large ,
we get good enough approximations of the true spectra by
taking . The earlier remark then gives, at no cost,
the optimum FB in , i.e., the usual contiguous-stacked
brick-wall FB. There are no good algorithms if both
and are large.

C. Proof and Comments on Theorems 5 and 6

Proof of Theorem 5:Using the notations and discussion
of Section IV-A, we need to show that for the transform coder
class , whenever a common signal and noise PCFB
(KLT) exists. Let be the autocorrelation matrices of
the -fold blocked versions of the signal and noise ,
respectively. Let the unitary be a common KLT. Its subband
signal and noise variance vectors are thus
and , respectively, where ,

are both diagonal. The set of points in
corresponding to the KLT and its permutations is thus

(18)

where are the permutation matrices. Now is
the set of points in corresponding to any common KLT, so

. (It will turn out that , but this needs proof
due to possible nonuniqueness of the KLT.) We now compute

. Note that iff there is a transform coder
producing as signal and noise subband variance vectors,
respectively, i.e., iff there is a unitary matrixsuch that

and

Let be the orthostochastic matrix [1], [7] corresponding to
, i.e., the doubly stochastic matrix formed by replacing

each entry of the unitary by the square of its absolute value.
Then and . Thus

orthostochastic

doubly stochastic (19)

By Birkhoffs theorem [1], [7], we can express above as a
convex combination of permutation matrices, thus obtaining

. Since , we have

i.e., , which is thus a polytope whose extreme
points lie in . But is by definition the set of these extreme
points, so . Together with , this gives

as desired.

We may note here that the set of realizable subband signal
variance vectors is convex [1], and that

orthostochastic

doubly stochastic (20)

Is convex too? For dimension , every doubly sto-
chastic matrix is orthostochastic [1]. So from (19),

, i.e., is indeed convex, as we also verify in Sec-
tion IV-E by explicitly computing . Even for general , the
same argument that proves convexity ofalso shows that
is convex in two very special cases: 1) if all entries of(or

) are equal, i.e., (respectively, ) is the identity matrix
up to scale—the “white noise” case, and 2) if (i.e.,

). However, if , is not convex for several
pairs of values of (some shown in Appendix C).

We can try to modify the above proof to show that
for the class too. To do this, we replace the autocorrelation
matrices with psd matrices and try
to use the earlier arguments at each. We cannot complete
the proof forall psd matrices, for else a common signal and
noise PCFB would always be optimal for the class too,
contradicting Theorem 6. However, we can in fact complete
the proof for some restricted classes of psds. 1) If (or

) is the identity matrix up to scale—the “white noise”
case, 2) if , and 3) if the diagonalized
versions of are bothconstant(independent
of ). We have seen cases 1) and 2) earlier, as situations
where a signal PCFB is automatically also a noise PCFB and
minimizes all concave objectives of the form (15). In case 3),
the common PCFB for haswhiteand uncorrelated subband
signal and noise components. Examples of this case are a)
if are themselves independent of—the
PCFBs for are then the corresponding KLTs, and b) if

in Theorem 9—the common PCFB for is then the
usual contiguous-stacked brick-wall FB.

Proof of Theorem 6:We provide a specific example of
PCFB suboptimality. For the class of unconstrained two-
channel FBs, consider the input signal and noise spectra and
the two FBs from shown in Fig. 7. The figure also shows the
resulting subband spectra and signal and noise variance vectors.
As the analysis filters are nonoverlapping, the subbands are to-
tally decorrelated. From Fig. 7, the subbands of also obey
spectral majorization (Section II-C), while those of do not.
Thus is a common signal and noise PCFB while is
neither a signal PCFB nor a noise PCFB for the class. How-
ever, consider the concave objectives of the noise suppression
problem with either zeroth-order Wiener filters or hard thresh-
olds inbothsubbands (see (15), (16)). By evaluation using the
subband variances in Fig. 7, achieves a lower value than

for these objectives. Thus the common PCFB is not always
optimal. More examples of PCFB suboptimality can be created
by slight perturbations of the spectra of Fig. 7.
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Fig. 7. Suboptimality of common unconstrained signal and noise PCFB.

The spectra in Fig. 7 are piecewise-constant and Theorem 9
can be applied to them (with ). This shows that one
of the two FBs ( and ) in Fig. 7 is optimum in for
any concave minimization objective. Thus, in the example in the
proof of Theorem 6, not only is better than the common
signal and noise PCFB ( ), but it is, in fact, the best possible
two-channel (unconstrained orthonormal) FB.

D. Proof of Theorem 9

Let be the analysis filters of
a -channel orthonormal FB (i.e., an FB from ). For

and , define

(21)

Let the constant values of the input signal and noise psds
and on the interval be

, respectively. Let , respectively be the signal and
noise variances in theth subband. Then

(22)
Similarly

Thus, all subband variances are linear functions of the. So
the search space (Section IV-A) is the image under a linear
transformation of the set of all possible arrayscorresponding
to all FBs in . Hence, we now proceed to study this set. By
FB orthonormality, from [19]

(power complementarity), and (23)

for

(Nyquist constraint), hence (24)

for all (for which is defined) (25)

for all (26)

for all , for each .

(27)

Here (25) follows from for all
(which follows from (23) or (24)), while (26) and (27) follow
from (23) and (24), respectively. Define the matrix
to have entries (where

), for . Then (25)–(27) are equivalent to
the following:

is for all
(28)

Let be the collection of all ordered sets
corresponding to all FBs in .

Instead of studying the set of all arrays , we can study
(as is also the image of under a linear transform). Let

and , respectively, denote the sets of all doubly
stochastic matrices and permutation matrices. From (28),

.

Claim: , which (by Birkhoff’s theorem [1], [7]) is
a polytope with as its set of extreme points. Also, FBs in
the set (defined in stating Theorem 9) correspond directly
(one-to-one) with points in .

Showing this claim will prove item 1) in the statement of The-
orem 9. Recall that is the image of under a linear trans-
form . So if is a polytope, so is ; further, all its extreme
points are images of some extreme points ofunder . The
claim above thus means that there is an FB infor every ex-
treme point of . The correspondence betweenand also
means that has

FBs (counting separately all permutations of each FB in
—else we must divide the number by ).
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Proof of Claim: We show that by building a
brick-wall FB in corresponding to any given

To do this, let , be the permu-
tation functions on the set . Now there is a
one-to-one correspondence between brick-wall FBs and func-
tions mapping each to one of the . This is
described by the following construction of the analysis filters

of the FB given the function :
Let and . Then

for

In other words, the permutation decides which of
the filter responses is nonzero at the frequencies
The construction ensures nonoverlapping alias-free fil-
ter responses resulting in a valid FB in . Now for each

let be the fraction of length of
the interval that is mapped by to , for

. For a brick-wall FB, of (21) is
the fraction of length of the interval on which

is nonzero (i.e., ). Thus, the chosen yields
an FB corresponding to the given (i.e., given set of

obeying (25)–(27)) iff for and
we have

(29)

Thus, given , we must find obeying (29). This is
easy if . Here, for each, (with entries ) is a
permutation matrix, i.e., there is an such that is if

and otherwise. We then simply set to be
for and for all other . Note that this yields an

FB in the set defined in stating Theorem 9. For a general
, we use Birkhoff’s theorem to write as a convex

combination of elements of. The same convex combination of
the solution vectors corresponding to
each element of yields the corresponding solution vector for

. Repeating the process for completes
the solution. This shows that , a polytope with
as its set of extreme points. The proof has also associated to
each of these extreme points a unique FB in. Conversely,
for any FB in , the of (21), and hence all entries of the
doubly stochastic matrices , are either or . Hence, the
corresponding point in is in . This proves the one-to-one
correspondence betweenand .

Proof of Item 2) of Theorem 9 Statement:By (22), the map
from

to the corresponding point in is given by

where

For any fixed , as can be any element
of , the set of possible values of is itself a polytope

. It lies on a dimensional hyperplane in , and its
extreme points correspond to the possible choices of

. Thus

which is known as theMinkowski sumof the polytopes .
Minkowski sums have been well studied in computational ge-
ometry [6], [15], e.g., in context of robot motion planning algo-
rithms in two and three dimensions [15]. Gritzmann and Sturm-
fels [6, Theorem 2.1.10, Corollary 2.1.11] bound the number of
extreme points of the Minkowski sum ofpolytopes of dimen-
sion with not more than extreme points each. In [6, The-
orem 2.3.7′, Proposition 2.3.9], with their proofs, they outline
algorithms to find the extreme points of this Minkowski sum,
thus bounding the number of arithmetic operations needed for
the same. Applying these bounds with , ,
and yields item 2) of the statement of Theorem 9.

Note that like , the set of realizable signal subband vari-
ance vectors is also the image ofunder a linear map given
by

However, while has extreme points (i.e., points in
), and has of them, we know from

[1] that has at most of them—its extreme points are the
permutations of the signal PCFB subband variance vector.
Indeed, here when each is a permutation ma-
trix rearranging the entries of in decreasing order. It is not
hard to see (by definition of majorization) that majorizes all
points for (i.e., for all choices of as extreme
points of ). Hence [1], all these points are some convex combi-
nations of the permutations of . Thus, these permutations are
the only extreme points of . Note that too is expressible
as a Minkowski sum of polytopes , where is the set of
all permutations of . Using [6] to bound the number of ex-
treme points of gives a bound that grows with both and

, whereas the true number is independent of. The tightening
of the bound of [6] has been achieved by exploiting the special
structure of the summand polytopes . The summands of

also have a special structure (different from that of the),
but it is not clear whether the bound on can be similarly
tightened using this structure.

E. Study of for Two-Channel Transform Coders

This subsection explicitly computes for the classof two-
channel transform coders, the set of all realizable
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Fig. 8. Search spaceS for two-channel transform coders.

pairs of subband signal and noise variance vectors
and , respectively. Since

and (30)

are constants (independent of choice of FB from), it is
enough to study instead the set of all realizable
pairs . Unlike , the set can be plotted, and (30)
directly relates the properties of and . For example,
is convex iff is convex, there is an obvious correspondence
between the extreme points of the sets and ,
and the permutation symmetry of is equivalently restated as

The result of computation of is summarized as follows.

Theorem 10–Search Space for Two-Channel Transform
Coders: Consider the class of two-channel transform
coders, and the associated set defined above. If a
common signal and noise PCFB (KLT) exists for, then
is a line segmentwhose endpoints correspond to the common
PCFB. Otherwise, it is anelliptical disk.

Discussion: When a common KLT exists, , and
hence co , is a polytope ( is a one-dimensional
polytope, i.e., a line segment). Further, the extreme points
of the polytope are precisely the points corresponding to the
common KLT. This corroborates for two-channel FBs, the
result proved in Section IV-C for any transform
coder class with a common signal and noise KLT. Recall (from
Section IV-A) that this result was the key to the optimality of
the common KLT (Theorem 5). Also note that ,
i.e., is convex, and hence so is . This also was inde-
pendently proved earlier fortwo-channeltransform coders,
though it does not always hold with more than two channels
(Section IV-C).

If there is no common KLT, is an elliptical disk—a com-
pact convex set whose extreme points are the points on its ellip-
tical boundary. Thus, is a compact convex set with infinitely
many extreme points. The minima over of different concave
objectives are at different extreme points. Fig. 8 shows a plot of

; the parameters etc., are constants depending on the
input spectra (defined shortly). The individual signal and noise
KLTs are extreme points of —respectively, the points at
which the vertical and horizontal tangents to the disc touch
it. This verifies a general fact. The individual signal PCFB for
any class of FBs corresponds to boundary points of , and
further, if it uniquely defines the subband noise variance vector,
it actually corresponds to an extreme point of . How-
ever, the individual signal and noise KLTs need not be optimum:
Fig. 8 shows that different concave objectives yield different
minima, all lying on the disc boundary. The figure also shows
contrived examples of FB classes for which common signal and
noise PCFBs exist but do not minimize all concave objectives.
The classes are defined as sets of all FBs inwhose variance
pairs lie in well-chosen subsets of , marked as
dotted areas in the figure. Note that these subsets obey the re-
quired permutation symmetry property. These examples are ar-
tificial, due to the choice of these subsets, and also because the
FB class definition depends on the input spectra.

Proof of Theorem 10:Let the input signal and noise au-
tocorrelation matrices and a general element
(i.e., a general unitary matrix), respectively, be given by

(31)

Here and as are positive
semidefinite. By initially passing the noisy input through the
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KLT for the noise, can be assumed diagonal without loss of
generality. A common signal and noise KLT exists iff one (or
both) of the following hold: 1) is diagonal too, i.e., ,
or 2) is the identity matrix up to scale (so that any unitary
matrix diagonalizes it), i.e., (e.g., this happens with
white input noise). Also in (31), and the uni-
tary is fully general up to multiplication by adiagonaluni-
tary matrix, which does not affect its subband variances. By di-
rect computation, the subband signal and noise variance vectors

and ,
respectively, are

(32)

Note that is the signal KLT iff is real (i.e., is
maximized) and the choice ofthen maximizes (or minimizes)

. Of course, is the noise KLT iff it is diagonal or antidiag-
onal, i.e., iff .

From (32), is the set of all satisfying for some
, the equation

where

(33)

For each fixed , let be the set of vectors in given by the
right side as varies. Then, is the union of these sets
as varies, with origin shifted to. As is constant, it suffices
to prove Theorem 10 replacing by the union . From
(33), is the image of the unit circle under a linear map.
So is a line segment with midpoint at the origin if is
singular, and an ellipse centered at the origin otherwise. Suppose
a common signal and noise KLT exists, i.e., or
(or both). Then is singular for all . If , is
horizontal, while if , it lies along the line

, for all . So, in either case, is a line segment with
midpoint at the origin. Its endpoints correspond to extremum
(maximum or minimum) values of both and , i.e., to the
common KLT.

Now suppose a common signal and noise KLT does not exist.
Then, is an ellipse centered at the origin for general. It
degenerates into a line segment for exactly two values ofin

at which , i.e., is singular. To compute
, we write (using (33)) the nonparametric equation of the

ellipse

where and (34)

This shows that 1) the ellipses for and are the same,
2) the ellipse for lies inside that for , and 3)

for every point in the interior of the ellipse for there
is another ellipse for (for some ) passing
through it (the “ellipse” for is the line segment

with endpoints having ). Since the
range of values of is , we conclude that is
an elliptical disc whose boundary is the ellipse corresponding
to .

For the present example, with certain concave objectives of
the form (15), it is easy to explicitly compute the optimum FB
of (31), by inserting the variances of (32) into the objective and
analytically optimizing and . For example, it can be done for
noise suppression using constant multipliers in both subbands
(see (16)). This will verify that the optimum FB indeed corre-
sponds to a boundary point of , and further that the common
signal and noise KLT if it exists is indeed optimum.

V. CONCLUSION

We have extended the study of principal component FBs [1]
in many ways. A central theme in our analysis is to study the
geometry of the relevant search spaces of realizable subband
variances, and to exploit concavity of the minimization objec-
tive on these spaces. However, many interesting issues are still
unresolved.

An important question is whether there are any useful classes
of FBs for which PCFBs exist for all (or large families of)
input spectra. Indeed, it seems possible that the two-channel,
the transform coder, and the unconstrained classes may be
the only such classes (ruling out contrived situations where
the class definition depends on the input spectrum). However,
this has not been proved. Analytical study of PCFB existence
and FB optimization for classes of FIR FBs has proven to be
very complicated. The problem stated in most general form is
as follows. Given a class of orthonormal FBs, find all input
spectra for which a PCFB exists.

Regarding the FIR classes, we could reach a partial solu-
tion by solving the following problem. Find a family of input
spectra for which there is no PCFB for some general FIR class,
say that of all FBs with a given bound on the McMillan de-
gree or order of the polyphase matrix. At present, a few such
results are known for specific low values of the bound, for
isolated input spectra [13], [11]. Even in these cases, the proofs
of PCFB nonexistence need numerical optimizations. Further,
one of these, from [11], is suspect due to the assumption that
the FB maximizing its largest subband variance must contain an
FIR compaction filter. Some insight may possibly be obtained
by analytical computation of the search spaces for simple ex-
amples of these classes (e.g., the class of all three-channel FIR
FBs with polyphase matrices of McMillan degree unity).

Another area of open issues involves biorthogonal FBs.
The compression and noise reduction systems of this paper
remain well-defined if the FB used is biorthogonal rather than
orthonormal; however, the FB optimization objective no longer
depends purely on the subband variances. We have seen certain
cases where the best orthonormal FB is also the best biorthog-
onal one. For example, the KLT is not only the best orthogonal
transform but also the best memoryless biorthogonal one for
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both the high bitrate coding problem with optimal bit allocation
and for noise reduction with Wiener filters in all subbands.
However, it is not known whether this is true with other subband
operations, e.g., low bit-rate coding and noise reduction by hard
thresholds. For the unconstrained biorthogonal FB class, even
for the high bit-rate coding problem the best FB was known
only in certain cases [21] until recently when [14] has claimed
a full solution.

With regard to noise suppression, we have considered only
Wiener filters of order in the subbands. If , the
objective depends not only on the subband variances but also on
other coefficients in the autocorrelation sequences of the sub-
band processes. In this case, analytical results on the optimum
FB are not known. The performance gain due to increasing the
order of the subband Wiener filters could instead be obtained by
using an FB with more channels, however, the exact nature of
this tradeoff is not known.

APPENDIX A
COMPACTNESS OFSEARCH SPACE

Here we justify the assumption of Section III-B that the
search space is compact, i.e., closed and bounded. (In fact,
we already know [1] that it is bounded.) Many FB classesare
parameterized by a vector of real numbers, that is free to take
any values in a set which may be called the parameter space.
It often happens that is compact, and that for any bounded
nonimpulsive input spectrum, there is a continuous function
mapping parameter vectors (from) to the subband variance
vectors (in ) produced by the corresponding FB. Thus,
is the continuous image of the compact set, and is hence
compact. This reasoning works, for example, whenis the set
of all FIR orthonormal -channel FBs with a given McMillan
degree. Here, is parameterized by a finite set of unit norm
vectors in and a unitary matrix [19]. Thus, is compact,
being the Cartesian product of finitely many sphere surfaces in

and the set of unitary matrices.

APPENDIX B
CONCAVITY PROOFS FORSOME FUNCTIONS IN THEPAPER

(Section III-D): Continuity of follows
from that of the norm. To show concavity of, we must show
that

where , for , . Let
be the points in that are closest to and , respectively.

(They exist because is compact.) Thus

where since is convex. Thus
, which completes the proof.

Functions of (16): Linear functions and the minimum of
concave functions are concave [16], so

and

are concave on . For , we need to show that

when

(35)

If , by cross-multiplying and defining
, this is equivalent to proving that

The right side is

hence as , it suffices to show that

i.e. (expanding and simplifying) that

which is true. Thus arising in colored noise
reduction (see (16)) is concave on . However, it is notstrictly
concave as equality holds in (35) when . Note that
fixing (or ) in yields univariate functions that appear
in white noise reduction and arestrictly concave on [1].

APPENDIX C
NONCONVEXITY OF SEARCH SPACE (SECTION IV-C)

For , let

which is doubly stochastic but not orthostochastic [1]. Let
where . By (19)

where .
Now iff and for some or-
thostochastic ; but it can be verified that a doubly stochastic

satisfies these equations iff which is not orthos-
tochastic. So , proving that is not convex. A some-
what more restricted class of pairs ,

(with ) also produces nonconvex
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for any . To show this we use the earlier argument re-
placing by

where is the identity and the’s are zero matrices of suitable
sizes. Here, a doubly stochasticsatisfying and

need not be , but must agree with it in the first two
columns. This already prevents it from being orthostochastic.

REFERENCES

[1] S. Akkarakaran and P. P. Vaidyanathan, “Filter bank optimization with
convex objectives, and the optimality of principal component forms,”
IEEE Trans. Signal Processing, vol. 49, pp. 100–114, Jan. 2001.

[2] , “The best basis problem, compaction problem and PCFB design
problems,” inProc. IEEE ISCAS, Orlando, FL, June 1999.

[3] , “Optimized orthonormal transforms for SNR improvement by
subband processing,” inProc. IEEE Workshop on Signal Processing
Advances in Wireless Communications, Annapolis, MD, May 1999.

[4] D. P. Bertsekas, “The auction algorithm for assignment and other net-
work flow problems: A tutorial,”Interfaces, vol. 20, no. 4, pp. 133–149,
July–Aug. 1990.

[5] D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation by wavelet
shrinkage,”Biometrika, vol. 81, no. 3, pp. 425–455, 1994.

[6] P. Gritzmann and B. Sturmfels, “Minkowski addition of polytopes:
Computational complexity and applications to Grobner bases,”SIAM J.
Discr. Math, vol. 6, no. 2, pp. 246–269, May 1993.

[7] R. A. Horn and C. R. Johnson,Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 1985.

[8] Y. Huang and P. M. Schultheiss, “Block quantization of correlated
Gaussian random variables,”IEEE Trans. Commun. Syst., vol. COM-10,
pp. 289–296, Sept. 1963.

[9] I. Kalet, “The multitone channel,”IEEE Trans. Commun., vol. 37, pp.
119–124, Feb. 1989.

[10] A. Kirac and P. P. Vaidyanathan, “Optimality of orthonormal transforms
for subband coding,” inProc. IEEE DSP Workshop, UT, August 1998.

[11] , “On existence of FIR principal component filter banks,” inProc.
ICASSP, Seattle, May 1998.

[12] , “Theory and design of optimum FIR compaction filters,”IEEE
Trans. Signal Processing, vol. 46, pp. 903–919, Apr. 1998.

[13] P. Moulin and M. K. Mihcak, “Theory and design of signal-adapted FIR
paraunitary filter banks,”IEEE Trans. Signal Processing, vol. 46, pp.
920–929, Apr. 1998.

[14] P. Moulin, M. Anitescu, and K. Ramchandran, “Theory of rate-distortion
optimal, constrained filter banks—application to IIR and FIR biorthog-
onal designs,”IEEE Trans. Signal Processing, vol. 48, pp. 1120–1132,
Apr. 2000.

[15] J. O’Rourke,Computational Geometry in C. Cambridge, U.K.: Cam-
bridge Univ. Press, 1998.

[16] R. T. Rockafellar,Convex Analysis. Princeton, NJ: Princeton Univ.
Press, 1970.

[17] M. K. Tsatsanis and G. B. Giannakis, “Principal component filter banks
for optimal multiresolution analysis,”IEEE Trans. Signal Processing,
vol. 43, pp. 1766–1777, Aug. 1995.

[18] M. Unser, “An extension of the KLT for wavelets and perfect reconstruc-
tion filter banks,” inProc. SPIE no. 2034 Wavelet Appl. Signal Image
Processing, San Diego, CA, 1993, pp. 45–56.

[19] P. P. Vaidyanathan,Multirate Systems and Filter Banks. Englewood
Cliffs, NJ: Prentice-Hall, 1993.

[20] , “Theory of optimal orthonormal subband coders,”IEEE Trans.
Signal Processing, vol. 46, pp. 1528–1543, June 1998.

[21] P. P. Vaidyanathan and A. Kirac, “Results on optimal biorthogonal filter
banks,”IEEE Trans. Circuits Syst. II, vol. 45, pp. 932–947, Aug. 1998.

[22] P. P. Vaidyanathan, Y.-P. Lin, S. Akkarakaran, and S.-M. Phoong, “Op-
timality of principal component filter banks for discrete multitone com-
munication systems,” inProc. IEEE Int. Symp. Circuits and Systems,
Geneva, Switzerland, May 2000.


