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Abstract. Discrete multitone modulation is an attractive method for communication over a non flat channel

with possibly colored noise. The uniform DFT filter bank and cosine modulated filter bank have in the

past been used in this system because of low complexity. We show in this paper that principal component

filter banks (PCFB) which are known to be optimal for data compression and denoising applications, are

also optimal for a number of criteria in DMT communication. For example, the PCFB of the effective

channel noise power spectrum (noise psd weighted by the inverse of the channel gain) is optimal for DMT

modulation in the sense of maximizing bit rate for fixed power and error probabilities. We also establish an

optimality property of the PCFB when scalar prefilters and postfilters are used around the channel. The

difference between the PCFB and a traditional filter bank such as the brickwall filter bank or DFT filter

bank is significant for effective power spectra which depart considerably from monotonicity. The twisted

pair channel with its bridged taps, next and fext noises, and AM interference, therefore appears to be a good

candidate for the application of a PCFB. This will be demonstrated with the help of numerical results for

the case of the ADSL channel.1

Keywords. Discrete multitone modulation (DMT), frequency division multiplexing (FDM), principal

component filter banks (PCFB), digital subscriber loops (DSL), channel capacity.

1. INTRODUCTION

Discrete multitone (DMT) modulation for nonflat channels has been studied by a number of authors in the

last decade. The theoretical advantages of multitone modulation were demonstrated in the pioneering paper

by Kalet [15] more than ten years ago. DMT has been considered seriously for use in digital subscriber loops
1Work supported in parts by the NSF grant MIP-0703755, ONR grant N00014-99-1-1002, USA, Microsoft research, Redmond,

WA, and by the NSC 89-2213-E-009-118 and 89-2213-E-002-122, Taiwan, ROC.
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(DSL), and excellent descriptions of this can be found in [10] and [31], The DMT system can be regarded

as a filter bank in transmultiplexer configuration [1], [36], [41]. Typically the filter banks used for this

purpose are DFT filter banks which can be implemented efficiently with the FFT. The filters in these DFT

filter banks provide poor separation between adjacent subchannels [27]. It is known that the use of better

filters improves performance (e.g., higher bit rate for fixed error probabilities and power). This was clearly

demonstrated in [27] using cosine modulated filter banks (CMFB) with sharp filters. Advantages of more

general filter banks for this application are also described in [9]. In this paper we consider a special type of

orthonormal filter banks called the principal component filter bank or PCFB (reviewed in Sec. 4) and show

that it is optimal for the DMT application in a well-defined theoretical sense.

The filter responses in the PCFB depend on the channel transfer function and the noise power spec-

trum. Moreover even though PCFBs can be defined for infinite filter orders, they are evidently unrealizable.

However there appear to be two reasons why the optimality of the PCFB is of interest. First it serves as a

benchmark for comparing the performance of conventional unoptimized DMT systems which use the DFT,

CMFB, and so forth. Second, in applications where the channel characteristics are fixed (e.g., twisted pair

lines with standard next and fext noise) we can design the PCFB apriori and approximate it with practical

digital filters. Such approximations can yield better performance than unoptimized designs like the DFT at

the expense of higher complexity of implementation.

1.1. Outline And Relation To Past Work

The PCFB was introduced first in [32] and its optimality for a variety of problems was suggested in [35]. It

has since been proved to be optimal for a general class of objective functions in signal processing [4,24,37,46].

The role of a specific class of PCFBs in the optimality of DMT systems was first observed in [22]. A related

problem, namely the optimization of filter bank precoders [13], [44] has been considered in great depth in a

series of recent papers by Giannakis and his group [13, 28, 29]. The precoder typically introduces redundancy

(like a non maximally decimated filter bank) to combat intersymbol interference. The precoder and receiver

filters can be optimized according to several possible criteria. In this context, an excellent unification of

several filter-bank based communication systems (including DMT) can be found in [28]. In the present

paper, we consider the specific role of the PCFB in the design of optimal orthonormal DMT systems. We

believe this provides a fundamentally different viewpoint.

Two other excellent papers on related optimizations should be mentioned here. In [7] the authors consider

many fundamental questions pertaining to transmission of signals in blocks, over dispersive channels. One

of the results there is on the optimization of the covariance matrix of the transmitted block to maximize
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mutual information. The authors also show how such covariance can be realized by filter design. Next,

a very general problem of filter bank optimization is handled in [30] where the authors optimize mutual

information by optimizing the transmit and receive filters. Both zero forcing equalizers and minimum mean

square equalizers come out of this elegant approach as special cases. In our paper we consider the case of

orthogonal filter banks with the perfect reconstruction property and assume that the channel is equalized by

a zero forcing equalizer. Furthermore we do not consdier the mutual information but instead consider the

optimization of useful quantities such as, for example, the actual bit rate with fixed error probabilities and

transmitted power. This makes the problem much simpler and leads to very elegant insights. For example

it becomes clear that principal component filter banks optimize bit rate for a fixed set of error probabilities

and power. There is some commonality between the theme of our paper and the results in [30] and [7]. We

shall see however that the approach here is simpler and insightful because we focus directly on the PCFB

solution based on simple convexity arguments.

In Sec. 2 we describe the DMT system using multirate filter bank language and formulate a noise model.

The benefits of optimizing the transmitting filters is motivated with a simple example in Sec. 3. A brief

review of principal component filter banks (PCFBs) and their optimality is given in Sec. 4. More details on

this section can be found in [4, 5]. Various criteria for the optimization of orthonormal DMT filter banks are

presented in Sec. 5 and solutions presented. The role of principal component filter banks for ADSL service

on twisted pairs is explained in Sec. 6 along with some numerical examples. Prefiltered orthonormal DMT

systems (which are biorthogonal rather than orthonormal) are considered in Sec. 7 and it is shown again

that the PCFB has a role in optimality. Some parts of this paper have appeared in [38] and [39].

1.2. DSP And Multirate Notations

Bold faced letters denote matrices and vectors. The transpose, conjugate, and transpose-conjugate of a

matrix are denoted, respectively, as AT ,A∗, and A†. We use a subscript c (e.g., xc(t), Sc(f) etc.) to

distinguish continuous time quantities from discretized versions. In general the filters are allowed to be ideal

(e.g., brickwall lowpass, etc.). So the z-transforms may not exist in any region of the z-plane. The notation

H(z) should be regarded as an abbreviation for the �2 Fourier transform H(ejω). The language of multirate

signal processing [36] will be used extensively throughout this paper. A summary of the most common ones

follows.

1. The building block ↓ M in the figures denotes a decimator with input/output relation y(n) = x(Mn).

The building block ↑ M denotes an expander with input/output relation

y(n) =
{

x(n/M) n = multiple of M
0 otherwise.
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The expander followed by a filter yields an interpolated version of x(n). We use the notations [x(n)]↓M

and [X(z)]↓M to denote the decimated version x(Mn) and its z-transform. Similary the expanded

version is denoted by [x(n)]↑M , and its z-transform X(zM ) by [X(z)]↑M . It can be shown that the

Fourier transform of x(Mn) is a superposition of X(ejω/M ) and M − 1 shifted versions [36]:

[X(ejω)]↓M =
1
M

M−1∑
m=0

X(ej(ω−2πm)/M )

2. Some standard abbreviations: (a) PCFB: principal component filter bank, (b) DMT: discrete multitone

modulation, (c) DSL: digital subscriber loop, (d) ADSL: asymmetric DSL, (e) PR: perfect reconstruc-

tion, (f) KLT: Karhunen Loeve Transform, (g) psd: power spectral density or power spectrum.

2. THE DMT FILTER BANK

Figure 1(a) shows the essentials of discrete multitone communication as required for the discussions of this

paper. The signals xk(n) are bk-bit symbols obtained from a PAM or QAM constellation (App. A). These

symbols are interpolated M -fold by the filters Fk(z) to obtain the subchannel or subband signals uk(n). The

kth transmitting filter has output

uk(n) =
∞∑

i=−∞
xk(i)fk(n − iM). (1)

Figure 1(b) demonstrates how this construction is done for the 0th filter F0(z), assumed to be lowpass.

Essentially we draw one copy of the impulse response sequence f0(.) around every sample of x0(n) (separated

by M) and add them up. The outputs of the filters F1(z), F2(z) and so forth are more complicated waveforms

because they are bandpass. The filters {Fk(ejω)} traditionally cover different uniform regions of frequency as

shown in Fig. 1(c). The signals uk(n) are analogous to modulated versions of the “baseband” sequence xk(n)

because the bandwidth is shifted to the passband of Fk(z). These are packed into M adjacent frequency

bands (passbands of the filters) and added to obtain the composite signal x(n). Thus

x(n) =
M−1∑
k=0

∞∑
i=−∞

xk(i)fk(n − iM) (2)

This signal is then sent through the channel which is represented by a transfer function C(z) and additive

Gaussian noise e(n) with power spectrum See(ejω). The received signal y(n) is a distorted and noisy version

of x(n). The receiving filter bank {Hk(z)} separates this signal into the components yk(n) which are distorted

and noisy versions of the symbols xk(n). The task at this point is to detect the value of xk(n) from yk(n)

with acceptable error probability.
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Fig. 1. (a) The discrete multitone communication system, (b) the interpolation or modulation performed by the

transmitting filter F0(z), and (c), an example of responses of the transmitting filters.

In actual practice the channel is a continuous-time system Cc(s) preceded by D/A conversion and followed

by A/D conversion. We have replaced this with discrete equivalents C(z) and e(n). The original motivation

behind multitone modulation [15] is that the power and/or bits could be allocated in an efficient manner

in the subchannels, depending on the channel gain |C(ejω)|2 and noise psd See(ejω) in that subchannel. In

this way, the classical water filling idea for resource allocation [11], [26] could be approximated. For a given

transmitted power and probability of error this yields better bit rate than direct single tone modulation

(assuming no channel coding). The DMT idea is similar in principle to subband coding where a signal x(n)

to be quantized is first decomposed into subbands. Background material on the DMT system and more

generally on the use of digital filter banks in communications can be found in [1,10,15,17,20,33].

2.1. Perfect Reconstruction

In absence of the channel noise e(n), the DMT system of Fig. 1(a) is LTI, with the transfer function from

xm(.) to yk(.) given by

Dkm(z) = Hk(z)C(z)Fm(z)
∣∣∣
↓M

In general the symbol yk(n) is therefore affected by xm(i) when m �= k, resulting in interband interference.

For the case k = m if the quantity Dkk(z) is not a constant, then yk(n) is affected by xk(i) when n �= i, and
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we have intraband interference. The condition to eliminate these two interferences is

Hk(z)C(z)Fm(z)
∣∣∣
↓M

= δ(k − m) (3)

If interband and intraband interferences are eliminated, the DMT system is said to be free from intersymbol

interference (ISI). We then have the perfect reconstruction or PR property yk(n) = xk(n) for all k (in absence

of noise). If the filter responses in Fig. 1(b) are nonoverlapping, then the subchannels are completely isolated.

There is no interband ISI, though we might still have intraband ISI. Even if the filters have overlap as in any

practical implementation, we can still avoid both types of ISI as long as (3) holds. In fact the most popular

DMT system uses a DFT filter bank where the filters have significant overlap even though (3) holds.

Biorthogonality. The filter bank {Fm, Hk} is said to be biorthogonal if

Hk(z)Fm(z)
∣∣∣
↓M

= δ(k − m) (4)

This means that the impulse response gkm(n) of the product filter Hk(z)Fm(z) has the Nyquist(M) or

zero-crossing property

gkm(Mn) = 0

for k �= m and gkk(Mn) = δ(n). Under this biorthogonality condition we have perfect reconstruction only if

C(z) = 1. In this paper we shall make the simplifying assumption that {Fm, Hk} is biorthogonal and that

the channel transfer function C(z) is equalized by using the inverse filter or zero-forcing equalizer 1/C(z)

just before entering the bank of filters {Hk(z)}. The path from xk(n) to yk(n) now has the effective form

shown in Fig. 2(a).2 In actual practice there are many ways to approximate this equalized system (see

[25] and references therein). One approach would be to use a time domain equalizer in cascade with the

channel and reduce the effective channel to be FIR with a short impulse response. This effective FIR filter

is then compensated for by the use of a cyclic prefix followed by appropriate multipliers at the outputs of

Hk(z), called frequency domain equalizers. This is explained at length in [10] for DFT based DMT, and a

modification for general DMT has been advanced in [22].

2We make the assumption that C(ejω) �= 0 for any ω. Otherwise we have to leave out the offending frequency band.
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Fig. 2. (a) The path from xk(n) to yk(n) in a DMT system with ideal equalizer 1/C(z), (b) the noise processing in

the kth subchannel, and (c) the complete noise model.

2.2. Channel Noise Model

Now consider the effect of channel noise e(n). Assuming that {Fm, Hk} is biorthogonal and that 1/C(z) is

inserted as shown in Fig. 2(a), the kth received symbol at time n is given by

yk(n) = xk(n) + qk(n) (5)

where qk(n) is the channel noise filtered through Hk(z)/C(z) and decimated (Fig. 2(b)). If the channel

noise is wide sense stationary with power spectrum See(z) then the variance of qk(n) is

σ2
qk

=
∫ 2π

0

See(ejω)
|C(ejω)|2 |Hk(ejω)|2 dω/2π (6)

Notice that the noise qk(n) at the detector input can be viewed as the output of a maximally decimated

analysis bank {Hk(z)} in response to an effective noise source q(n) with effective noise psd

Sqq(ejω) =
See(ejω)
|C(ejω)|2 (7)

This yields the noise model shown in Fig. 2(c).

Optimization of the DMT filter bank. We see that there is some control on the variances of qk(n) because

we can choose the filters {Hk(z)}. We can take advantage of this. Even if we assume that the filters are
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allowed to be ideal, it turns out that the brickwall filter stacking shown in Fig. 1(c) is not necessarily the

best choice (Sec. 3). For any given channel we can define a filter bank called the principal component filter

bank. The frequency partitioning generated by such a filter bank is optimal for the channel (Sec. 5).

2.3. Probability Of Error, Transmitted Power, And Bit Rate

For simplicity we assume that xk(n) are PAM symbols (App. A). Assuming that xk(n) is a random variable

with 2bk equiprobable levels, its variance represents the average power Pk in the symbol xk(n). The Gaus-

sian channel noise e(n) is filtered through Hk(z)/C(z) and decimated by M. For the purpose of variance

calculation, the model for the noise qk(n) at the detector input can therefore be taken as in Fig. 2(c). Let

σ2
qk

be the variance of qk(n). Then the probability of error in detecting the symbol xk(n) is given by [26]

Pe(k) = 2(1 − 2−bk)Q
(√

3Pk

(22bk − 1)σ2
qk

)
(8)

where Q(v)∆=
∫ ∞

v
e−u2/2du/

√
2π (area of the normalized Gaussian tail). Since the Q-function can be inverted

for any nonnegative argument, we can invert (8) to obtain

Pk = β
(
Pe(k), bk

)
× σ2

qk
(9)

where the exact nature of the function β(., .) is not of immediate interest. This expression says that if the

probability of error has to be Pe(k) or less at the bit rate bk, then the power in xk(n) has to be at least as

large as Pk. The required total transmitted power is therefore

P =
M−1∑
k=0

Pk =
M−1∑
k=0

β
(
Pe(k), bk

)
× σ2

qk
(10)

Suppose x(n) is converted into a continuous time signal xc(t) by the D/A converter at sampling rate 1/T

so that xc(nT ) = x(n). If a voltage waveform xc(t) volts is applied across a one ohm resistor, the power

delivered is actually P watts, regardless of the sample spacing T. The samples of xk(n) are separated by MT

seconds. With bk representing the number of bits per sample in xk(n), the kth subchannel therefore carries

bk/MT bits per second. The total bit rate is therefore

1
MT

M−1∑
k=0

bk bits per second

or equivalently b/MT bits per second where b
∆=

∑
bk.

2.4. Orthonormal DMT Systems

The set of M filters {Hk(z)} is said to be orthonormal if

H∗
k(ejω)Hm(ejω)

∣∣∣
↓M

= δ(k − m) (11)
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In an orthonormal DMT system we choose the transmit filters to be Fk(ejω) = H∗
k(ejω), i.e., fk(n) = h∗

k(−n).

This ensures biorthogonality (4), and furthermore the filters {Fk} satisfy F ∗
k (ejω)Fm(ejω)

∣∣∣
↓M

= δ(k − m).

In terms of impulse responses this orthonormality condition is equivalent to

∑
n

fk(n − iM)f∗
m(n − �M) = δ(k − m)δ(i − �)

Thus the composite signal x(n) in (2) can be regarded as a superposition of elements from an orthonormal

set. In fact any subchannel signal uk(n) is a superposition of elements from the orthonormal set {fk(n−iM)}

as seen from (1). Figure 3 shows two extreme examples of orthonormal filter banks. The first one is the

delay chain system (Hk(z) = z−k and Fk(z) = zk) and the second is the ideal brickwall filter bank.

(b)

H (z)
0

H (z)
1

H (z)
2

H (z)
3 ω

0 2π

(a)

x(n)

M

M

M

z−1

z−1

z−1

M

z

z

z

M

M

Fig. 3. Examples of orthonormal filter banks. (a) The delay chain system, and (b) the brickwall filter bank with
contiguous stacking (M = 4).

For k = m, Eq. (11) yields |Hk(ejω)|2
∣∣∣
↓M

= 1. If the impulse response of |Hk(ejω)|2 is denoted as gk(n) then

the preceding condition is equivalent to the Nyquist(M) or zero-crossing constraint gk(Mn) = δ(n). Similarly

for biorthogonal filter banks, the product Hk(z)Fk(z) is Nyquist(M). Orthonormal filter banks have been

thoroughly studied [36], [42]. Here are some of their properties: (a)
∫ 2π

0
|Hk(ejω)|2dω/2π = 1 (unit energy

property), (b) |Hk(ejω)|2 ≤ M (boundedness), and (c)
∑M−1

k=0 |Hk(ejω)|2 = M (power complementarity).

Stated here for {Hk(z)}, these also hold for {Fk(z)}.

2.5. Polyphase Representation of DMT Systems

Using the polyphase notations described, for example, in Chap. 5 of [36], we can express the row vector of

transmitting filters and the column vector of receiving filters as

[F0(z) F1(z) . . . FM−1(z) ] = dT (z−1)R(zM )

[H0(z) H1(z) . . . HM−1(z) ]T = E(zM )d(z)

where d(z) is the delay chain vector defined by d(z) = [ 1 z−1 z−2 . . . z−(M−1) ]T . The DMT system

can therefore be redrawn as in Fig. 4(a). Using Noble identities [36] the decimator and expander can be

moved as shown in Fig. 4(b). This is the polyphase representation of the DMT filter bank. Note that the
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noise model shown in Fig. 2(c) can be redrawn in polyphase form as shown in Fig. 4(c). This will be quite

insightful as we shall see.
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Fig. 4. (a) Polyphase representation of the DMT filter bank, (b) simplification using multirate identities, and (c)
noise-model in polyphase form.

The biorthogonality property (4) can be shown to be equivalent to E(z)R(z) = I. The special case where

the matrix E(ejω) is unitary for all ω corresponds to orthonormal DMT systems. In this case we choose

R(ejω) = E†(ejω) (transpose conjugate) for perfect reconstruction. The DMT systems where R(z) is a

constant unitary matrix T has been of some practical importance. In this case the filters Fk(z) are FIR with

lengths ≤ M. This is the DMT counter part of the transform coder in subband coding theory. The example

where T is the DFT matrix falls under this class.

3. OPTIMAL CHOICE OF DMT FILTER BANK

To motivate the usefulness of optimizing the transmitter and receiver filters, consider Figure 5(a). This

shows an example of the effective noise psd Sc(f) in terms of the continuous-time frequency variable f. (The

discretized version of this is Sqq(ejω) defined in (7)). This is assumed bandlimited to 1 MHz. The units
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for Sc(f) are in mW/Hz, and a dB plot would show 10 log10 Sc(f) in dBm/Hz as in the figure. Using a

sampling rate of 2 MHz, the digital version See(ejω)/|C(ejω)|2 of the psd Sc(f) is as shown in Fig. 5(b)

where c = 2∗10−4 (due to the factor 1/T in the Fourier transform after sampling). These are not unrealistic

numbers for typical twisted pair telephone channels for which DMT modulation is the standard. The two

bumps (each assumed 10 kHz wide) can be regarded as oversimplified versions of the effects of bridged taps

(first bump) and AM noise (second bump) [31]. The rapid decay of channel gain is not depicted in this

‘toy’ example, but we shall do that in Sec. 6. Consider a two band DMT system (M = 2). One choice of

the orthonormal filter bank, namely the brickwall stacking, is shown in Fig. 5(c). With the effective psd

Sqq(ejω) as in Fig. 5(b) we can now calculate the variances σ2
qk

. Let us pick some values for the remaining

parameters.

1. Error probabilities Pe(0) = Pe(1) = 10−9.

2. b0 = 6 and b1 = 2. These are the bits in the PAM constellations for x0(n) and x1(n). It makes sense to

use smaller value for b1 because there is more noise in the region covered by H1(ejω). Since the average

of bk’s is 4, the average bit rate for 2 MHz sampling rate is 8 Mbits/sec.

The average power P needed to meet these requirements can be calculated from (10) and the result turns

out to be 56 mW. Instead of using the brickwall filter bank suppose we use the filter bank shown in Fig.

5(d) and (e). We still have two subbands (M = 2) but each filter now has two passband regions. It can be

verified that this filter bank still satisfies orthonormality (11). We can recalculate the variances σ2
qk

now and

compute the average power. The result is 5.67 mW. Thus

savings in total power = 56/5.67 ≈ 9.9

or about 10 dB. In summary, the modified filter bank achieves the bit rate of 8 Mb/s and error probability

of 10−9 using almost 10 dB less power!

The difference between the two filter banks in the example is that the variances σ2
qk

(whose sum is fixed

by orthonormality) are distributed differently depending on the shape of the effective noise psd Sqq(ejω).

The natural question then is: given an effective noise psd and an arbitrary M , how do we choose the

orthonormal filter bank {Hk(ejω)} to minimize the transmitted power for fixed specifications? The answer

is that {Hk(ejω)} should be chosen as a principal component filter bank for the effective noise psd.
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Fig. 5. Demonstrating the effectiveness of good choice of filter banks in the DMT system. (a) The effective noise

psd, (b) digitized version, (c) traditional brickwall filter bank for M = 2, and (d),(e) a different choice of filter bank.

4. PRINCIPAL COMPONENT FILTER BANKS

To define a PCFB first consider two sets of M nonnegative numbers {an} and {bn}. We say that {an}

majorizes {bn} if, after reordering such that an ≥ an+1 and bn ≥ bn+1, we have

P∑
n=0

an ≥
P∑

n=0

bn

for 0 ≤ P ≤ M − 1, with equality for P = M − 1. Thus all the partial sums in {an} dominate those in

{bn}. Consider a given class C of M -band uniform orthonormal filter banks. This class can be the class Ctc

of transform coders (with filter lengths ≤ M), or the class Cideal of ideal filter banks (filters allowed to have

infinite order, like brickwall filters). Or it could be a practically attractive class like the FIR class Cfir with

filter orders bounded by a fixed integer, or the so-called cosine modulated class Ccmfb [36]. Given such a

class C and an input power spectrum Sqq(ejω) we say that a filter bank F in C is a principal component filter

bank or PCFB if the set {ak} of its subband variances (i.e., variances σ2
qk

of the signals qk(n) in Fig. 2(c))

12



majorizes the set {bk} of subband variances of all other filter banks in the class. That is, with an ≥ an+1

and bn ≥ bn+1,

a0 ≥ b0, a0 + a1 ≥ b0 + b1, . . .

and so forth. The equality
∑M−1

k=0 ak =
∑M−1

k=0 bk follows automatically from orthonormality.

The advantage of PCFBs is that they are optimal for several problems. This includes subband coding

with arbitrary (not necessarily high) bit rates, the denoising problem, and so forth, as elaborated in [4].

These arise from the result (proved in [4]) that any concave function φ of the subband variance vector

v = [σ2
q0

σ2
q1

. . . σ2
qM−1

]T

is minimized by a PCFB when one exists. Similarly any convex function is maximized by a PCFB. Note that

any permutation of the filters in a PCFB retains the PCFB property. Thus, given a particular (concave or

convex) objective, we have to choose the right permutation so that the objective is optimized.

Using the preceding results we show in this paper that PCFBs also serve as optimal solutions to certain

problems in communication systems which use DMT modulation. It is possible that PCFBs do not exist for

certain classes (e.g., see [4]). But when they exist, they have the stated optimality. Whenever we say that

the PCFB is optimal for a problem, the implicit assumption is that the class of filter banks searched is such

that a PCFB exists.

4.1. Construction Of The PCFB, And Compaction Filters

For the transform coder class Ctc the filters have length ≤ M. This means that the polyphase matrix E(z) in

Fig. 4(c) is a constant matrix T. Suppose Rqq denotes the M×M autocorrelation matrix of its input vector.

If T is chosen as the unitary matrix diagonalizing Rqq then it defines the PCFB in this case. This T is

nothing but the Karhunen Loeve Transform (KLT) of the effective noise input q(n). This choice decorrelates

the signals qk(n) for each n. That is, the autocorrelation matrix of the vector

[ q0(n) q1(n) . . . qM−1(n) ]T (12)

is diagonalized. For the ideal filter bank class Cideal, the matrix E(z) could have infinite order in z. This

means in particular that ideal filters Hk(ejω) are allowed. In this case the PCFB is such that the power

spectrum of the vector (12) is diagonalized which in particular means that the autocorrelation matrix is

diagonal as well. In short, the KLT forces the instantaneous decorrelation property E[qk(n)q∗m(n)] = 0 for

each n, whereas the PCFB for Cideal forces the total decorrelation property E[qk(n)q∗m(i)] = 0 for all n, i (with

k �= m). In addition, the PCFB for Cideal also induces the spectral majorization property. That is, assuming

σ2
qi

are in decreasing order, the power spectra Si(ejω) of qi(n) are ordered such that Si(ejω) ≥ Si+1(ejω)

13



pointwise for all ω. It has been shown in [37] that total decorrelation and spectral majorization are necessary

and sufficient for the PCFB property in the class Cideal. For classes other than Cideal and the transform

coder class, such conditions for the PCFB property have not been established. In fact the existence of a

PCFB is not guaranteed for arbitrary classes of orthonormal filter banks (see [4] for counterexample). When

a PCFB does exist, there is a sequential algorithm that can be used to construct the filters [23], [4], [5].

Closely associated with PCFBs is the notion of an optimal compaction filter H(ejω) for a signal q(n) with

power spectrum Sqq(ejω). Such a filter has the property that its output in response to the input q(n) has

maximum variance subject to the Nyquist(M) constraint |H(ejω)|2
∣∣
↓M

= 1. For the transform coder class,

this filter can be constructed by making E(z) the KLT, and taking the receiver filter with largest variance as

the solution. For the class Cideal the optimal compaction filter can be constructed graphically [37]. Typically

there are multiple passbands. For example the power spectrum in Fig. 6(a) has optimal compaction filter

for M = 4 shown in Fig. 6(b). To construct such a filter we proceed as follows: take any frequency ω0 in

0 ≤ ω0 < 2π/M and consider the set of M frequencies

ω0 +
2πm

M
, 0 ≤ m ≤ M − 1. (13)

Choose one frequency in this set such that Sqq(ejω) is a maximum in this set (if there are multiple maxima

choose one arbitrarily). Include this frequency in the passband of H(ejω), and the remaining M−1 frequencies

in the stopband. Repeat this for all ω0 in 0 ≤ ω0 < 2π/M . Set the passband height equal to
√

M and

stopband height equal to zero. This completely determines the optimal compaction filter H(ejω) for the

power spectrum Sqq(ejω).

The PCFB can be constructed by designing the filters H0(ejω), H1(ejω), . . . sequentially one at a time as

follows [37]. First design H0(ejω) as an optimal compaction filter for Sqq(ejω). Then define a partial power

spectrum by removing or peeling off from Sqq(ejω) those parts that fall in the passbands of H0(ejω) (Fig.

6(c)). Design an optimal compaction filter H1(ejω) for this partial psd. Remove those parts of this partial

psd that fall under the passband of H1(ejω), and continue this until all the filters have been designed. Figure

6(d) shows the filters designed in this manner for M = 4.

Filter banks constructed using this procedure have the following properties.

1. A filter Hk(ejω) may have more than one passband, but the sum of all its passband widths is equal to

2π/M, and the heights of the passbands are equal to
√

M (e.g., two in Fig. 6).

2. The passbands of any two filters are disjoint, and the filters together cover the entire frequency range.

3. For any ω0 consider the set of M frequencies in Eq. (13). Given any filter Hk(ejω), exactly one of these
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M frequencies belongs to its passband, and the others belong to the stopband. This property implies

two things: (a) Each filter is an aliasfree(M) filter. In other words, its output can be decimated by M

without causing overlaps of the copies of the spectrum created by downsampling. (b) The decimated

version |Hk(ejω)|2↓M = 1 for all ω.

ω

0 2π

input power spectrum(e)

(f)
ω

0 2π

PCFB for M=4
2

compaction
  filter

ω

0 2π

input power spectrum

H0

H1
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H3ω

0 2π

PCFB for M=4
2

ω

0

compaction
filter for M=4

2π

ω

0 2π

partial power spectrum

(c)

(d)

(a)

(b)

2

Fig. 6. (a) A power spectrum, (b) its optium compaction filter for M = 4, (c) the partial power spectrum obtained

by peeling, (d) the PCFB for M = 4, (e) a monotone power spectrum, and (f) its PCFB for M = 4.

It readily follows from these that the resulting filter bank is orthonormal. The proof that this is actually a

PCFB can be found in [37]. For the case of a monotone decreasing power spectrum Sqq(ejω) the compaction

filter is lowpass, as demonstrated in Fig. 6(e), (f). In this case the PCFB happens to be the traditional

brickwall stacking of bandpass filters as shown.

5. OPTIMIZATION OF THE DMT FILTER BANK

In this section we show how to optimize the orthonormal filter bank used in a DMT system. We assume that

the number of subchannels M is fixed. The channel transfer function C(z) and the noise power spectrum

See(ejω) are assumed to be fixed and known as well. A brief overview of these results will also appear in

[40].

5.1. Minimizing Transmitted Power

Recall that the total transmitted power can be expressed in terms of the error probability and noise variances
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as in Eq. (10), reproduced below:

P =
M−1∑
k=0

Pk =
M−1∑
k=0

β
(
Pe(k), bk

)
× σ2

qk

Let us assume that the bit rates bk and probabilites of error Pe(k) are fixed. For this desired combination

of {bk} and {Pe(k)}, the total power required depends on the distribution of noise variances {σ2
qk
}. These

in turn depend upon the filters {Hk}. From Eq. (9) it follows that the required power Pk in the kth band

is a linear (hence concave) function3 of σ2
qk

. The total transmitted power P is therefore a concave function

of the noise variance vector

[σ2
q0

σ2
q1

. . . σ2
qM−1

]T (14)

From Fig. 2(c) we see that this is the vector of subband variances of the orthonormal filter bank {Hk(ejω)}

in response to the power spectrum See(ejω)/|C(ejω)|2. Recalling the discussion on PCFBs from Sec. 4 we

now see that the orthonormal filter bank {Hk(ejω)} which minimizes total power for fixed error probabilities

and bit rates is indeed a PCFB for the effective noise power spectrum

Sqq(ejω) ∆= See(ejω)/|C(ejω)|2

Having identified this PCFB, the variances σ2
qk

are readily computed, from which the powers Pk for fixed bit

rate bk and error probabilty Pe(k) can be found (using (9)). The minimized power P can then be calculated.

5.2. Maximizing Total Bit Rate

Returning to the error probability expression (8) let us now invert it to obtain a formula for the bit rate bk.

This is tricky because of the way bk occurs in two places. The factor (1−2−bk) however is a weak function of

bk in the sense that it varies from 0.5 to 1 as bk changes from one to infinity. Suppose we replace (1− 2−bk)

with unity. Then Eq. (8) yields

bk = 0.5 log2

(
1 +

3
[Q−1(Pe(k)/2)]2

Pk

σ2
qk

)
(15)

so the total b =
∑

k bk is approximately

b = 0.5
M−1∑
k=0

log2

(
1 +

3
[Q−1(Pe(k)/2)]2

Pk

σ2
qk

)
(16)

This is the achievable b without channel coding, for a given set of error probabilities {Pe(k)} and signal to

noise ratios {Pk/σ2
qk
}. Since log2(1 + a/x) is convex in x (for a, x > 0), the total bit rate is convex in the

variance vector (14). Thus the orthonormal filter bank {Hk(ejω)} which maximizes bit rate for fixed error
3A linear function is also convex, so there is a permutation of the optimal PCFB which maximizes rather than minimizes

power. Evidently it should be avoided!
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probabilities and powers is again a PCFB for the effective noise psd See(ejω)/|C(ejω)|2 as before. This is

intuitively appealing since the maximization of bit rate and minimization of total power are consistent goals.

Without the approximation 1−2−bk ≈ 1 the closed form expression (16) is not possible, but the convexity

of b can still be proved in a more elaborate way as shown in Appendix B.

5.3. Optimal Power Allocation

The preceding result is true regardless of how the total power P =
∑

k Pk is allocated among the bands. In

particular we can perform optimum power allocation. We have

b = 0.5
M−1∑
k=0

log2

(
1 +

Pk

Nk

)
(17)

where Nk = σ2
qk

[Q−1(Pe(k)/2)]2/3. The optimization of {Pk} for fixed total power P =
∑

k Pk is a standard

problem in information theory [11]. The solution is given by

Pk =
{

λ − Nk if this is non-negative,
0 otherwise.

(18)

N0

N1

N2

N3

P0 P1

P  = 02

P3

λ

Fig. 7. Optimal power allocation by water pouring.

where λ is chosen to meet the power constraint. This is the familiar water pouring rule [11] demonstrated

in Fig. 7. This power allocation is optimal regardless of the exact choice of the filter bank {Hk(z)}. In

particular if {Hk(z)} is chosen as the optimal PCFB and then power is allocated as above, it provides the

maximum possible DMT bit rate b for fixed total power and fixed set of error probabilities. Note that the

power allocation automatically determines bit allocation because of the formula (15).

5.4. Capacity

We observe some similarities and differences between the actual bit rate (16) and the theoretical capacity of

the DMT system. The biorthogonal DMT system with ideal channel equalizer can be represented by

yk(n) = xk(n) + qk(n) (19)
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where xk(n) are the modulation symbols and qk(n) the noise components shown in Fig. 2(c). In general it

is not true that the effective noise components qk(n) are Gaussian, white, and uncorrelated. However if the

number of bands M is large and the filters Hk(z) are good approximations to ideal filters then this is nearly

the case. In this case the channel (19) is identical to the parallel Gaussian channel and has information

theoretic capacity [11]

C = 0.5
M−1∑
k=0

log2

(
1 +

Pk

σ2
qk

)
(20)

Since the noise variances σ2
qk

depend on the filters {Fk, Hk}, the above capacity C also depends on them. For

the case where {Hk} is an orthonormal filter bank this capacity is maximized if {Hk} is chosen as a PCFB

for the effective noise psd See(ejω)/|C(ejω)|2. The reason again is that (20) is convex in the variance vector

(14). Moreover, as in [11], we can optimally allocate the powers Pk under a power constraint P =
∑

k Pk.

Equation (16) is the bit rate achieved for fixed probabilities of error {Pe(k)}, and without channel-coding

in subbands. Eq. (20) is the information capacity, that is, the theoretical upper bound on achievable bit

rate with arbitrarily small error. We see that both (16) and (20) depend on the choice of filter bank, and

are maximized by the PCFB. Suppose the error probabilities are Pe(k) = 10−7 for all k. A calculation of the

factor 3/[Q−1(Pe(k)/2)]2 shows that if the two quantities b and C have to be equal then the total power in

(16) should be 9.74 dB more than the power used in (20). Channel coding is included in many DMT systems

in order to reduce this gap.4

The preceding discussion on capacity should be interpreted carefully. Indeed the capacity of a channel

is a property of the channel itself, and cannot depend on the filter bank. It depends on the power, the

channel transfer function, and the noise. However, in the preceding interpretation we imagine that the

M band transmitter filter bank and receiver filter bank are part of the channel. The number of bands

M and the powers {Pk} are fixed, and the filter bank is assumed orthonormal. Under this condition, Eq.

(20) represents the capacity of the channel, and it depends only on the noise variance distribution {σ2
qk
}

which can be controlled by the receiver filters (the transmitter filters are conjugates of the receiver filters by

orthonormality and perfect reconstruction requirement). This is a useful interpretation because of the close

analog between Eq. (20) and the bit rate (16). This capacity is maximized by choosing the filter bank to be

a PCFB and by performing power allocation as described earlier. Notice finally that the bit rate equation

(16) with nonzero error probability is both practical and perfectly meaningful, and is in no way affected by

the preceding interpretation based on capacity which in this context is only of aesthetic value.

4This gap is very similar to the gap between PCM rate and channel capacity for AWGN channels [19, Ch. 15].

18



6. THE TWISTED PAIR CHANNEL

The data rate achievable on twisted-pair copper wires is limited by the channel noise and the gain of the

line |Cc(f)|2, which decreases with frequency and wire length. The signal to noise ratio deteriorates rapidly

with frequency as well as wire length. Nevertheless, with typical noise sources of the kind encountered in a

DSL environment and with typical transmitted power levels, a wire of length 18 kilofeet could achieve a rate

well above 1 Mb/s. Shorter wires (e.g., 1 kft) can achieve much more (40 to 60 Mb/s) [31, 43]. This is done

by allocating power and bits into a much wider bandwidth than the traditional voice band.
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Fig. 8. Qualitative frequency-domain plots for ADSL service on the copper twisted-pair channel. (a),(b) transmitted

psd masks, (c) channel gain |Cc(f)|2, (d) various noise spectra, and (e) model for the bridged tap.
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The purpose of this section is to demonstrate the improvement obtainable with optimal filter banks instead

of a DFT based DMT system. A a simplified model of the twisted pair environment will be used. The model,

while not accurate, helps to demonstrate the ideas well. Only a real simulation with published data on the

channel can reveal the improvements more accurately, but we shall not venture into that here.

The types of noise that are really important in a DSL environment are near end cross talk or next and

far end cross talk or fext. These arise because several twisted pairs are typically placed in a single cable and

therefore suffer from electromagnetic interference from each other. A great deal of study has been done on

this, both theoretical and measurement-based [31,43]. Assuming that all the pairs in the cable are excited

with the same input psd, the power spectra of the next and fext noise sources can be estimated using standard

procedures. Even though the “next noise” is an interference, it has the characteristic of Gaussian noise as

shown in [18].

Figure 8 demonstrates the relevant quantities with plots that reasonably resemble what one might expect

in practice. Parts (a) and (b) show the transmitted downstream (telephone office to customer) and upstream

(customer to telephone office) power distributions for ADSL (asymmetric DSL) service. These signals often

occupy nonoverlapping bands but sometimes they are in the same band, in which case echo cancellers are

required [31]. The downstream bandwidth is larger because of higher rate (several megabits per second);

upstream offers only a few hundred kilobits per second. Fig. 8(c) shows a typical plot of the channel gain.

The dips are due to bridged taps typically attached to telephone lines in the US for service flexibility. Figure

8(d) shows the typical power spectra of the next and fext noises. The figure also shows the typical interference

on the phone line caused by AM radio waves (560 kHz to 1.6 MHz) and from amateur radio (1.81 MHz to

29.7 MHz, which is outside the standard ADSL band as deployed today). These interferences depend of

course on the location of the line, time of the day and many other varying factors.

In any case notice that the overall noise spectrum is far from flat. The ratio of the noise spectrum to

the channel gain given by See,c(f)/|Cc(f)|2 is not monotone. Because of the many bumps and dips in this

ratio, the PCFB is significantly different from the contiguous brickwall stacking, and can therefore reduce

transmitted power significantly, similar to the example of Sec. 3. This is demonstrated next.

6.1. Details

We assume that the channel gain |Cc(f)|2 as a function of the continuous-time frequency f has the form [16]

|Cc(f)|2 = βe−α
√

f �/�0

where � is the length of the twisted pair line in kilofeet and f is in kHz. The constants appearing in the

equation are α = 1.158, β = 10−1.2, and �0 = 18. Notice that this value of β yields an attenuation of 12 dB
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at zero frequency. The preceding expression for |Cc(f)|2 is sometimes referred to as the RC-approximation,

and is valid for short lengths [16]. We approximate each bridged tap with a multiplicative term B(f) having

the form shown in shown in Fig. 8(e). The expression used in the simulation is

B(f) =





1 |f − fb| > ∆fb

1 − 1 − ε

∆f2
b

(
|f − fb| − ∆fb

)2

otherwise.

This expression is used for f ≥ 0, and it defines B(f) for all f because B(−f) = B(f). The center frequency

fb is determined by the length of the bridged tap. The noise psd See,c(f) as a function of continuous-time

frequency f has the form

See,c(f) = Snext(f) + Sfext(f) + SAM (f)

For simplicity the AM noise psd SAM (f) for a given station is assumed to be a constant with total bandwidth

of 10 kHz around the station frequency fam. Its strength 10 log10 SAM (f) can be specified in dBm/Hz

(typically between −80 and −120 dBm/Hz on phone lines [31]). We consider the ADSL downstream channel

for which the next and fext sources are, respectively, the upstream and downstream signals in the other

twisted pairs in the cable. We assume the upstream and downstream signal power spectra Sup(f) and

Sdn(f) to be as in the ADSL issue 2 mask described in [31]. More specifically, these are taken to be the plots

on pages 103 and 105 of [31] multiplied by the baseband pulse shaping function

(
sin(πf/f0)

πf/f0

)2

where f0 = 2.208 MHz for downstream and 270 kHz for upstream [31]. The psd of next and fext noise sources

are taken to be

Snext(f) = cn(Nn/49)0.6f1.5Sup(f)

Sfext(f) = cf (Nf/49)0.6f2�|Cc(f)|2B(f)Sdn(f)

where cn = 10−13 and cf = 9 × 10−17. Here � is the wire length in kilofeet and f is in Hz. The integers Nn

and Nf are the number of next and fext disturbers (≤ 49 in a fifty-pair cable). For our example we assume

the following:

1. Number of subchannels M = 8, sampling rate = 3.2 MHz, and probabilities of error Pe = 10−9 in all

subchannels. PAM constellations are used in each subchannel.

2. Twisted pair channel length � = 3 kft, and number of disturbers = 49 (for both next and fext).

3. One bridged tap with ε = 1/60, ∆fb = 150 Hz and fb = 123 kHz.
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4. Two AM stations with BW 10 kHz each, having carrier frequencies 600 kHz and 850 kHz with power

spectra −95 dBm/Hz and −90 dBm/Hz respectively.

Then for a downstream ADSL bit rate of 3.2 Mb/s, the transmitted power is required to have the following

values:

Traditional DFT-multitone: 4.68 mW
DCT-multitone: 4.08 mW
KLT-multitone: 2.76 mW
Ideal FB (contiguous stacking, Fig. 3(b)): 1.28 mW
Ideal PCFB (unconstrained class Cu): 0.94 mW
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Fig. 9. Two of the M filters in the PCFB which minimizes transmitted power in the example.
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The PCFB is therefore significantly better than the other filter banks. Compared to the traditional DFT,

the savings in power is about a factor of five. Figure 9 shows the responses of two of the eight filters in the

PCFB (normalized to unity). Notice that the filters have multiple passbands. The plot for H4(ejω) shows

that its practical implementation could be expensive because of the very narrow passbands. In fact, by a

slight variation of the PCFB design algorithm, it is possible to eliminate bands that are narrower than a

certain threshold. Such near-PCFB solutions will still have performance close to ideal. In any case, it is

our opinion that the primary role of the PCFB is to provide bounds on performance for fixed M. If the

performance gap between a practical system and the PCFB solution is small in a particular application, this

gives the assurance that we are not very far from optimality.

If we plot the required transmitted power as a function of the number of bands M (with all other

parameters as in the previous example) the result is as shown in Figure 10. The plot shows the results for

M = 1, 2, 4, 8, 16, 32, 64 and 128. The PCFB requires smaller power than all other methods (consistent with

its theoretical optimality). However, the difference between various filter banks becomes negligible as M

increases. This is analogous to a well known observation in subband coding [14]; namely the coding gain is

relatively insensitive to the choice of filter bank as M → ∞. DMT systems based on fixed filter banks such

as the DFT or cosine modulated filter banks are attractive because of their simplicity; they are non adaptive

and can be implemented efficiently [10, 27].

7. SCALAR PREFILTERING BEFORE CHANNEL

Consider again Fig. 1 where {Hk} is orthonormal with Fk(ejω) = H∗
k(ejω). Assume as before that C(z) has

been equalized by inserting 1/C(z). Suppose this configuration is further modified by insertion of a prefilter

and postfilter around the channel (Fig. 11(a)). Thus the effective transmitting filters are F ′
k(z) = Fk(z)D(z)

and receiving filters are H ′
k(z) = Hk(z)/D(z). This defines a biorthogonal filter bank {F ′

k(z), H ′
k(z)}. This

system can achieve better performance than the orthonormal system {Fk(z), Hk(z)}. For example we can

shape D(z) and {Fk(z)} such that the transmitted power is minimized for fixed bit rates and probabilities

of error.

The interpolated signal sk(n) (Fig. 11(b)) has a variance which in general depends on n. In fact if we

assume that xk(n) is a WSS process, the signal sk(n) is cyclo WSS, and its variance is a periodic function of

n with period M. The power in the kth symbol is this variance averaged over a period. To find this, redraw

Fig. 11(b) as in Fig. 11(c) where Rnk(z) are the polyphase components of Fk(z)D(z). We shall assume that

the symbols xk(n) are white with zero mean and variance Pk. This is consistent with the view that xk(n)

is generated by parsing a binary iid sequence [8]. Thus the variance at the output of Rnk(z) is given by

23



∫
Pk|Rnk(ejω)|2dω/2π. The average variance of sk(n) is then

Mx (n)
k

F (z)D(z)
k

s (n)
k
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k
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k
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Fig. 11. (a) Pre and post filters in the DMT system, (b) the kth subchannel symbol and its interpolation, and (c)

equivalent polyphase diagram.

Pk

M

M−1∑
n=0

∫ 2π

0

|Rnk(ejω)|2dω/2π =
Pk

M

∫ 2π

0

|Fk(ejω)D(ejω)|2dω/2π

Assuming further that xk(n) are uncorrelated for different k, the total power input to the channel is the sum

of these average variances:

P =
1
M

M−1∑
k=0

Pk

∫ 2π

0

|Fk(ejω)D(ejω)|2dω/2π (21)

The quantity Pk is also the physical signal-power at the input of the detector. The noise variance σ2
qk

at the

detector input can be computed by referrring to Fig. 2(c) and inserting the additional factor 1/D(z) in the

noise transfer functions. Thus

σ2
qk

=
∫ 2π

0

See(ejω)|Hk(ejω)|2
|C(ejω)D(ejω)|2 dω/2π

Since Pk = g[bk,Pe(k)]σ2
qk

for some g[., .], the total power is

P =
1
M

M−1∑
k=0

g[bk,Pe(k)]
∫ 2π

0

See(ejω)|Fk(ejω)|2
|C(ejω)D(ejω)|2

dω

2π
×

∫ 2π

0

|Fk(ejω)D(ejω)|2 dω

2π

where we have substituted the preceding expression for σ2
qk

and used the fact that Hk(ejω) = F ∗
k (ejω) for

any orthonormal filter bank. For a given channel, C(ejω) and See(ejω) are fixed. Assume the set of error

probablities {Pe(k)} and bit rates {bk} are also fixed. The total power input to the channel then depends
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on the orthonormal filter bank {Fk(ejω)} and the prefilter D(ejω). The next result shows how this power

can be minimized. It is an extension to the DMT system, of a familar result in subband coding theory [12].

Theorem 1. Optimum prefiltered orthonormal FB for DMT. Assume that the modulation symbols xk(n)

are white, and uncorrelated for different k. For fixed probabilities of error Pe(k) and bit rates bk, the

combination of orthonormal filter bank {Hk} and prefilter D(z) which minimizes the total required power

P is obtained as follows: (a) Choose D(z) with magnitude response (22), and (b) make {Hk} = PCFB for
√

See(ejω)/|C(ejω)|. ♦

Proof. From Cauchy-Schwartz inequality we have

∫
See|Fk|2
|CD|2

dω

2π

∫
|FkD|2 dω

2π
≥

(∫ √
See|Fk|2
|C|

dω

2π

)2

where the argument (ejω) has been eliminated for simplicity. Equality holds when the two integrands on the

left are equal, that is,

|D(ejω)| =
(
See(ejω)/|C(ejω)|2

)1/4

(22)

This is the optimum |D(ejω)| no matter what the orthonormal filter bank {Hk} is. With the prefilter chosen

as above, the total transmitted power is P =
∑M−1

k=0 g[bk,Pe(k)]η2
k/M where

η2
k =

(∫ 2π

0

√
See(ejω)|Hk(ejω)|2

|C(ejω)| dω/2π

)2

Thus P is a concave function of [ η2
0 η2

1 . . . η2
M−1 ]T which can be regarded as a subband variance vector

from an orthonormal analysis bank with input power spectrum
√

See(ejω)/|C(ejω)|. Applying the result of

Sec. 4 we conclude that the orthonormal filter bank {Hk} minimizing the total power is a PCFB for the

power spectrum
√

See(ejω)/|C(ejω)|. ���

Note that the solution (22) also arises in optimal prefiltering prior to scalar quantization, and is said to

be the half whitening filter [14], [36] for the spectrum |C(ejω)|2/See(ejω).

8. CONCLUDING REMARKS

The DMT idea is similar in principle to subband coding where a signal x(n) to be quantized is first decom-

posed into subbands. Depending on the power spectrum Sxx(ejω) of the input, there is a certain distribution

of signal energy across the subbands. This distribution is exploited in the coding process by optimal bit

allocation: we allocate more bits to the subband having higher energy. Thus, in the subband coder, the

frequency dependence of the input signal x(n) is exploited. In the DMT system the frequency dependence of

the channel C(ejω) and the noise See(ejω) are exploited. The similarity of the two problems is exemplified
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by the fact that the PCFB serves as an optimal theoretical benchmark in both cases. The complete duality

between the optimization of subband coders and DMT systems can also be seen in a more basic way as

explained in [21]. The use of nonuniform filter banks and PCFBs for DMT communication has not been

addressed in this paper. Such an extension finds application in the so-called DWMT (discrete wavelet mul-

titone) modulation. We conclude with one further remark. The implicit assumption throughout has been

that the channel and the noise power spectrum are entirely known so that the optimal filter bank can be

identified. If there is an error in the estimation of these channel parameters, then naturally the performance

would be suboptimal. An interesting research problem in this context would be to anlayze the extent to

which the results will stray from optimality.

APPENDIX A. THE PARSING STAGE IN DMT COMMUNICATION

Fig. 12(a) shows the first stage of multitone modulation [8], [10] called the parsing stage. Here s(n) represents

binary data to be transmitted over a channel. This data is divided into nonoverlapping b-bit blocks. The b

bits in each block are partitioned into M groups, the kth group being a collection of bk bits (demonstrated

in the figure for M = 3). Thus the total number of bits b per block can be expressed as b =
∑M−1

k=0 bk.

   binary
data, s(n)

b-bit block b-bit block b-bit block

b0 b1 b2 b0 b1 b2 b0 b1 b2   serial
    to 
parallel

 

s(n)

x (n)
0

x (n)
1

x (n)
2

bitsb0

bitsb1

bitsb2

sk 3sk 5sk 7sk−s k−3sk−5sk−7s k

3-bit PAM or
8-PAM

4-bit QAM or
16-QAM

(a) (b)

(c)
(d)

Fig. 12. (a) and (b) Explanation of the parsing stage in DMT. (c) The 8-PAM constellation (3 bits), and (d) the

16-QAM constellation (4 bits).

The bk bits in the kth group constitute the kth symbol xk which can therefore be regarded as a bk-bit

number. For the nth block, this symbol is denoted as xk(n). This is the modulation symbol for the kth band.
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The vector [ x0(n) x1(n) . . . xM−1(n) ]T is sometimes referred to as the DMT symbol. For the case of

Pulse Amplitude Modulation (PAM), the sample xk(n) is a quantized real number as demonstrated in Fig.

12(c) for bk = 3. For the case of Quadrature Amplitued Modulation (QAM) xk(n) can be regarded as a

compex number, taking one of 2bk possible values from a rectangular constellation as demonstrated in Fig.

12(d). More efficient constellations exist [26].

APPENDIX B. PROOF OF CONVEXITY OF BIT RATE

The following proof was first presented in [6]. Consider Eqn. (8) and delete all dependence on k for simplicity.

Without using the approximation 1 − 2−b ≈ 1 we will show that b is convex in σ2
q . First notice that

σ2
q

3P
= g(b) =

[
Q−1

(
Pe

2(1 − 2−b)

)]−2
1

22b − 1

As b increases from bmin = − log2(1 − Pe) to ∞, the quantity g(b) decreases from ∞ to zero. We will show

that g(b) is convex for bmin < b < ∞. Since the inverse of a decreasing convex function is convex (App. C),

this will prove that b = g−1(σ2
q/3P ) is convex in σ2

q . For convenience define

h(b) =
[
Q−1

(
Pe/[2(1 − 2−b)]

)]2

Then g(b) = 1/[h(b)(22b − 1)], and −dg(b)/db becomes

h′(b)
h2(b)(22b − 1)

+
2 loge 2

h(b)(22b − 1)
+

2 loge 2
h(b)(22b − 1)2

where the primes denote derivatives with respect to b. We know g(b) is convex if its second derivative is

nonnegative. So it is sufficient to show that −g′(b) is decreasing. Both 1/h(b) and 1/(22b − 1) are positive

and decreasing in bmin < b < ∞, and so h′(b) ≥ 0 as well. It is therefore sufficient to show that h′(b)/h(b)

decreases. Since Q(b) =
∫ ∞

b
e−u2/2du/

√
2π, it follows that dQ(b)/db = −e−b2/2/

√
2π. Similarly, the function

b = Q−1(v) has derivative db/dv = −
√

2πe[Q−1(v)]2/2. Using these we verify that

h′(b)
h(b)

=
4
√

2π(loge 2)Q(x)ex2/2

Pe
×

(Q(x) − (Pe/2)
x

)

where x
∆=Q−1[(Pe/2)/(1 − 2−b)]. Now the range bmin < b < ∞ translates to 0 < x < Q−1(Pe/2). In this

range [Q(x) − (Pe/2)]/x is decreasing. So it is sufficient to show that Q(x)ex2/2 is decreasing in x, or its

derivative is negative. This is equivalent to showing that
√

2πQ(x) < e−x2/2/x. Now

√
2πQ(x) =

∫ ∞

x

e−y2/2dy = −
∫ ∞

x

d(e−y2/2)
y

Using integration by parts this indeed becomes

√
2πQ(x) =

e−x2/2

x
−

∫ ∞

x

e−y2/2

y2
dy <

e−x2/2

x
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APPENDIX C. DECREASING CONVEX FUNCTIONS

To verify that the inverse of a decreasing convex function is convex, let y = f(x) be an invertible convex

function (in some range x ∈ R). We have f(µx0 + (1 − µ)x1) ≤ µf(x0) + (1 − µ)f(x1) for 0 ≤ µ ≤ 1.

Substituting y0 = f(x0) and x0 = f−1(y0), and similarly for y1, we get

f(µf−1(y0) + (1 − µ)f−1(y1)) ≤ µy0 + (1 − µ)y1

If f(.) is a decreasing function, then this implies

µf−1(y0) + (1 − µ)f−1(y1) ≥ f−1
(
µy0 + (1 − µ)y1

)

proving that f−1(y) is convex as well. ���
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