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Abstract

In this paper, we present a coding strategy for half duplex wireless relay networks, where we assume

no channel knowledge at any of the transmitter, receiver or relays. The coding scheme uses distributed

space-time coding, that is, the relay nodes cooperate to encode the transmitted signal so that the receiver

senses a space-time codeword. It is inspired by noncoherent differential techniques. The proposed strategy

is available for any number of relays nodes. It is analyzed, and shown to yield a diversity linear in the

number of relays. We also study the resistance of the scheme to relay node failures, and show that a

network with R relay nodes and d of them down behaves, as far as diversity is concerned, as a network

with R − d nodes. Finally, our construction can be easily generalized to the case where the transmitter

and receiver nodes have several antennas.

I. PRELIMINARIES

Wireless relay networks have recently received a lot of attention. Coding strategies inspired by space-

time coding techniques, where the transmit antennas cooperate to resist the fading, have been proposed,

yielding cooperative diversity schemes, where the relay nodes form a virtual multiple antennas array to

obtain the diversity advantage known to be achieved by MIMO systems [17], [1], [10], [2], [23], [5],

[4]. These works have focused on different aspects of coding for wireless networks. In [2], the capacity

of the network is computed, while a lot of work has been done on finding codes optimal with respect to

the so-called diversity-multiplexing gain tradeoff [1], [23], [5].

1This work was supported in part by NSF grant CCR-0133818, by Caltech’s Lee Center for Advanced Networking and by a
grant from the David and Lucille Packard Foundation. Some parts of this paper first appeared in Allerton 2006 and ICASSP07.

March 8, 2007 DRAFT



2

A. Previous work on distributed space-time coding

In [10], a strategy called distributed space-time coding has been presented. The idea is to have the

relay nodes apply a simple operation on their received signal, in such a way that the signal at the receiver

appears as a space-time code. This involves a two-step transmission, where the transmitter first broadcasts

the information to the relays, and second, the relays forward the received signal after having performed

a unitary matrix multiplication on the signal. The pairwise probability of error and the diversity gain

of such coding strategy has been computed. Random distributed space-time codes are used, that is, the

matrices used at the relays are generated randomly.

In [18], [14], [12], distributed space-time codes following the two-step protocol of [10] which reach

the diversity with good coding gain have been proposed. In [11], it was argued that in order to increase

the data rate of the network, one may use multiple antennas at both the transmitter and the receiver

nodes. The two-step transmission of [10] has been generalized, and the diversity and coding gain of

random distributed space-time codes in the multiple antenna nodes scenario has been computed. Algebraic

distributed space-time codes for multiple antenna nodes reaching the diversity and having a better coding

gain than random codes have been presented in [19]. Recently, the setting of [10] has been generalized

in [16], where the constraint of unitary matrix multiplication at the relays has been relaxed.

In [4], a different two-step protocol to implement distributed space-time code has been presented.

During the first phase, the source sends a signal and the relays decode their received signal if the channel

was not in outage. During the second phase, the relays which decoded cooperate to encode a space-code.

The receiver knows the received signals from both the phases, and decode accordingly. This gives a

practical scheme, following the scheme of [17], where the code construction is based on information

theoretic arguments.

All the above strategies assume a “coherent” channel in the sense that the receiver knows all the

channel paths occuring during communication. Recently, different authors started to investigate coding

for a “noncoherent” channel, assuming that none of the transmitter, relay nodes nor receiver, knows about

the channel. A natural approach has been to recall what are the techniques used for the noncoherent MIMO

channel.

B. Previous differential coding techniques

Unitary differential modulation is a technique to code for noncoherent MIMO channels [7], [9]. By

asking the transmitter to send at each time t a codeword multiplied by what was sent at time t − 1,
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differential modulation yields a decoding strategy that does not depend on the channel, and which is thus

suitable for a noncoherent channel.

Using a similar approach for wireless networks has been investigated by several authors. In [24],

differential modulation has been adapted for a decode-and-forward strategy. Differential distributed space-

time coding when the nodes do not decode has been proposed independently in [15], [20], [13], in the

single antenna case. The works in [15], [13] consider a joint design of the matrices at the relays with

the transmitted signal, while the work in [20] suggests a construction where the matrices at the relays

are fixed first, while the transmitted signal is optimized independently.

C. Contribution and organization of the paper

In this work, we are interested in designing a coding strategy for wireless networks where we assume no

channel information, that is, the transmitter and the relays are assumed not to know the channel, and the

receiver decodes with no knowledge of the different paths used during communication. We furthermore

consider a network where nodes are small devices with few resources, so we do not assume that they

are able to decode. Instead, they just do a simple operation on the received signal for which they do not

need to know the fadings. Our strategy is inspired by noncoherent MIMO unitary differential modulation.

We will consider both the cases when the transmitter and receiver have one or several antennas. Our

construction is valid for any number of relays, and any number of transmit/receive antennas.

We organize this paper as follows. In Section II, we start by recalling the wireless network we consider,

and how distributed coding is performed. We then present a distributed coding strategy that emulates

communication over a noncoherent MIMO channel. This allows us to define a differential coding strategy,

described in Section III. For convenience, the idea behind differential modulation is recalled. In Section

IV, we propose a mismatched decoder and show that this yields a diversity gain linear in the number

of relays. We further analyze the behavior of the proposed coding strategy in case of node failures. In

Section V, we discuss issues related to code constructions and we provide simulation results. Finally we

show that our construction can be generalized to the case when both the transmitter and receiver nodes

have several transmit antennas.

II. NONCOHERENT DISTRIBUTED SPACE-TIME CODING

A. Distributed space-time codes

Following the setting defined in [10], consider a wireless network with R+2 nodes which are randomly

and independently distributed. Two nodes, a receiver and a transmitter, want to communicate, while the
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R other nodes serve as relays. Every node is equipped with a single antenna. It can transmit and receive,

but not simultaneously. The channels are denoted by fi from the transmitter to the ith relay, and by gi

from the ith relay to the receiver (see Fig. 1). Both channels are assumed independent complex Gaussian

CN (0, 1). We assume a coherence interval of length T ≥ R (there is no need to have more relays than

coherence time, since it is shown in [10] that the diversity of the system depends on min{T,R}). The

total power of the system ρ is equally distributed between the transmitter and the relays, so that the

transmitter has an energy of P1 = ρ/2, while each relay has P2 = ρ/(2R).

The transmission is done in two steps:

• Step 1: at the transmitter. Let s = (s1, . . . , sT )t be the signal to be sent, from the codebook

{s1, . . . , sL} of cardinality L. The vector s is normalized such that E[s†s] = 1. Let P1 be the

average power available for each transmission. From time 1 to T , the transmitter sends the signals
√
P1T s to each relay. The received signal at the ith relay is given by

ri =
√

P1Tfis + vi, i = 1, . . . , R, (1)

where vi is the complex Gaussian noise CN (0, 1) at the ith relay.

• Step 2: at the relays. The ith relay multiplies its received signal by a unitary matrix Ai (see Remark

1), and sends from time T + 1 to 2T the signals ti to the receiver, where

ti =

√

P2

P1 + 1
Airi, (2)

and the normalization factor is chosen so that E[t†iti] = P2T . The signal at the receiver is given by:

y =
R∑

i=1

giti + w, (3)

where w is the complex Gaussian noise CN (0, 1) at the receiver.

Remark 1: In order to have an equitable protocol among different users and among different times

instants, the matrices Ai are assumed unitary. This also guarantees that the noise w at the receiver remains

temporally white. Note that it has been shown recently [16] that for that purpose, it is enough to require

the Aivi, i = 1, . . . , R to be uncorrelated.

From (3), (2) and (1), the received signal is given by

y =

√

P1P2T

P1 + 1
SH +W, (4)
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Fig. 1. The single antenna wireless relay network model

with

S = [A1s · · ·ARs], H = [f1g1, . . . , fRgR]t (5)

and

W =

√

P2

P1 + 1

R∑

i=1

giAivi + w.

The T ×R matrix S works like a space-time code in a multiple-antenna system. It is called a distributed

space-time code since it has been generated in a distributed way by the relay nodes.

B. A noncoherent channel

Let us now consider the equation

y =

√

P1P2T

P1 + 1
SH +W,

derived above, but assume that none of the fadings are known. In a traditional noncoherent MIMO setting,

it has been argued [6] that the transmitted codeword S has to be unitary.

Recall that here

S = [A1s, . . . , ARs].

The aim is now to design the signal constellation {s1, . . . , sL} 3 s and the unitary matrices Ai, i =

1, . . . , R, so that the T ×R matrix S is unitary, i.e, S†S = IR. Let

s′ =
1√
T

(1, . . . , 1)t, si = Uis
′, i = 1, . . . , L,

where Ui’s are T × T unitary matrices and s′ is normalized so that E[s†s] = 1.
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Assume now that there exists a T × T matrix M such that MM † = T . We can then choose the

matrices Ai to be

Ai = diag(Mi), i = 1, . . . , R,

where Mi denotes a column of M (recall that T ≥ R). Let Uj , j = 1, . . . , L, be diagonal unitary matrices,

thus commuting with all Ai. We have, when sending the codeword sj , that the corresponding distributed

space-time codeword Sj is given by

Sj = [A1sj , . . . , ARsj ] = [UjA1s
′, . . . , UjARs′] = UjM/

√
T ,

and S†
jSj = M †U †

jUjM/T = IR for all transmitted signal sj . Let us keep in mind that the matrices Ai

have to be unitary.

Such matrices M can be found in the class of Butson-Hadamard matrices (see for example [8]).

Definition 1: A Generalized Butson-Hadamard (GBH) matrix is a T × T matrix M with coefficients

in a ring such that

MM∗ = M∗M = T IT

where M∗ is the transpose of the matrix of inverse elements of M : m∗
ij = m−1

ji .

If the coefficients of M are chosen to be roots of unity, then m−1
ij = mij , i.e., the inverse is the conjugate,

so that

MM † = M †M = T IT .

Furthermore, this implies that all matrices Ai are unitary, i = 1, . . . , R.

Example 1: Let ζ3 = exp(2iπ/3) be a primitive 3rd root of unity. Then the matrix

M =








1 1 1

1 ζ3 ζ2
3

1 ζ2
3 ζ3








is a Butson-Hadamard matrix. It is easy to check that MM † = 3I3. Also

diag(M1) =








1 0 0

0 1 0

0 0 1







, diag(M2) =








1 0 0

0 ζ3 0

0 0 ζ2
3







, diag(M3) =








1 0 0

0 ζ2
3 0

0 0 ζ3








are clearly unitary.

Other examples of such matrices can be found in [8]. Note that the tensor product of two GBH matrices
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is again a GBH matrix. This is thus a convenient way of building GBH matrices for a any dimension T .

Example 2: The following tensor product

M ⊗M =








1 1 1

1 ζ3 ζ2
3

1 ζ2
3 ζ3








⊗








1 1 1

1 ζ3 ζ2
3

1 ζ2
3 ζ3








is a Butson-Hadamard matrix that can be used for a network with 9 relay nodes.

Note that our strategy has the advantage of having independent designs for the matrices Ai and Uj ,

unlike for example the scheme given in [15]. Thus, for a given number of relays R, the matrices are

built once for all and given to the relays. The code design then simplifies to considering the matrices

Uj . This question is addressed in Section V.

III. A DIFFERENTIAL CODING STRATEGY

In this section, we give a strategy to implement a differential distributed coding scheme (for the sake

of completeness, the standard differential scheme for MIMO channel is recalled below). It is a priori not

clear how to emulate differential coding in a distributed setting. Where should the differential encoding

take place? One can imagine the relays cooperating to encode differentially, similarly to the coherent

case where relays encode the space-time codes, as well as having the transmitter itself collaborating with

the relays. However, the construction presented in the previous section clearly suggests the approach

where the differential encoder is actually at the transmitter itself. The relays cooperate not to encode

differentially, but to encode a unitary space-time code.

A. Differential MIMO coding

Consider a Rayleigh flat fading channel with M transmit antennas and N receive antennas, with

unknown channel information. The channel is used in blocks of M channel uses, so that the transmitted

signal can be represented as an M ×M matrix St, where t = 0, 1 . . . represents the block channel use.

If we assume that the channel is constant over M channel uses, we may write it as

Yt =
√
ρStHt + Wt, t = 0, 1, . . . (6)

Here Ht, the channel matrix, and Wt, the noise matrix, are two M × N matrices with independent

complex normal coefficients, and ρ is the expected SNR at each receiver antenna.
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Differential unitary space-time modulation [7], [9] is implemented by sending at time t a new codeword

multiplied by the signal transmitted at time t− 1. The transmitted signal St is thus (assuming S0 = I)

St = Xzt
St−1, t = 1, 2, . . . , (7)

where zt ∈ {0, . . . , L − 1} is the data to be transmitted, and C = {X0, . . . ,XL−1} the constellation to

be designed. It can be seen from the above equation that the codebook has to contain unitary matrices,

to prevent St to tend either to zero or infinity.

If we further assume the channel constant for 2M consecutive uses, we get from (6) and (7) that

Yt =
√
ρXzt

St−1H + Wt

= Xzt
(Yt−1 − Wt−1) + Wt

= Xzt
Yt−1 + W′

t,

where W′
t = Wt − Xzt

Wt is statistically independent of Xzt
, since Xzt

is unitary. Since the matrix

H does not appear in the last equation, this means that differential modulation allows decoding without

knowledge of the channel.

Remark 2: Note that in practice, the coherence interval is usually much larger than 2M . In fact, what is

often encountered is a continuously-fading channel. The assumption that the differential scheme exploits

is that the channel is roughly constant over “any” 2M channel uses.

B. A differential encoder

It is straightforward to adapt the two-steps transmission described in Subsection II-A to allow differ-

ential encoding and decoding.

Assume that the transmitter wants to send at time t+ nT the data zt+nT . It is encoded into a unitary

matrix U(zt+nT ). We consider the following strategy:

1) Let st = U(zt)s
′ be the signal to be transmitted, where s′ = (1, . . . , 1)t/

√
T is normalized so that

E[s†tst] = 1. Let P1 be the average energy available for each transmission. From time t + 1 to

t+ n, the transmitter sends the signal
√
P1T st to each relay. From time t+ T + 1 to t+ 2T , the

signal to be transmitted is st+T = U(zt+T )st.

2) At the ith relay, the received signals are (indexing the signals as a function of the time at which

they have been sent)

ri(t) =
√

P1Tfist + vi(t), i = 1, . . . , R,
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and

ri(t+ T ) =
√

P1TfiU(zt+T )st + vi(t+ T ), i = 1, . . . , R.

3) The ith relay multiplies its received signal by a unitary matrix Ai, where Ai has been built using

a Butson-Hadamard matrix as described in Subsection II-B. From time t + T + 1 to t + 2T ,

the transmitted signal is ti(t) =
√

P2

P1+1Airi(t), and similarly from time t + 2T + 1 to t + 3T :

ti(t+ T ) =
√

P2

P1+1Airi(t+ T ) .

4) At time t+ 2T , resp. t+ 3T , the received signals are similar to (4)-(5):

y(t) =
√
cρ

R∑

i=1

gifiAist +W (t) (8)

y(t+ T ) =
√
cρ

R∑

i=1

gifiAiU(zt+T )st +W (t+ T ), (9)

where

W (t) =

√

P2

P1 + 1

R∑

i=1

giAivi(t) + w(t) and cρ =
P2P1T

P1 + 1
.

Under the assumption that Ai and U(zt+T ) commute, for all i and for all possible choices of U(zt+T ),

we can plug equation (8) into equation (9), which yields

y(t+ T ) = U(zt+T )y(t) + [W (t+ T ) − U(zt+T )W (t)]. (10)

Note that the channel coefficients fi and gi do not appear in (10). Also, the assumption that Ai and

U(zt+T ) commute is valid since both the unitary codewords Uj and the matrices Ai are chosen diagonal.

IV. PAIRWISE PROBABILITY OF ERROR AND NODES FAILURES

A. A decoding rule

Emulating the point to point case, a natural candidate for the differential decoder is

arg min
Ul, l=1,...,L

‖y(t+ T ) − Uly(t)‖2. (11)

Let us restrict to the case where T = R. In order to analyze this strategy, we consider two instances of

the noncoherent channel,

y(t) =
√
cρS(t)H +W (t)
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where H is an T × T matrix unknown at both the transmitter and receiver, S(t) is a T × T unitary

matrix, and cρ is a constant which depends on the SNR ρ, that is,



y(t)

y(t+ T )



 =
√
cρ




S(t)

S(t+ T )



H +




W (t)

W (t+ T )



 .

Since S(t) and S(t)ψ are indistinguishable for an arbitrary unitary T × T matrix ψ, we preprocess the

signal so that 


y(t)

y(t+ T )



 =
√
cρ




IT

Uk



H +




W (t)

W (t+ T )



 ,

for Uk a unitary matrix belonging to the codebook. To suit the network model, we have

W (t) =

√

P2

P1 + 1

T∑

i=1

Aigivi(t) + w(t)

and H = Dgf , where Dg = diag(g1, . . . , gT ) and f = (f1, . . . , fT )t. Furthermore, we have cρ = P2P1T
P1+1 ,

and we denote c′ρ = P2

P1+1 . Recall that P1 = ρ/2, P2 = ρ/(2R) and ρ is the total power of the system.

Because of the two steps transmission, both the noise W (t) and the channel matrix H contains products

of Gaussian random variables, which makes a precise analysis difficult. In this work, we thus consider a

mismatched decoder, and we will show that such a decoder already gives the diversity.

B. Pairwise probability of error

Let us now compute the pairwise error probability of decoding with a mismatched decoder. Let In

denote the identity matrix of size n. Knowing g = (g1, . . . , gT )t, we have

E[W (t)W (t)†] = E[W (t+ T )W (t+ T )†]

= c′ρE[
T∑

i,j=1

Aigivi(t)(Ajgjvj(t))
†] + E[W (t)W (t)†]

= c′ρ

T∑

i=1

AiA
†
i |gi|2IT + IT

= (c′ρ‖g‖2 + 1)IT .

Let y = [y(t) y(t+ T )]t, we have

Σ := E[yy†] =




cρD|g| + (c′ρ‖g‖2 + 1)IT cρD|g|U

†
k

cρD|g|Uk cρD|g| + (c′ρ‖g‖2 + 1)IT



 ,
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where D|g| = diag(|g1|2, . . . , |gT |2).
The pairwise probability of error is given by

P (Uk → Ul) = P (‖y(t+ T ) − Uky(t)‖2 ≥ ‖y(t+ T ) − Uly‖2 | Uk is sent)

= P (‖[−Uk IT ] y‖2 ≥ ‖[−Ul IT ] y‖2 | Uk is sent)

= P (y†Uy ≥ 0 | Uk is sent)

with k 6= l and

U =




0 U †

l − U †
k

Ul − Uk 0



 . (12)

We start by computing P (y†Uy ≥ 0) knowing g.

Proposition 1: We have that, at high SNR,

P (y†Uy ≥ 0| g) ≤ 1

2
det(IT +

cρ

8( 1
T ‖g‖2 + 1)

D|g|(Uk − Ul)(Uk − Ul)
†)−1.

Proof: We have

P (y†Uy ≥ 0| g) = E[u(y†Uy)]

= E

[

1

2π

∫ ∞

−∞

eiωy†Uy

iω
dω

]

where u is the step function (u(x) = 1 if x > 0, u(x) = 0 else), and the second equality is the Fourier

transform of u. Computing the expectation yields

P (y†Uy ≥ 0| g) =
1

2π

∫ ∫ ∞

−∞

eiωy†Uy

iω

e−y†Σ−1y

(2π)2T det(Σ)
dωdy

=
1

(2π)2T+1i

∫ ∞

−∞

∫
e−y†(−iωU+Σ−1)y

ω det(Σ)
dydω.

Since the exponent of the exponential is of the form iy†ωUy−y†Σ−1y, with real part −y†Σ−1y which

is negative, and imaginary part given by iy†ωUy (recall that U is Hermitian), then this integral converges

and we have

P (y†Uy ≥ 0| g) =
1

2πi

∫ ∞

−∞

1

ω det(I − iωUΣ)
dω.

We have that the above determinant is given by

T∏

k=1

(
1 + iωcρ|gk|2|uik − ujk|2 + ω2|uik − ujk|2(2acρ|gk|2 + a2)

)
,
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where a = c′ρ‖g‖2 +1. Since our goal is a diversity computation, we are interested in an very high SNR

regime. Note that when ρ is big, c′ρ = P2

P1+1 = ρ
T (ρ+2) → 1/T . Thus a → ‖g‖2/T + 1 and the term in

a2 does not depend on ρ, so that we have

det(I − iωUΣ) ≈
T∏

k=1

cρ|gk|2|uik − ujk|2
(

1

cρ|gk|2|uik − ujk|2
+ iω + ω22a

)

.

By completing the squares, we get that P (y†Uy ≥ 0| g) is given by

1

2πi

∫ ∞

−∞

1

ω

(
T∏

k=1

cρ|gk|2|uik − ujk|22a
[(

ω +
i

4a

)2

+ c2k

])−1

dω

where

ck :=

√

1

16a2
+

1

cρ|gk|2|uik − ujk|2
.

Note that the above integral has poles in ω = −i(1/4a± ck). Thus as long as −i(1/4a− ck) < Im(ω) <

−i(1/4a+ ck), the above integral is well-defined. We thus choose the following contour of integration,

within the convergence region

1

2πi

∫ ∞− i

4a

−∞− i

4a

1

ω

(
T∏

k=1

cρ|gk|2|uik − ujk|22a
[(

ω +
i

4a

)2

+ c2k

])−1

dω

and with a change of variable, we get

1

2πi

∫ ∞

−∞

1

ω − i
4a

(
T∏

k=1

cρ|gk|2|uik − ujk|22a
[

ω2 +
1

16a2
+

1

cρ|gk|2|uik − ujk|2
])−1

dω

Following [6], we obtain a bound on the probability of error that we know real by taking the real part

of the above expression:

P (y†Uy ≥ 0| g) /
1

2π

∫ ∞

−∞

4a

1 + 16a2ω2

(
T∏

k=1

cρ|gk|2|uik − ujk|22a
[

ω2 +
1

16a2

]

+ 1

)−1

dω

≤ 1

2π

∫ ∞

−∞

4adω

1 + 16a2ω2

(
T∏

k=1

cρ|gk|2|uik − ujk|2
1

8a
+ 1

)−1

=
1

2

(
T∏

k=1

cρ|gk|2|uik − ujk|2
1

8a
+ 1

)−1

=
1

2
det(IT +

cρ

8( 1
T ‖g‖2 + 1)

D|g|(Uk − Ul)(Uk − Ul)
†)−1.
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Thus

P (Uk → Ul) = EgP (y†Uy ≥ 0 | g) ≤ Eg det(IT +
cρ

8( 1
T ‖g‖2 + 1)

D|g|(Uk − Ul)(Uk − Ul)
†)−1.

This bound on the pairwise probability of error is similar to the Chernoff bound obtained in [10, Theorem

1], where it has been proven, by computing the above expectation on g = (g1, . . . , gT ), that the diversity

gain is given by rank((Uk −Ul)(Uk −Ul)
†)
(

1 − log log P
log P

)

. Thus when (Uk −Ul)(Uk −Ul)
† is full rank

(that is, the code is fully diverse), we get a diversity of

R

(

1 − log logP

logP

)

. (13)

C. Analysis of node failures

In our network setting, relay nodes are small devices with few power. It is thus very likely that some of

them may run out of battery, or may encounter a technical problem that will prevent them to communicate,

at a given point of the transmission. In this part, we are interested in understanding how a coding strategy

designed for R relay nodes will behave if d of them are down.

Let us consider one step of the differential scheme, thus involving two transmissions, say y(t) and

y(t + T ). Let us assume that y(t) is transmitted correctly, but one or several node failures happen

while transmitting y(t+ T ). Denote by D the set of indices of relay nodes which are down during the

transmission of y(t+ T ). In Equation (9) for y(t+ T ) we thus have

R∑

i=1

gifiAiU(zt+T )st =
∑

i6∈D
gifiAiU(zt+T )st.

In Equation (8) for y(t), we can similarly write

R∑

i=1

gifiAist =
∑

i6∈D
gifiAist +

∑

i∈D
gifiAist,

so that when we plug Equation (8) inside Equation (9), the term
∑

i∈D gifiAist adds to the noise, and

the codeword Uzt+T
will not be recovered.

However, during the next step, things are different. Consider now the step involving y(t + T ) and

y(t + 2T ). Now, for both signals, the same set of relay nodes will be down. Thus communication will

take place over a network where actually R − |D| are transmitting. The expression for y(t + T ) and

y(t+ 2T ) are similar to those obtained in Equations (8) and (9), except that the sums are over i ∈ R\D
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R L rate ζ(U) u

3 8 1 0.5134 u = (1, 1, 3)
3 63 1.99 0.3301 u = (1, 17, 26)
6 64 1 0.3792 u = (1, 7, 15, 23, 25, 31)
6 4096 2 0.1428 u = (1, 599, 623, 1445, 1527, 1715)
9 57 0.65 0.361 u = (1, 4, 16, 7, 28, 55, 49, 25, 43)

TABLE I
SOME CYCLIC CODES WITH GOOD DIVERSITY PRODUCT.

instead of i = 1, . . . , R. We thus expect the diversity of such systems to be

(R− d)

(

1 − log logP

logP

)

, (14)

where d = |D|. This is a positive result, since it says that the strategy is resistent to node failures.

V. CODE CONSTRUCTIONS AND SIMULATION RESULTS

In this section, we first consider code constructions, and show that though any random diagonal unitary

matrix could be used to generate a codebook, codes designed to optimize the diversity product reach a

much better coding gain. We then provide simulation results, also including the node failures scenario.

We finally discuss the decoding issue.

A. Cyclic codes

Since the matrices Ai used at the relays are fixed for a given number of relays R, designing codes

consists of constructing the diagonal unitary matrices U(z) in which the data z to be sent will be encoded.

Regarding the PEP computation (13), the matrices U(z) have to satisfy the full diversity criterion:

det(U(zt) − U(zt′)) 6= 0, t 6= t′.

A priori, any diagonal unitary matrix could be use to build the code, and we furthermore expect that

such matrix generated randomly would yield full diversity. This makes our scheme attractive since it is

thus available easily for any number of relay nodes R.

In order now to reach a good coding gain, one need, similarly to the point to point case, to maximize

the diversity product, given by

ζ(U) = min
t6=t′

1

2
| det(U(zt) − U(zt′))|1/R.
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Fig. 2. A random rate 1 code versus a cyclic rate 1 code.

Diagonal unitary codes achieving good diversity product have already been studied in [7] for the MIMO

case. They are called cyclic codes. Denote by ζL = exp(2iπ/L) a primitive Lth root of unity. A cyclic

code is parametrized as follows:







ζu1l
L 0

0
. . . 0

0 ζuM l
L







, l = 0, . . . , L− 1,

where L and u = (u1, . . . , uM ) have to be designed. Note that M denotes the number of antennas in

the point to point case, or the number of relays R in the distributed case. Let us give an example with

three relay nodes. Let ζ63 = exp(2iπ/63). The codebook is given by






Di, D =








ζ63 0 0

0 ζ17
63 0

0 0 ζ26
63














for i = 1, . . . , 63. Thus L = 63 and u = (1, 17, 26).

Table I summarizes some good cyclic codes. The codes for 3 and 6 relays have been found in [7].

However, no cyclic code in bigger dimension is available, since there is no need for more than 6 antennas

in a point to point setting. The code for 9 relays is the diagonal component of a fixed point free group

based code [22].
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Fig. 3. On the left, rate 1 cyclic codes: with and without coding at the relays. On the right, rate 2 cyclic codes.

In Fig. 2, we compare a random code with a cyclic code. We plot the block error rate (BLER) as a

function of the power of the system in dBs. We consider the cyclic code u = (1, 1, 3) with rate 1, with

a random code of rate 1. The random code consists of generating one random unitary diagonal matrix

and take its powers from 1 to 8. The relays Ri, i = 1, 2, 3, use respectively the matrices

A1 = I3, A2 =








1 0 0

0 ζ3 0

0 0 ζ2
3







, A3 =








1 0 0

0 ζ2
3 0

0 0 ζ3







.

Both codes are fully diverse, but clearly, the cyclic code with high diversity product reaches a much

better coding gain.

On the one hand, there is thus a real coding gain that could be achieved by choosing carefully the

diagonal matrices. On the other hand, since random unitary diagonal matrices yield full diversity, the

differential coding scheme we propose is available for any number of relay nodes.

B. Illustration of the diversity

Simulation results in Fig. 3 show the BLER as a function of P , the power of the system in dBs. To

start with, Fig. 3 on the left first show what we already know: there is really a need for coding at the

relays, without which we cannot get diversity. We see clearly that without coding at the relays, having

3 or 6 relays in the system does not change the curve and thus give no diversity.

Recall that the analysis of the PEP in (13) predicts a diversity which is linear in the number of relays.
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Fig. 4. On the left, a network of 6 relay nodes with up to 3 nodes down, on the right, a 6 nodes network with 3 nodes down
versus a 3 nodes network.

Fig. 3 on the left further shows how the diversity is increasing, by going from 3 to 6, and then to 9

relays. The codes used are the two cyclic rate 1 codes given in Table I for resp. 3 and 6 relays, and the

cyclic code for 9 relays with rate 0.65.

Fig. 3 on the right shows simulation results for rate 2 cyclic codes, with resp. 3 and 6 relay nodes.

Clearly, increasing the rate decreases the performance, and in particular, the slope given by the diversity

starts at high power. Note that this crossing of the two curves was already observed in the point to point

case [7], but at a lower SNR.

C. Resistance to node failures

We finally give simulation results to illustrate the behavior in case of node failures. The analysis done

in Section IV shows that as far as diversity is concerned, a network of R relay nodes having d relays not

communicating behaves as a network with R−d nodes. This behavior can be observed in Fig. 4. On the

left, the performance of a network with 6 relay nodes is shown. Simulations are then done, assuming that

1, then 2, and finally 3 relay nodes are down. We see how the curves change linearly with the number

of relay nodes.

Fig. 4 on the right compares a network with 6 relay nodes, but only 3 of them communicating, with

a network having only 3 nodes. We observe the same diversity, which was predicted by the analysis in

(14). However, there is a clear loss in coding gain, which is expected.

The simulation results of this section thus confirm a good behavior of the proposed strategy when
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Fig. 5. A wireless network with multiple antenna nodes.

facing node failures.

D. Decoding issues

We finally briefly discuss decoding issues. Simulations shown in this paper have been done via

exhaustive search. Indeed, for such rates, there is no real complexity problem in doing an exhaustive

search. However, when increasing the number of relays or the rate, one may need to have a faster

algorithm. Recall that the mismatched decoder (11) is given by

arg min
Ul, l=1,...,L

‖y(t+ T ) − Uly(t)‖2 = arg min
l=1,...,L

R∑

k=1

|y(t+ T )k − ζukl
L y(t)k|2.

This minimization problem has already been studied in [3], where the authors show how the problem

can be expressed as a lattice reduction problem. They give an algorithm to solve it, which is faster than

exhaustive search.

VI. GENERALIZATION TO MULTIPLE ANTENNAS CASE

In [11], a generalization of the network presented in Subsection II-A was given. In order to increase

the data rate of the network, both the transmitter and receiver nodes are equipped with multiple antennas

(see Fig. 5). Let M and N be the number of transmit resp. receive antennas.

The codeword S sent at the transmitter is normalized such that E[Tr(SS†)] = M . Channels are denoted

by fmj from the mth transmit antenna to the jth relay and gjn from the jth relay to the nth receive

antenna (see Fig. 5), which are assumed to be iid CN (0, 1). Similarly, let vi and Wi be the noise vectors,

with coefficients also iid CN (0, 1). Matrices at the relays are denoted by Ai, i = 1, . . . , R, and need

to be unitary, as before. The power at the transmitter for each transmission is P1, thus P1/M for each
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antenna. Each relay has a power of P2/R for each transmission. By defining Y = [y1,y2, . . . ,yN ], S =

[A1S A2S . . . ARS], gi = [gi1, gi2, . . . , giN ], H = [f1g1, . . . , fRgR]T , and

W =

[√

P2

P1 + 1

R∑

i=1

gi1Aivi + w1, . . . ,

√

P2

P1 + 1

R∑

i=1

giNAivi + wN

]

,

it was shown in [11] that the channel model can be written as

Y =

√

P1P2T

(P1 + 1)M
SH +W. (15)

The received matrix Y is a T ×N matrix, while S is a T ×MR matrix, since the Ai, i = 1, . . . , R, are

T × T matrices, and S is a T ×M matrix.

We now show how the noncoherent scheme presented previously generalizes to the multiple antenna

scenario.

A. The noncoherent channel

Similarly to what we have done in Subsection II-B, we now need to design the matrices Ai, i = 1, . . . , R

and the codebook such that S = [A1S, . . . , ARS] is unitary, i.e, S†S = IMR.

First, we choose the codewords to be of the form

Sj = UjS
′, j = 1, . . . , L

where Uj is a unitary T×T matrix, and S′ is an initial transmitted signal normalized to that E[Tr(S†
jSj)] =

M for all j = 1, . . . , L. As for the one antenna case, we require that both the unitary matrices Ai,

i = 1, . . . , R, and Uj , j = 1, . . . , L be diagonal. Thus, denoting by Sj = [A1Sj , . . . , ARSj ], we have

S†
jSj = [A1UjS

′, . . . , ARUjS
′]†[A1UjS

′, . . . , ARUjS
′]

= [A1S
′, . . . , ARS′]†U †

jUj [A1S
′, . . . , ARS′]

= [A1S
′, . . . , ARS′]†[A1S

′, . . . , ARS′]

and the fact that Sj is unitary only depends on the choice of the matrices at the relays and the transmitted

signal S′. We thus design the matrices Ai and S′ independently of the codebook of matrices Uj .

Suppose now that we have T = MR, with M the number of transmit antennas, R the number of

relays, and T the coherence time. Choose a first generalized Butson-Hadamard (GBM) matrix A of size

R×R, and a second one B of size M (c.f. Definition 1), both with coefficients that are roots of unity.
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Take

Ai = diag(a1i, . . . , a1i
︸ ︷︷ ︸

M

, . . . , aRi, . . . , aRi
︸ ︷︷ ︸

M

),

which is unitary for all i since all aij’s are roots of unity, and similarly

S′ =

√
M

‖S′‖F





















b1,1 . . . b1,M

...
...

bM,1 bM,M

...
...

b1,1 . . . b1,M

...
...

bM,1 bM,M





















,

where
√

M
‖S′‖F

is the normalization factor such that E[Tr(S′†S′)] = M . By definition of the Frobenius norm

‖ · ‖F ,

‖S′‖F =

√
√
√
√

M∑

i=1

T∑

j=1

|s′i,j |2 =
√
MT,

since all coefficients s′i,j are roots of unity. By construction

[A1S
′, . . . , ARS′] =

1√
T
A⊗B,

and

[A1S
′, . . . , ARS′]†[A1S

′, . . . , ARS′] =
RM

T
IRM = IRM ,

since A⊗B is a GBH matrix of size RM .

Example 3: Let M = 2 and R = 3. Choose the following matrices:

A =








1 1 1

1 ζ3 ζ2
3

1 ζ2
3 ζ3








and B =




1 1

1 −1



 .

The unitary matrices at the relays are given by

A1 = I6, A2 = diag(1, 1, ζ3, ζ3, ζ
2
3 , ζ

2
3 ), A3 = diag(1, 1, ζ2

3 , ζ
2
3 , ζ3, ζ3),
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where I6 denote the identity matrix of size 6, and the initial transmitted signal is

S′ =

√

2

12

















1 1

1 −1

1 1

1 −1

1 1

1 −1

















.

B. Decoding and Diversity

A differential encoder is done similarly to the one antenna case, so that a natural candidate for the

differential decoder is

arg min
Ul, l=1,...,L

‖Y (t+ T ) − UlY (t)‖2.

Let us restrict to the case where T = MR. Similarly to the single antenna case, in order to analyze this

strategy, we consider two instances of the noncoherent channel,

Y (t) =
√
cρS(t)H +W (t)

where H is an T × N matrix unknown at both the transmitter and receiver, S(t) is a T × T unitary

matrix, and cρ is a constant which depends on the SNR ρ, that is,



Y (t)

Y (t+ T )



 =
√
cρ




S(t)

S(t+ T )



H +




W (t)

W (t+ T )



 .

Since S(t) and S(t)ψ are indistinguishable for an arbitrary unitary T × T matrix ψ, we preprocess the

signal so that 


Y (t)

Y (t+ T )



 =
√
cρ




IT

Uk



H +




W (t)

W (t+ T )



 ,

for Uk a unitary matrix belonging to the codebook. To suit the network model, we have

W (t) =

[√

P2

P1 + 1

R∑

i=1

gi1Aivi(t) + w1(t), . . . ,

√

P2

P1 + 1

R∑

i=1

giNAivi(t) + wN (t)

]

,

H = [f1g1, . . . , fRgR]T , with fi = [f1i, . . . , fMi]
T and gi = [gi1, gi2, . . . , giN ]. Furthermore, we have

cρ = P2P1T
(P1+1)M , and we denote c′ρ = P2

P1+1 . Recall that P1 = ρ/2, P2 = ρ/(2R) and ρ is the total power

of the system. Since the columns of the matrix H are dependent, we cannot treat the channel equation in
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matrix form and have to vectorize it to do the analysis. We denote by vec(Y (t)) the TN × 1 vectorized

version of Y (t). Set Y = [vec(Y (t)), vec(Y (t+T ))]t. The pairwise probability of error is thus given by

P (Uk → Ul)

= P (‖vec(Y (t+ T )) − (Uk ⊗ IN )vec(Y (t))‖2 ≥ ‖vec(Y (t+ 1)) − (Ul ⊗ IN )vec(Y (t))‖2 | Uk sent)

= P (‖[−(Uk ⊗ IN ) ITN ] Y‖2 ≥ ‖[−(Ul ⊗ IN ) ITN ] Y‖2 | Uk is sent)

= P (Y†∆Y ≥ 0 | Uk is sent)

= EgP (Y†∆Y ≥ 0 | g)

with k 6= l, and

∆ =




0 (U †

l − U †
k) ⊗ IN

(Ul − Uk) ⊗ IN 0



 .

We now use the same approach as in the single antenna case and compute P (Y†∆Y ≥ 0) knowing g.

Proposition 2: We have that

P (Y†∆Y ≥ 0| g) =
1

2πi

∫ ∞

−∞

1

ω det(I2TN − iω∆Σ)
dω,

where Σ is defined by (16).

Proof: We have

P (Y†∆Y ≥ 0) = E[u(Y†∆Y)]

= E

[

1

2π

∫ ∞

−∞

eiY
†∆Y

iω
dω

]

where u is the step function (u(x) = 1 if x > 0, u(x) = 0 else), and the second equality is the Fourier

transform of u. Computing the expectation yields

P (Y†∆Y ≥ 0| g) =
1

2π

∫ ∫ ∞

−∞

eiY
†∆Y

iω

e−Y†Σ−1Y

(2π)2T det(Σ)
dωdY

=
1

(2π)2TN+1i

∫ ∞

−∞

∫
e−Yvec†(−iω∆+Σ−1)Yvec

ω det(Σ)
dYdω,

where Σ = E[YY†] is the covariance matrix of Y. Since the matrix H can be written

H = [G1f , . . . ,GN f ]
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with f = [f1, . . . , fR]t and Gn = diag(g1nIM , . . . , gRnIM ), we have that

Σ =








(c′ρ
∑R

i=1 |gi1|2 + 1)IT

. . .

(c′ρ
∑R

i=1 |giN |2 + 1)IT







⊗I2 +cρ




G

GUk





(

G† G†U †
k

)

(16)

with

G =








G1

...

GN







.

The imaginary part of −Y†(−iω∆+Σ−1)Y is iY†ω∆Y since ω∆ is Hermitian, while Σ−1 is positive

definite. Thus the above integral converges, and we have the desired result.

We now derive the diversity in the asymptotic regime where we assume that both the power of the

system ρ and the number of relays R are big. Recall that

P (Uk → Ul) = EgP (Y†∆Y ≥ 0 | g)

= Eg|g∈AP (Y†∆Y ≥ 0) + Eg|g 6∈AP (Y†∆Y ≥ 0),

where

A = {g | |(1/R)

R∑

i=1

|gij |2 − 1| < ε for all j}.

When R→ ∞, we now show that P (g ∈ A) → 1 for all ε > 0, which will thus imply that

Eg|g 6∈AP (Y†∆Y ≥ 0) → 0.

For any j = 1, . . . , N , we have

P (|(1/R)
R∑

i=1

|gij |2 − 1| < ε) = 1 − P (|(1/R)
R∑

i=1

|gij |2 − 1| ≥ ε).

Since γ :=
∑R

i=1 |gij |2 has a gamma distribution, we have that

P (γ ≥ R+ εR) =

∫ ∞

R(1+ε)

γR−1e−γ

(R− 1)!
dγ,

which can be bounded, using a Chernoff bound, by

P (γ ≥ R+ εR) ≤ E[eα(γ−R(1+ε))], α > 0
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= e−αR(1+ε)

∫ ∞

0

γR−1e−γ(1−α)

(R− 1)!
dγ, 0 < α < 1

= e−αR(1+ε)

∫ ∞

0

(
u

1 − α

)R−1 e−u

(R− 1)!

du

1 − α
, u = (1 − α)γ

=

(

e−α(1+ε)

1 − α

)R

.

By computing the derivative of the above expression, we find that the optimal α is given by 1 − α =

1/(1 + ε), that is, α = ε/(1 + ε), so that

1 − P (γ ≥ R+ εR) ≥ 1 − ((1 + ε)e−ε)R.

Since (1 + ε)e−ε < 1 for ε > 0, we have that (1 + ε)e−ε → 0 with an exponential decay.

Proposition 3: We have that

P (Y†∆Y ≥ 0 | g ∈ A) ≤ 1

2
det



IT +
cρ
16

N∑

j=1

GjG†
j (Uk − Ul)(Uk − Ul)

†





−1

Proof: We have that c′ρ
∑R

i=1 |gij |2 + 1 ≈ 2 since c′ρ = ρ/(R(ρ + 2)) and we are integrating over

A, which yields

Σ ≈ 2I2TN + cρ




G

GUk





(

G† G†U †
k

)

,

and what we need to compute is

det




ITN − iωcρG∆†UkG† −iω[2∆† + cρG∆†G†]

−iω[2∆ + cρG∆G†] ITN − iωcρG∆U †
kG†





where ∆ = U l − Uk. Since ITN − iωcρG∆U †
kG† and −iω[2∆ + cρG∆G†] commute, we have that this

determinant is given by

det

(

ITN + cρG[iω∆∆† +
4ω2∆†∆

cρ
+ 2ω22∆∆†]G†

)

.

Since ρ→ ∞, we have that 4ω2∆†∆
cρ

→ 0, and the determinant simplifies to

det
(

ITN + cρG∆∆†[iω + 4ω2]G†
)

= det



IT + cρG∆∆†[iω + 4ω2]
N∑

j=1

G†
jGj





=
T∏

k=1



1 + cρ∆k∆
†
k[iω + 4ω2]

N∑

j=1

G†
jkGjk




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=

T∏

k=1

4cρ∆k∆
†
k

N∑

j=1

G†
jkGjk

(

1

4cρ∆k∆
†
k

∑N
j=1 G

†
jkGjk

+
iω

4
+ ω2

)

=
T∏

k=1

4cρ∆k∆
†
k

N∑

j=1

G†
jkGjk

((

ω +
i

8

)2

+ c2k

)

where

ck =

√

1

64
+

1

4cρ∆k∆
†
k

∑N
j=1 G

†
jkGj

.

From now on, we can follow step by step the computation done for the single antenna case, which finally

yields that

P (Y†∆Y ≥ 0| g) ≤ 1

2





T∏

k=1

cρ∆k∆
†
k

N∑

j=1

G†
jkGj

1

16
+ 1





−1

,

which concludes the proof.

Thus

P (Uk → Ul) = P (Y†∆Y ≥ 0) ≤ Eg|g∈A det(IT +
ρ

32

N∑

j=1

GjG†
j (Uk − Ul)(Uk − Ul)

†)−1.

We now use the computation of the above expectation done in [11] to conclude that the diversity gain is

given by

d =







min{M,N}R M 6= N

MR
(

1 − 1
M

log log P
log P

)

M = N,

assuming again that (Uk − Ul)(Uk − Ul)
† is full rank (that is, the code is fully diverse).

Fig. 6 shows simulation results comparing the performance of a 6 nodes network with one antenna

at transmitter and receiver to a 3 nodes network with 2 antennas at both transmitter and receiver nodes.

The x axis shows the power of the system in dBs, and the y axis the block error rate (BLER). We are

interested in the diversity of both systems. Note that both networks use the same codebook, meaning

that the 2 antennas network is operating at half the rate, explaining its better behaviour. The diversity

of the 2 antennas network is however slightly better, which is expected looking at the expression of the

diversity for both cases, since we have R
(

1 − log log P
log P

)

versus 2R
(

1 − 1
2

log log P
log P

)

.

VII. CONCLUSION

We considered the problem of coding over a wireless relay network. While existing schemes heavily rely

on the knowledge of the channel, either at both relays and receiver, or at least at the receiver, we presented

a scheme that requires no channel knowledge. Furthermore, it is available for any number of relay nodes.
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Fig. 6. A 6 nodes network with 1 antenna versus a 3 nodes network with 2 antennas.

This scheme is based on two ideas: distributed space-time coding, where relay nodes cooperate to encode

the data, and differential MIMO coding, a popular technique to code over a noncoherent MIMO channel.

We analyzed this strategy and showed that the diversity of the system depends on the number of relay

nodes. Actually, when confronted to d node failures, a R nodes network behaves, in terms of diversity,

as a network with R − d. Finally, we extended our construction to the case where both the transmitter

and receiver nodes have several antennas.
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