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Space-Time Coding
Multiple antenna coding: the model
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Space-Time Coding
Multiple antenna coding: the coding problem

» We summarize the channel as
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Space-Time Coding
Multiple antenna coding: the coding problem

» We summarize the channel as

hi1 h12) (Xl X2
Y =
( ho1  h2

) +W, W, H complex Gaussian
X3 X4
space-time codeword

» The goal is the design of the codebook C:

c—{x- (2

X3

X2
) |X17X27X37X4 € (C}
the x; are functions of the information symbols.
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Space-Time Coding
The code design

» The pairwise probability of error of sending X and decoding
X =£ X is upper bounded by

P(X — X) <

const

= | det(X — X)[2M’
where the receiver knows the channel (coherent case).



Space-Time Coding
The code design

» The pairwise probability of error of sending X and decoding
X =£ X is upper bounded by

P(X — X) <

const

= | det(X — X)[2M’
where the receiver knows the channel (coherent case).
» Find a family C of M x M matrices such that

det(X; — XJ') #0, X; # X; € C,
called fully-diverse.
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Differential Space-Time Coding
The differential noncoherent MIMO channel

» We assume no channel knowledge.

» We use differential unitary space-time modulation. that is
(assuming So = 1)

St == thst_l, t= 1,2,. cey
C = {Xo,

» The matrices X have to be unitary.

where z; € {0,...,L — 1} is the data to be transmitted, and
., X;_1} the constellation to be designed.



Differential Space-Time Coding

Decoding and probability of error

» If we assume the channel is roughly constant, we have
Yt == StH + Wt
= X,S:i—1H+W;
= X;(Yeo1 —Wig) + W,
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Differential Space-Time Coding

Decoding and probability of error

» If we assume the channel is roughly constant, we have

Y: = S;:H+W;
— X,Sc1H+ W,
= X;(Yeo1 —Wig) + W,
= X;Y:1+W;, H does not appear!

» The pairwise probability of error P, has the upper bound

b~ (L) (8 MN 1
c=\2) \p | det(X; — X;)[2N

» We need to design unitary fully-diverse matrices.
o = = = = 9ae




Distributed Space-Time Coding
Wireless relay network: model
» A transmitter and a receiver node.

» Relay nodes are small devices with few resources.
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Distributed Space-Time Coding
Wireless relay network: phase 1
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Distributed Space-Time Coding
Wireless relay network: phase 2

» At each node: multiply by a unitary matrix.

DA



Distributed Space-Time Coding
Channel model
1. At the receiver,
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Distributed Space-Time Coding
Channel model
1. At the receiver,

R R

Yo=Y ginti+wW=>_ gnAi(SFi+vj)+w
i=1 i=1

2. So that finally

Y1
Y =

fig1
= [A1S - ARS]
Yn X

+W
f.gn

——
H
3. Each relay encodes a set of columns, so that the encoding is
distributed among the nodes.
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The idea behind division algebras
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Introducing Division Algebras
The idea behind division algebras

» The difficulty in building C such that

det(X; — XJ') #0, X; # X; € C,
comes from the non-linearity of the determinant.
simplifies to

» If C is taken inside an algebra of matrices, the problem

det(X) #0, 0 # X e C.

» A division algebra is a non-commutative field.



Introducing Division Algebras
An example: cyclic division algebras

> Let Q(/) ={a+ib, a,b € Q}.



Introducing Division Algebras
An example: cyclic division algebras

> Let Q(/) ={a+ib, a,b € Q}.

> Let L be cyclic extension of degree n over Q(1).
» A cyclic algebra A is defined as follows

A = {(xo, x1,

.,Xn_1) ’ Xj € L}



Introducing Division Algebras
An example: cyclic division algebras

> Let Q(/) ={a+ib, a,b € Q}.

> Let L be cyclic extension of degree n over Q(1).
» A cyclic algebra A is defined as follows

A = {(xo, x1,

.,Xn_1) ’ Xj € L}
with basis {1,e,...,e" 1} and " = v € Q(i).



Introducing Division Algebras
An example: cyclic division algebras

> Let Q(/) ={a+ib, a,b € Q}.

> Let L be cyclic extension of degree n over Q(1).
» A cyclic algebra A is defined as follows

A = {(xo, x1,

.,Xn_1) ’ Xj € L}
with basis {1,e,...,e" 1} and " = v € Q(i).
» Think of 2 = —1.



Introducing Division Algebras

An example: cyclic division algebras

> Let Q(/) ={a+ib, a,b € Q}.
> Let L be cyclic extension of degree n over Q(1).

» A cyclic algebra A is defined as follows
A= {(Xo,Xl, . 7Xn—1) ’ Xj € L}

with basis {1,e,...,e" 1} and " = v € Q(i).
» Think of 2 = —1.

» A non-commutativity rule: \e = ec()\), o : L — L the
generator of the Galois group of L/Q(/).



Codewords from Division Algebras

Cyclic algebras: matrix formulation

1. For n = 2, compute the multiplication by x of any y € A:
xy = (xo+exi)(yo+ ey1)

xoyo + ea(xo)y1 + exiyo +vo(x1)yr  Ae =eo(N)

[xoyo + yo(x1)y1] + e[o(x0)y1 + x1y0] e’ =7
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Cyclic algebras: matrix formulation

1. For n = 2, compute the multiplication by x of any y € A:

xy = (xo+exi)(yo+ ey1)

xoyo + ea(xo)y1 + exiyo +vo(x1)yr  Ae =eo(N)
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Codewords from Division Algebras

Cyclic algebras: matrix formulation

1. For n = 2, compute the multiplication by x of any y € A:
xy = (xo+exi)(yo+ ey1)

xoyo + ea(xo)y1 + exiyo +vo(x1)yr  Ae =eo(N)
[xovo + vo(x1)y1] + elo(xo0)y1 + xiy0] €2 =7
2. In the basis {1, e}, this yields

(2 E)(3)

x1 o(xo) "

3. There is thus a correspondence between x and its
multiplication matrix.

x:x0+ex1€/l<—><x0 WU(XI)).
x1 o(xo)

F = DA



Codewords from Division Algebras
Cyclic division algebras and encoding

» Proposition. If v and its powers ~2,
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Codewords from Division Algebras
Cyclic division algebras and encoding

» Proposition. If v and its powers ~2,

then the cyclic algebra A is a division algebra.
» In general

-1
"

are not a norm,
X0

Y (Xn-1) Yo% (Xn—2) vo" H(x1)
X1 o(xo) vyo? (xn—1)
X _

70" (x2)
Xn—1 U(Xn—Z) 0'2(Xn—3)

» Each x; € L encodes n information symbols.

a.n—l(XO)
o = = = 9Hae
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Solutions for the coding problems

Start with a cyclic division algebra, and:

1. For space-time coding: use the underlying algebraic properties

to optimize the code (for example the discriminant of L/Q(/)).
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Codewords from Division Algebras

Solutions for the coding problems

Start with a cyclic division algebra, and:

1. For space-time coding: use the underlying algebraic properties
to optimize the code (for example the discriminant of L/Q(/)).

2. For differential space-time coding: endowe the algebra with a
suitable involution, or use the Cayley transform.

3. For distributed space-time coding: work in a suitable subfield
of L.



Codewords from Division Algebras

Thank you for your attention!
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