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The code design

The goal is the design of the codebook C:

C=1!X= X1 X2
X3 X

) |X17X25X35X4 € (C}

the x; are functions of the information symbols.



oS - =2t Sl
The code design

The goal is the design of the codebook C:

c=Jx=(" "
N T\ x3 xa

) |X1, X2, X3, X4 € (C}
the x; are functions of the information symbols.

» The pairwise probability of error of sending X and decoding
X =£ X is upper bounded by

P(X — X) < ?



Differential Space-Time Coding
Coherent vs noncoherent MIMO channel

> Let us assume the receiver knows the channel (which is called
coherent case). Then we have

P(X — X) = P(|HX = Y|| > |[HX — Y|)



Differential Space-Time Coding
Coherent vs noncoherent MIMO channel

coherent case). Then we have

> Let us assume the receiver knows the channel (which is called

P(X — X) = P(|HX = Y|| > |[HX — Y|)

called noncoherent case).

» Assume now the receiver does not know the channel (which is
» How to do decoding?



Differential Space-Time Coding
The differential noncoherent MIMO channel

» We use differential unitary space-time modulation. that is
(assuming Sp = 1)

St - thst_l, t= 1,2,. ey
C = {Xo,

where z; € {0,...,L — 1} is the data to be transmitted, and
., X[_1} the constellation to be designed.



Differential Space-Time Coding
The differential noncoherent MIMO channel

» We use differential unitary space-time modulation. that is
(assuming Sp = 1)

St - thst_l, t= 1,2,. ey
C = {Xo,

where z; € {0,...,L — 1} is the data to be transmitted, and

., X[_1} the constellation to be designed.
» The matrices X have to be unitary.



Differential Space-Time Coding

The decoding

» If we assume the channel is roughly constant, we have

Y: = Si:H+W,;

X, Si—1H+ W,

X (Y1 —Wi1) + W,
thYt—l + W;



Differential Space-Time Coding

The decoding

» If we assume the channel is roughly constant, we have

Y: = SiH+W,

= X,S:(—1H+W,;
Xz(Ye1 —We1) + W,
Xz Y1+ Wi

» The matrix H does not appear in the last equation.



Differential Space-Time Coding

The decoding

» If we assume the channel is roughly constant, we have

Y: = SiH+W,

= X,S:(—1H+W,;
Xz(Ye1 —We1) + W,
Xz Y1+ Wi

» The matrix H does not appear in the last equation.
» The decoder is thus given by

Zz=arg  min [|[Y: =X/ Y1
1=0,...,|C| -1



Differential Space-Time Coding
Probability of error

upper bound

» At high SNR, the pairwise probability of error P, has the
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Xj = X;j)[2N
» The quality of the code is measure by the diversity product
1



Differential Space-Time Coding
Problem statement

» Find a set C of unitary matrices (XX = 1) such that
det(X,- — XJ') 75 0

VX,’;&XJEC



Differential Space-Time Coding
Problem statement

» Find a set C of unitary matrices (XX = 1) such that
det(X;—Xj);AO VX,’#XJEC

» Find a way of encoding and decoding these matrices.
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Cayley codes

Code construction
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Code construction
The Cayley transform

» Let A be an Hermitian matrix, that is AT = A.
» lIts Cayley transform is given by

V= (1+iA)71(1 - iA).



Code construction
Encoding a Cayley code

> Let a1,...,0Q € S C R be the information symbols.
> Let Aq,...,AqQ be a basis of @ Hermitian matrices.



Code construction
Encoding a Cayley code

> Let a1,...,0Q € S C R be the information symbols.
> Let Aq,...,AqQ be a basis of @ Hermitian matrices.
» Encode the «;'s in A:

Q
A= " aghq
q=1
» Compute

V = (1+iA) 711 - iA).



Code construction
Design criteria for Cayley codes

> Recall we want det(V; — V;) # 0, which is equivalent to ask

det(Ai — Aj) #0, i#}J,
where A; are Hermitian.



Code construction
Design criteria for Cayley codes

> Recall we want det(V; — V;) # 0, which is equivalent to ask

det(Ai — Aj) #0, i#}J,
where A; are Hermitian.
» The rate of the code is

Mlog|8|.



Code construction

Previous Cayley codes

» Cayley codes were introduced by Hassibi and Hochwald.
» They are available at high rate.

» The diversity criterion was replaced by an information
theoretical criterion.

» Cayley codes can be efficiently decoded (linearized Sphere
Decoder).



Code construction

Previous Cayley codes

» Cayley codes were introduced by Hassibi and Hochwald.
» They are available at high rate.

» The diversity criterion was replaced by an information
theoretical criterion.

» Cayley codes can be efficiently decoded (linearized Sphere
Decoder).

» One drawback: heavy optimization is required for each
number of antennas and each rate.
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Algebraic Cayley codes

Division algebras
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Division algebras
The first ingredient: linearity

» The difficulty in building C such that

det(X,- - XJ') #£0, X; # X_,' eC,

comes from the non-linearity of the determinant.



Division algebras
The first ingredient: linearity

» The difficulty in building C such that

det(X; — XJ') #£0, X; # X_,' eC,

comes from the non-linearity of the determinant.
» An algebra of matrices is linear, so that

det(X,- - X_,') = det(Xk),
Xk a matrix in the algebra.



Division algebras
The second ingredient: invertibility

» The problem is now to build a family C of matrices such that

det(X) #0, 0 # X e C.

or equivalently, such that each 0 # X € C is invertible.
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» By definition, a field is a set such that every (nonzero)
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The second ingredient: invertibility

» The problem is now to build a family C of matrices such that

det(X) #0, 0 #X €.

or equivalently, such that each 0 £ X € C is invertible.

» By definition, a field is a set such that every (nonzero)
element in it is invertible.

» Take C inside an algebra of matrices which is also a field.



Division algebras

The second ingredient: invertibility

» The problem is now to build a family C of matrices such that
det(X) #0, 0 #X €.

or equivalently, such that each 0 £ X € C is invertible.

» By definition, a field is a set such that every (nonzero)
element in it is invertible.

» Take C inside an algebra of matrices which is also a field.

» A division algebra is a non-commutative field.



Division algebras
An example of division algebras: cyclic division algebras

> Let Q(i) ={a+ib, a,b € Q}.



Division algebras
An example of division algebras: cyclic division algebras

> Let Q(i) ={a+ib, a,b € Q}.

» Let L be a vector space of dimension n over Q(/).
» A cyclic algebra A is defined as follows

A= {(X07 X1,

S Xn—1) | xi € L}



Division algebras
An example of division algebras: cyclic division algebras

> Let Q(i) = {a+ib, a,b €Q}.

> Let L be a vector space of dimension n over Q(/).
» A cyclic algebra A is defined as follows

A= {(X07 X1,

S Xn—1) | xi € L}
with basis {1,e,...,e" 1} and e" = v € Q(i).



Division algebras
An example of division algebras: cyclic division algebras

> Let Q(i) = {a+ib, a,b €Q}.

> Let L be a vector space of dimension n over Q(/).
» A cyclic algebra A is defined as follows

A= {(X07 X1,

S Xn—1) | xi € L}
with basis {1,e,...,e" 1} and e" = v € Q(i).
» Think of /2 = —1.



Division algebras
Cyclic algebras: how to multiply

1. For n =2, x € A can be written x = xg + exy.



Division algebras
Cyclic algebras: how to multiply

1. For n =2, x € A can be written x = xg + exy.

Xy

2. Compute the multiplication by x of any element y € A.

(xo + ex1)(yo + ey1)

XoYo + Xo€y1 + ex1yo + exiey1
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Division algebras
Cyclic algebras: how to multiply
1. For n =2, x € A can be written x = xg + exy.

2. Compute the multiplication by x of any element y € A.

(xo + ex1)(yo + ey1)

XoYo + Xoey1 + ex1yp + exiey;
“suitable” map .

3. The noncommutativity rule: Ae = ec(A\), o : L — L a
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Division algebras
Cyclic algebras: how to multiply
1. For n =2, x € A can be written x = xg + exy.

2. Compute the multiplication by x of any element y € A.

(xo + ex1)(yo + ey1)

XoYo + Xoey1 + ex1yp + exiey;
“suitable” map .

3. The noncommutativity rule: Ae = ec(A\), o : L — L a
4. So that
Xy

since e?

= xo¥o + ea(xo)y1 + exayo + yo(xi)y1
[xoyo +vo(x1)y1] + e[o(x0)y1 + x1y0],
fry ’)I B B
o = - = = QA
© Algebraic Cayley differential space-time codes ~ Frédérique Oggier



Division algebras
Cyclic algebras: matrix formulation

1. We have xy = [xoy0 +yo(x1)y1] + e[o(x0)y1 + x1y0].
2. In the basis {1, e}, this yields

X0 o\ X1
Xy:(X1 yo(x1)

o(xo) )(i’/(l))



Division algebras
Cyclic algebras: matrix formulation

1. We have xy = [xoy0 +yo(x1)y1] + e[o(x0)y1 + x1y0].
2. In the basis {1, e}, this yields

Xy:(Xo 70(X1))(}/0)'
x1 o(x) y1
3. There is thus a correspondance

x:x0+ex16,4<—><§0 yo(x1)
1

U(Xo))'
6. s zhzh 2 oac



Division algebras
Cyclic algebras: matrix formulation

1. We have xy = [xoy0 +yo(x1)y1] + e[o(x0)y1 + x1y0].
2. In the basis {1, e}, this yields

Xy:(Xo 70(X1))(}/0)'
x1 o(x) y1
3. There is thus a correspondance

x:x0+ex16,4<—><§0 yo(x1)
1

O'(Xo) ) ’

4. We associate to an element its multiplication matrix.
=] 5 = = = A
© Algebraic Cayley differential space-time codes ~ Frédérique Oggier



Division algebras
An involution on the algebra

» Choose the matrices A; to be in a division algebra, so that
Vi = (I — iAj)(I — iA;) satisfies det(V; — V}) # 0.



Division algebras

An involution on the algebra

» Choose the matrices A; to be in a division algebra, so that
Vi = (I — iAj)(I — iA;) satisfies det(V; — V}) # 0.
» To satisfy the Hermitian condition:
A M (L)

X — X

a(x) - X
a(x)=x < X=X

alxo+ex) = %o + e to (%)



Division algebras
Example: 2 transmit antennas (1)

» Consider the algebra A = (Q(i,/5)/Q(i), o, i), where
o5 — —/b.
> Let x € A,

x = xp + ex1, x0,x1 € Q(J, \/g)

» We compute x = a(x). Let § = %ﬁ Thus, x can be written

x = [a0 + Obo] + e[(s(1 — ) — t0) + i(t(1 — 0) — sB)],



Division algebras
Example: 2 transmit antennas (II)

» In matrix equations

X — a1 0 s 0 1-6—if
- 9% o0 1 i0+(1-0)
9 0
+bo<0 1_

o ")
6)“( :

—0+i(1—-0)
—i(l-0)—10
We thus get a basis of 4 matrices.

o ")



Division algebras
Example: 2 transmit antennas (llI)
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Division algebras
4 transmit antennas

M=4N=1
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Division algebras

Thank you for your attention!
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