
IPN Progress Report 42-149 May 15, 2002

Data Fusion Algorithms for Collaborative
Robotic Exploration

J. Thorpe1 and R. McEliece1

In this article, we will study the problem of efficient data fusion in an ad hoc
network of mobile sensors (“robots”) using belief propagation (BP) on a graphical
model similar to those used in turbo-style decoding. We also devise a new metric
for evaluating the performance of general inference algorithms, including BP, that
return “soft” estimates.

I. Introduction: The Robot Inference Problem

In the future, NASA spacecraft sent to extraterrestrial planets to collect scientific data may deploy a
large number of small, inexpensive robots. Each of the robots may be equipped with a number of sensors
with which to measure its local microenvironment. Individually, one robot’s measurements would convey
little information about the global situation. Collectively, however, the robots could overcome this by
communicating with their neighbors and fusing their data. The robots should thus be able to collectively
infer a great deal about the global environment. The trick is to do it with as little communication and/or
computation as possible.

In this article, we will begin to explore the problem of designing efficient data fusion strategies in an
ad hoc network of robotic sensors, by first defining a simplified model for the problem (Section II), and
then applying the celebrated belief propagation (BP) algorithm [11] to obtain accurate estimates of the
a posteriori probabilities about the environment (Section III). We will measure the accuracy of these
estimates using a new criterion that we derive axiomatically in Appendices A and B.

II. A Simplified Model for the Robot Inference Problem

In our model, the unknown environment is characterized by a random binary n-vector XXX =
(X1, · · · , Xn), with the component Xi’s chosen independently, and Pr{Xi = +1} = Pr{Xi = −1} = 1/2.
The sensor network consists of m robots, and the jth robot’s ability to sense the environment is charac-
terized by an n-vector gggj = (gj,1, · · · , gj,n) ∈ {0,+1,−1}n. We assume each robot has exactly s nonzero
components, which means it can sense exactly s components of XXX. (A zero component of gggj means that
the robot cannot sense the corresponding component of XXX.) The measurement yj of the environment xxx

1 Communications Systems and Research Section.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

1

by a robot gggj is the dot product yj = xxx · gggj . Thus, the aggregate evidence about a particular environ-
ment xxx provided by the robot sensor network is the vector yyy = (y1, · · · , ym) = Gxxx, where G is the m × n
matrix whose (i, j)th entry is gj,i.

For future reference, we introduce the following notation. If yyy is an n-vector, and j is an integer in
the range j = 1, · · · , m, yyyj denotes the components of yyy corresponding to the nonzero components of gggj .
Thus, for example, if xxx represents the environment, xxxj represents the part of the environment sensed by
the jth robot. In this notation, gggj

j denotes the vector gggj with its zero components deleted. As a result,
we have yj = xxxj · gggj

j .

For example, if n = 6, m = 4, and and s = 3, a possible choice for G is displayed below:

G =

1 2 3 4 5 6
1 −1 +1 +1
2 +1 −1 −1
3 −1 −1 +1
4 +1 −1 +1

Figure 1 gives a graphical representation of this robot-environment scenario. Note that we have the
following “local environments”:

x1 = (x1, x2, x3)

x2 = (x3, x5, x6)

x3 = (x2, x5, x6)

x4 = (x1, x3, x4)

(1)

Also, we have

g1
1 = (−1,+1,+1)

g2
2 = (+1,−1,−1)

g3
3 = (−1,−1,+1)

g4
4 = (+1,−1,+1)

(2)

The basic problem is to “infer” the environment XXX = (X1, · · · , Xn) using the evidence provided by
the sensor outputs Y1, · · · , Ym. In other words, for each index i ∈ {1, · · · , n}, we wish to produce an
estimate of the conditional probabilities Pr{Xi = +1|YYY } and Pr{Xi = −1|Y}, where YYY = (Y1, · · · , Ym).
In principle, the exact values of these a posteriori probabilities can be obtained by Bayes’ rule:2

2 In the following calculations, we use the “is proportional to” symbol, ∝, in which the implied proportionality constants
are chosen so that the quantities with ε = +1 and ε = −1 sum to one.

2

EVIDENCE

Y 1 Y 2 Y 3 Y 4

ESTIMATES

X 1 X 2 X 3 X 4 X 5 X 6

Fig. 1. A robotic inference network. The topology of the network reflects
the matrix G. (There is an edge from Yj to Xi if gj,i = 0.)

Pr{Xi = ε|YYY = yyy} =
Pr{YYY = yyy|Xi = ε}Pr{Xi = ε}

Pr{YYY } = yyy

∝ Pr{YYY = yyy|Xi = ε}

Unfortunately, the direct computation of the likelihoods Pr{YYY = y|Xi = ε} (for ε = ±1) requires testing
each of the 2n possible XXX’s for compatibility with YYY :

Pr{YYY } = yyy|Xi = ε =

∑
x:xi=ε Pr{YYY } = yyy|XXX = xxxPr{XXX} = xxx

Pr{X}i = ε

∝
∑

x:xi=ε

Pr{YYY } = yyy|XXX = xxx

∝
∑

x:xi=ε

δ(yyy − Gxxx) (3)

where δ is the Kronecker delta function. If n is large, this calculation will be prohibitively complex, and
alternative methods must be adopted. We discuss one such method, loopy belief propagation, in the next
section.

III. Loopy Belief Propagation

Belief propagation is a general algorithm that solves, exactly in some cases and approximately in
others, a certain class of probabilistic inference problems. Roughly speaking, BP is applicable whenever
the inference problem can be represented by a graphical model of a particular kind. The term “belief
propagation” was coined by Pearl [9,11], using a Bayesian network as the underlying graphical model;
alternative formulations of equivalent algorithms are “probability propagation” on junction trees or factor
graphs [12,8,7], the “sum-product algorithm” on normal graphs [4], and the “generalized distributive law”
(GDL) [1,2] on junction trees or graphs. In the following discussion, we will use the GDL–junction graph
formulation.

3

The GDL is an iterative algorithm that works by making progressively improving estimates of the
a posteriori probabilities (or beliefs) about a set of hidden variables, by passing messages on a junction
graph. If the junction graph is cycle-free, the GDL solves the inference problem exactly [9,1]. However,
if cycles are present, then the GDL’s solution is only approximate. This is sometimes called “loopy BP”
[2,5,13].

A belief propagation decoder for the robotic inference problem described in Section II is shown in
Figs. 1 and 2. The graph in Fig. 1 represents a Bayesian network for the n + m random variables
X1, · · · , Xn and Y1, · · ·Ym. This network is in the form of a bipartite graph, in which the hidden variables
to be inferred are on the top, and the evidence nodes are on the bottom.

mi j (e)

Yj

xi

mi j (e)

Fig. 2. The message-passing scheme of
the GDL (cf. Fig. 1). The mi,j (e)’s are

approximations to Pr{Xi = e Yj = yj }, and

the mj,i (e)’s are approximations to Pr{Yj =

yj Xi = e}.

The GDL algorithm works by passing messages back and forth between the Xi nodes and the Yj nodes.
Each of these messages is a function f(ε), for ε ∈ {0, 1}, such that 0 ≤ f(ε) ≤ 1. The message from Xi

to Yj is denoted by mi,j(ε), and can be interpreted as an estimate of the probability Pr{Xi = ε|Yj = yj},
for ε = ±1. The message from Yj to Xi is denoted by µj,i(ε), and can be interpreted as an estimate of
the likelihood Pr{Yj = yj |Xi = ε}, for ε = ±1.

Initially, the µj,i(ε)’s are set to 1. Recursively, the m-messages are calculated by the rule

mi,j(ε) ∝
∏
k �=j

µk,i(ε) (4)

where the constant of proportionality is chosen so that mi,j(0)+mi,j(1) = 1. The µ-messages are updated
by the rule

µj,i(ε) =
∑

xj :xj
i
=ε

αj(xj)
∏
k �=i

mk,j(xk) (5)

In Eq. (5), the function αj(xxxj) is (in the parlance of [1]) the local kernel at Yj , and is defined as follows:

αj(xj) =

{
1 if xxxj · gggj

j = yj

0 if xxxj · gggj
j �= yj

(For the notation gggj
j , see Eqs. (1) and (2).) In words, αj(xxxj) tests the s-vector xxxj for compatibility with

the observed measurement yj .

4

An iteration of the algorithm consists of a complete updating of all messages in both directions. After
any iteration, we can choose (or not) to compute beliefs in the components of xxx:

bi(ε) = α

m∏
j=1

µj,i(ε)

These beliefs are the output of the algorithm.

IV. Experimental Results

We applied the loopy BP algorithm described in Section III to the robot inference problem described
in Section II, using the graphical model shown in Fig. 1. The results are shown in Figs. 3 and 4. The
parameters are s = 10 non-zero elements per robot, with n = 20 hidden variables in Fig. 3 and n = 50 in
Fig. 4.3

In Figs. 3 and 4, the independent variable (horizontal axis) is m, the number of robots, and the
dependent variable (vertical axis) is the average uncertainty, measured in bits, per component of XXX.
By this we mean the following. For each run of our simulation, we generated an n-bit environment
(x1, · · · , xn) drawn randomly from the set of 2n possibilities. Then we selected the entries of the m × n
matrix G randomly, subject to the constraint that each row have exactly s nonzero entries, and calculated
the corresponding evidence vector yyy = Gxxx. Then we ran the loopy BP inference algorithm, which returned
a set of beliefs

(
bi(+1), bi(−1)

)
for i = 1, · · · , n, where bi(ε) denotes the algorithm’s belief in the event

Xi = ε. We then defined the uncertainty of the algorithm for that particular run as the quantity

∆ =
1
n

n∑
i=1

− log2 bi(xi)

(An axiomatic justification of this measure is given in the Appendices.) In Figs. 3 and 4, the vertical axes
represent the average value of ∆, where the averaging was done over the set of runs.

In Fig. 3, we see that it takes 20 sensors five iterations to reduce the average uncertainty to approx-
imately 0.1 bit for each of 20 bits in XXX, compared to about half that number for an exhaustive exact
solution. In Fig. 4, we see that it takes about 34 sensors five iterations to reduce the uncertainty of
50 components to the same value. (In this case, an exhaustive exact solution is not feasible.)4 Note that
the ratio m/n for an uncertainty of 0.1 bit per environment bit is 20/20 = 1.00 in Fig. 3 and 34/50 = 0.68
in Fig. 4, so that an economy of scale is evident. We suspect that with s = 10, as n increases, the
ratio of robots to environment components will decrease to a value of about 0.34, based on the following
information-theoretic argument.

Each Yj has a binomial density function, i.e.,

Pr{Y = s − 2k} =
1
2s

(
s

k

)
= b(s, k)

3 It is important to understand that despite the “message-passing” nature of this algorithm, it is nevertheless centralized,
i.e., the observations Y1, · · · , Ym must first be transmitted to a central location, e.g., a base station, before the data fusion
begins. A study of decentralized BP remains an interesting challenge.

4 If the number of iterations is increased, simulations show that the performance is not improved in either case.

5

x

x

1 ITERATION
2 ITERATIONS
3 ITERATIONS
4 ITERATIONS
5 ITERATIONS
SEARCH (bit)

ENTROPY BOUND

NUMBER OF SENSORS

A
 P

O
S

T
E

R
IO

R
I U

N
C

E
R

T
A

IN
T

Y
 P

E
R

 B
IT

0 2 4 6 8 10 12 14 16 18 20

10- 2

10- 1

100

Fig. 3. Loopy BP inference performance for an unknown envi-
ronment X with n = 20 components, where each robot senses
s = 10 components of X.

x

x

1 ITERATION
2 ITERATIONS
3 ITERATIONS
4 ITERATIONS
5 ITERATIONS

ENTROPY BOUND

NUMBER OF SENSORS

A
 P

O
S

T
E

R
IO

R
I U

N
C

E
R

T
A

IN
T

Y
 P

E
R

 B
IT

0 5 10 15 20 25 30 35 40 45 50
10- 2

10- 1

100

Fig. 4. Loopy BP inference performance for an unknown envi-
ronment X with n = 50 components, where each robot senses
s = 10 components of X.

6

for k = 0, 1, · · · , s, so that the entropy of each Yj is

hB(s) = −
s∑

k=0

b(s, k) log2 b(s, k)

Thus, the minimum conceivable number of s-component sensors needed to determine XXX = (X1, · · · , Xn)
exactly is H(XXX)/hB(s) = n/hB(s), i.e., for m < n/hB(s), exact inference is impossible. For s = 10, we
have hB(10) = 2.70643, and so in Figs. 3 and 4 we have placed an “×” on the horizontal axis at the point
m = 20/2.70643 = 7.39 and m = 50/2.70643 = 18.47, respectively, to represent this entropy bound.

Finally, it is worth noting that, with loopy BP, the number of messages that must be passed at each
iteration is 2ms, which is twice the number of edges in the graph of Fig. 1. Thus, if I denotes the number
of iterations, the total number of messages passed (a reasonable measure of complexity) is 2msI. On
the other hand, an exhaustive brute-force calculation of the exact a posteriori probabilities [see Eq. (3)]
requires the calculation of Gx for all 2n values of x, which requires about 2nms arithmetic operations.
In summary,

complexity of direct solution ≈ 2nms

complexity of loopy BP ≈ 2Ims

Thus, provided the number of iterations is kept small, loopy BP is much less complex than a brute-force
approach.

V. Conclusions and Suggestions for Further Work

In this article, we have built on expertise gained in solving the probabilistic inference problem in the
context of decoding algorithms [6,10], in particular the approximate and exact solutions obtained using
belief propagation on networks with and without cycles, and applied it to the problem of designing intelli-
gent communication networks of collaborative robots. The underlying idea, of course, is that the problem
of interpreting scientific data gathered at separated locations is an instance of the probabilistic inference
problem. Our results are quite promising and suggest that loopy belief propagation may represent a
low-complexity, high-accuracy approach.

As for further work in this subject, we might suggest the following topics.

(1) As we noted in Section IV, despite the message-passing nature of loopy BP, it is nevertheless
a centralized algorithm. It would be interesting to investigate BP-type algorithms in which
the messages were actually passed among the sensors, without the need for a central base
station.

(2) In a dynamic data-gathering situation, the robot observations will be updated periodically.
In such a case, it would be important to know how rapidly loopy BP could react to these
changes.

(3) In a distributed version of loopy BP, the transmitted messages may be subject to errors.
How sensitive is loopy BP to occasional message errors?

(4) Finally, in Appendix A, we remark that Axiom A-1 is reasonable if there is no notion of
“closeness” of an incorrect prediction. It would be interesting to study penalty functions
when there is an a priori notion of closeness.

7

References

.
[1] S. M. Aji and R. J. McEliece, “The Generalized Distributive Law,” IEEE Trans.

Inform. Theory, vol. 46, no. 2, pp. 325–343, March 2000.

[2] S. M. Aji and R. J. McEliece, “The Generalized Distributive Law and Free Energy
Minimization,” Proc. 2001 Allerton Conference, Allerton Park, Illinois, pp. 672–
681, 2001.

[3] T. M. Cover and J. A. Thomas, Elements of Information Theory, New York:
John Wiley and Sons, 1991.

[4] G. D. Forney, Jr., “Codes on Graphs: Normal Realizations,” IEEE Trans. Inform.
Theory, vol. 47, no. 2, pp. 520–548, February 2001.

[5] B. J. Frey and D. J. C. MacKay, “A Revolution: Belief Propagation in Graphs
with Cycles,” Advances in Neural Information Processing Systems 10, Cam-
bridge, Massachusetts: MIT Press, 1998.

[6] R. G. Gallager, Low-Density Parity-Check Codes, Cambridge, Massachusetts:
MIT Press, 1963.

[7] F. R. Kschischang and B. J. Frey, “Iterative Decoding of Compound Codes
by Probability Propagation in Graphical Models,” IEEE J. Sel. Areas Comm.,
vol. 16, no. 2, pp. 219–230, February 1998.

[8] F. V. Jensen, An Introduction to Bayesian Networks, New York: Springer-Verlag,
1996.

[9] J. H. Kim and J. Pearl, “A Computational Model for Causal and Diagnostic Rea-
soning,” Proc. 8th International Joint Conf. Artificial Intelligence, Karlsruhe,
West Germany, pp. 190–193, 1983.

[10] R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng, “Turbo Decoding as an
Instance of Pearl’s ‘Belief Propagation’ Algorithm,” IEEE J. Sel. Areas Comm.,
vol. 16, no. 2, pp. 140–152, February 1998.

[11] J. Pearl, Probabilistic Reasoning in Intelligent Systems, San Mateo, California:
Morgan Kaufmann, 1988.

[12] G. R. Shafer and P. P. Shenoy, “Probability Propagation,” Ann. Math. Art.
Intel., vol. 2, pp. 327–352, 1990.

[13] Y. Weiss, “Correctness of Local Probability Propagation in Graphical Models
with Loops,” Neural Computation, vol. 12, pp. 1–41, 2000.

[14] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Generalized Belief Propagation,”
in Advances in Neural Information Processing Systems 13, T. K. Leen, T. G. Di-
etterich, and V. Tresp, eds., Cambridge, Massachusetts: MIT Press, pp. 689–695,
2001.

[15] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Bethe Free Energy, Kikuchi
Approximations, and Belief Propagation Algorithms,” www.merl.com/papers/
TR2001-16/

8

Appendix A

Penalty Functions for Approximate Inference Algorithms

In this appendix, we discuss possible criteria with which to judge an oracle that gives estimated
probability distributions. Giving three well motivated axioms, we arrive at a single suitable measure,
viz., the logarithm of the probability estimate of the event that actually occurs.

There are many possible applications for this theory besides the robot inference problem discussed
above. In principle, it can be used to evaluate the accuracy of any source of probabilistic information.
For example, we could compare the weathermen of different TV stations to see who is the the most
accurate. Or we could rank game-playing computer algorithms based on the accuracy of their predictions
of the moves made in a large number of professional games.

Consider a discrete random variable X with (hidden) density function p(x), for x ∈ A = {a1, · · · , an}.
Let b(x) be an estimate of p(x), called a “belief” about X, computed by an inference algorithm using
some preliminary or indirect observations of X. We would like to measure the goodness of b as a predicter
of p. To this end, we assume we have a function ∆(b, x), which is interpreted as the penalty assessed the
belief vector b if an experimental outcome is X = x. The penalty cannot depend on p(x), because p(x)
may be unknown or ill-defined. It may be unknown because it cannot be efficiently calculated (e.g., what
is the probability that a number selected randomly from 1 to 1020 will have fewer than 6 prime factors?);
it may be ill-defined because the experiment is in principle not repeatable (e.g., what will the weather be
on December 18, 2002?).

We make the following three axiomatic assumptions about the penalty function ∆.

Axiom A-1.

b1(x) = b2(x) ⇒ ∆(b1, x) = ∆(b2, x) (A-1)

Axiom A-1 says that if two different algorithms both assign the same belief to the actual experimental
outcome, then both algorithms are assessed the same penalty, regardless of the beliefs they may assign
to the other possible outcomes. Thus,

∆(b, x) = f
(
b(x)

)
(A-2)

for some function f : [0, 1] → R. Axiom A-1 seems reasonable if there is no notion of “closeness” of an
incorrect prediction, in which case a prediction is either right or wrong.

Axiom A-2. For all possible p(x)’s and b(x)’s,

Ep

(
∆(p, X)

)
≤ Ep

(
∆(b, X)

)
(A-3)

which because of Eq. (A-2) is

∑
x∈A

p(x)f
(
p(x)

)
≤

∑
x∈A

p(x)f
(
b(x)

)

9

Axiom A-2 requires that the belief about p(x) with minimum average penalty be p(x) itself.

Axiom A-3.

b(x) = 1 ⇒ ∆(b, x) = 0

Axiom A-3 specifies that if the algorithm predicts the correct outcome with certainty, the penalty is 0.

It is easy to see that a penalty function defined by

∆(b, x) = log
1

b(x)

(for an arbitrary base of the logarithm) satisfies Axioms A-1, A-2, and A-3. It is perhaps surprising that,
for n ≥ 3, this is the only possibility, as the following theorem shows.

Theorem A-1. If Axioms A-1, A-2, and A-3 hold,5 and n ≥ 3, then

∆(b, x) = K ln b(x)

for some constant K ≤ 0.6

Proof. Let A = {a1, · · · , an}, and let pi = p(ai), bi = b(ai), i = 1, · · · , n. By Axiom A-1, ∆(b, x) =
f(x), for some f(x). Then Axiom A-2 can be written as

n∑
i=1

pif(pi) ≤
n∑

i=1

pif(bi)

or equivalently

n∑
i=1

pi

(
f(pi) − f(bi)

)
≤ 0 (A-4)

Now choose (pi)n
i=1 ∈ So

n, the interior of Sn, the n-dimensional simplex:

Sn = {p : p1 + · · · + pn = 1, pi ≥ 0}

So
n = {p : p1 + · · · + pn = 1, pi > 0}

and choose (ε1, · · · , εn) so that

5 In fact, our proof also requires that the function f(x) in Eq. (A-2) have a continuous first derivative. We conjecture that
continuity of f(x) is sufficient for Theorem A-1 to hold, however.

6 The constant K, in effect, determines the base of the logarithm. We could write an axiom that enforces, say, K = −1,
but we prefer to leave the base of the logarithm unspecified, which is in keeping with information theory tradition. Also
note that for K = 0 the penalty function is identically zero, which satisfies the axioms but is obviously useless.

10

n∑
i=1

εi = 0 (A-5)

Then for |λ| sufficiently small, (bi)n
i=1 = (pi + λεi)n

i=1 ∈ Sn. But by the mean value theorem,

f(pi + λεi) = f(pi) + λεif
′(pi + αλεi)

for some 0 < α < 1, so that Eq. (A-4) becomes

λ

n∑
i=1

pif
′(pi + αλεi)εi ≥ 0 (A-6)

But since Eq. (A-6) holds for arbitrarily small values of λ, both positive and negative, and pi +αλεi → pi

as λ → 0, it must be true that7

n∑
i=1

pif
′(pi)εi = 0 (A-7)

for all (ε1, · · · , εn) satisfying Eq. (A-5). By taking ε1 = +1, εi = −1, and εj = 0 for all j �= 1, i, we see
that

p1f
′(p1) = · · · = pnf ′(pn) (A-8)

for all ppp ∈ So
n.

To complete the proof, we need a lemma.

Lemma A-1. Suppose n ≥ 3. If g(x) is a real-valued function defined on (0, 1) with the property
that whenever ppp = (p1, · · · , pn) ∈ So

n,

g(p1) = · · · = g(pn) (A-9)

then there is a constant K such that g(x) = K for all x ∈ (0, 1).

Proof. By taking ppp = (x, 1 − x, 0, · · · , 0), in Eq. (A-9), we find that

g(x) = g(1 − x), for all 0 < x < 1 (A-10)

On the other hand, by taking ppp = (1/2, x, 1/2 − x, 0, · · · , 0), we find that

g(x) = g

(
1
2

)
, for 0 < x <

1
2

(A-11)

7 This is the step that requires f ′(x) to be continuous.

11

Combining Eqs. (A-10) and (A-11), we see that

g(x) = g

(
1
2

)
= K, for 0 < x < 1

❐

Returning to the proof of Theorem A-1, by combining Eq. (A-8) with Lemma A-1, we see that there
is a constant K such that pf ′(p) = K for 0 ≤ p ≤ 1, so that

f(p) = K ln p + K ′

for a constant K ′. But by Axiom A-3, f(1) = 0, which forces K ′ = 0, i.e., f(p) = K ln p for some value
of K. If K ≤ 0, then by Jensen’s inequality, i.e.,

Ep

(
∆(p, X)

)
= K

∑
i

pi ln pi ≤ K
∑

i

pi ln bi = Ep

(
∆(b, X)

)

so that Axiom A-2 is satisfied, whereas if K > 0, the inequality goes the wrong way. Thus, f(p) = K ln p
for some K ≤ 0, as asserted. ❐

The quantity Ep∆(b, X) has a nice information-theoretic interpretation, as shown by the following
theorem.

Theorem A-2. With ∆(b, x) = − log b(x), we have

Ep

(
∆(b, x)

)
= H(p) + D(p ‖ b)

where H(p) is the entropy of p,

H(p) = −
∑

x

p(x) log p(x)

and D(p||b) is the Kullbach–Leibler distance (or relative entropy) between p and b, defined by [3, Sec-
tion 2.3]

D(p ‖ b) =
∑
x∈A

p(x) log
p(x)
b(x)

Thus if p(x) is the underlying density function, the minimum possible average penalty for any inference
algorithm is H(p), which is attained if the inference algorithm selects b(x) = p(x) for all x.

12

Proof. We have

Ep

(
∆(b, x)

)
=

∑
x

p(x)∆(b, x)

= −
∑

x

p(x) log b(x)

= −
∑

x

p(x)
(
log p(x) + log b(x) − log p(x)

)

= −
∑

x

p(x) log p(x) −
∑

x

p(x)
(
log b(x) − log p(x)

)

= H(p) + D(p ‖ b) ❐

13

Appendix B

The Case n = 2

To prove Theorem A-1, we assumed that n, the number of possible outcomes, is ≥3. This assumption
is necessary, as the following theorem (whose proof we omit) demonstrates.

Theorem B-1. Let n = 2. Then Axioms A-1, A-2, and A-3 hold if and only if

∆(b, x) = f(x)

where f(x) is of the form

f(x) =
∫ 1

x

g(t)
t

dt (B-1)

for some function g(t) which satisfies

g(t) ≥ 0 and g(t) = g(1 − t) for all t ∈ (0, 1)

Theorem B-1 gives infinitely many essentially different penalty functions for n = 2. For example, if
g(t) = 1 for all t ∈ (0, 1), Eq. (B-1) gives

f(x) = − lnx

in accordance with Theorem A-1. However, if g(t) = 2t(1 − t), then

f(x) = (1 − x)2

which satisfies Axioms A-1, A-2, and A-3 for n = 2 but violates Axiom A-2 for n ≥ 3. Despite this
multitude of possible penalty functions for n = 2, because of Theorem A-1, we feel it is unnatural to
choose any function other than f(x) = − log(x), even if n = 2.

14

