Low-Complexity Approximations to Belief
Propagation for LDPC Codes

Jeremy Thorpe
October 31, 2002

1 Summary

The standard belief propagation algorithm that is used to decode Low-Density-
Parity-Check codes defines real-valued messages that are passed along edges in
a graph. The standard way to simulate this algorithm is to use a very accruate
representation of the real numbers, such as a floating-point numbers, to store the
value of each message. However, for very high-speed decoders, it is clear that
the high complexity associated with computing and storing such numbers is to
be avoided if possible. Indeed, Gallager’s Algorithm A[1] can be seen as a single
bit approximation to belief-propagation algorithm. This paper explores some of
the ground which lies between the two extremes. In particular, we investigate
semi-analytically (via density evolution) and through simulation several rules
having message size between 1 and 4 bits.

2 Background

An LDPC code is characterized by a bipartite graph G = (C,V, E), where V, |V|

r is a set of variable nodes C, |C| = n is a set of check nodes, and E is a set of

edges that have one endpoint in C' and one endpoint in V. A vector X € F (2)",

indexed by the elements of V', is a codeword if and only if > X, = 0Vc € C.
vle

The notation v|c means any v € V' connected to ¢ via an edge e € E.

If we transmit a codeword X over a memoryless channel and receive Y. The
belief-propagation (BP) algorithm estimates X given Y. BP is an iterative
algorithm in which messages are passed in each direction on each edge of F.
In particular, messages denoted m, which are the inputs to the decoder are
calculated based on the channel outputs and channel statistics. The messages

mélZ, are passed from v to c at (the first half of) iteration [, and similarly messages

)

denoted mgv € R are passed from c to v at (the second half of) iteration .
The input messages to the BP algorithm are calculated from the channel
outputs:

my = log (%)

At iteration 0, each message m£?2 passed along each edge (v, ¢) is simply equal

to my:
2 My

mf
U
At each iteration [, each message mg »

terms of the messages mg,)7c.

ml, = Y t(mf),)

v’ |c#£v

passed along edge (v, ¢) is calculated in

At each iteration [> 0, each message mS},)C are calculated in terms of the mes-

(lfl);
ml), = m, + Z ((lvl))

sages M ,
¢ |v#ce

After a sufficient number L of iterations, we estimate each symbol X, as:

0, my+ t((L)) >0
X, = ! Z‘
1, otherwise

1—e”

Note that for z < 0, ¢ (z) includes the term log(—1), which can be treated as a

special symbol.

Messages mg)c are said to be in reliability domain, which is in a certain sense

the additive domain for the variable nodes, while the messages mQZ, are in the

unreliability domain, the additive domain for check nodes.

The function ¢ is defined as:

3 Quantized Belief Propagation

We define a new algorithm which approximates BP, quantized belief propagation
(QBP). QBP essentially approximates the BP algorithm as it is stated in the
previous section; it operates in each of the additive domains. Whereas the BP
algorithm is defined by a set of messages m, QBP will be defined in terms of
messages m’. While in the standard BP algorithm defines messages m, € R,
mg)c € R, and m() € R, in QBP we define messages my € Mep, = {£1,+2... £
den, m’(” €My ={+1,42...+ 2} and m{!) € M. = {+1,42..+ £}, For
simplicity, we formulate QBP for

We first give an abstract quantization rule @, : X + {£1,£2...+ 2}, where
T= {Tl, ...,7'%_1}, 7; € RT is a set of thresholds with 7; < 7;1.

—4 T < —Ta_q
20 2
Q. (2) —argmin;{7; > —x}, —T4;<2<0
x) = .
T arg min; {r; > z}, 0<z<T7g,
g', Ta_1 <X
2

The reconstruction function ¢ : {£1,£2.. £ 4} — N is an anti-symmetric func-
tion which is characterized by its values on {1,2...4}.

¢(—1) = —o(i)

The input to the QBP decoder are defined in terms of the input to the ideal BP
decoder and the parameter 7.p:

m/v = Qr,,(my)

At iteration 0, the message passed along each edge (v, c) is equal to v’s input
message:

m;(,oc) = Qr,(¢,(my))
0}

Each message me,,» are calculated with respect to several of the messages m
as:

O]

v’ e

m/c(,lv) = QTC Z (rbc (mg’),c>
v’ |e£v

On all iterations [> 0, the messages mg,l)c are calculated as:

m;(’lc) - Q’TU ¢ch (mv) + Z ¢v (mgl/;}))
c|v#e

After a sufficient number L of iterations, we estimate the symbol X, as:

0. G (mu) + 3 6, (mS)) >0
.)+ 3 (m&.")

1, otherwise

Note that if ¢, and ¢, are such that the sum in the previous equation can
be exactly 0, then the algorithm cannot be both symmetric. A simple way to
avoid this is for ¢, (i) to be odd for all ¢ and ¢, (i) to be even for all i.

4 QBP Rules for the (3,6) Regular LDPC En-
semble

There are a number of ways to test the goodness of different QBP algorithms.
A simple and direct way is to simulate the algorithm on particular codes for

a given channel. Another way is density evolution, by which we calculate
the fractions of edges transmitting each message, assuming infinte block-length.
This method essentially calculates the asymptotic performance of the code as
the code length n approaches infinity. This has the advantage of being quite
fast to compute, but the disadvantage that it may fail to predict performance
when there are loops in the graph, as will be seen in seciton 5.

In this section, density evolution is used to predict the performance of QBP
for the class of regular (3,6) LDPC codes. The results are characterized by
a value SNR* for which if SNR < SNR* we have bad performance, and for
which if SNR > SN R* we have bit error given by F, which may or may not be
equal to 0. if £ =0, we say the algorithm has no error floor, otherwise it has
an error floor. It is not necessarily true that algorithms with higher values of
Gehs Qu, and g, have no error floor if the same holds for an algorithm with lower
values. In particular, the simplest algorithm, with ¢., = ¢, = ¢. = 2 has no
error floor, while more complex algorithms do have error floors.

The following table summarizes the best known QBP rules for a range of
interesting values of q.p, ¢y, and g..

Name I 1I 111 v V2

qch 2 4 4 8 8

Qv 2 4 4 4 8

Qe 2 4 4 4 8

Tend o0 1.76 1.4 1.4 1.4

Den (1) (1,3) (3,15) (1,3,5,7) (3,9,15,21)
Ty 9 2 (7 (2) (6,12,18)

s (1) (1,3) (3,11) (1,3) (2,6,8,12)

Te 0 G C) (5) (7,11,24)

e 1 12 12 (L2 (1,2,6,21)
SNR* 4.896 2.248 1.955 1.689 1.443

E 0 0 3-1073% 7-1073 5-107%
Name VI VII Ideal
qch 8 16 00
Qu 8 16 00
qec 8 16 00
Teh 1.1 .66 €
De, (3,9,15,21) (15,45,75,105,135,163,193,245) R
Ty (6,12,18) (30,60, 90, 120, 150, 180, 210) R
oy (2,6,12,20) (9,23,37,53,71,97,125,167) R
Te (5,9,26) (8,15,28,45,135, 163,193, 245) R
o (1,2,6,26) (8,15,28,45,135,163, 193, 245) R
SNR* 1.409 1.199 1.09
E 0 3-106 0

Note that rule V Corresponds precisely to the rule suggested by Richardson[2],

!Equivalent to Gallager’s algorithm A and B for regular (3,6) LDPC codes.
2Equivalent to Richardson and Urbanke’s rule.
31 ={x,22, ..., (qen, — 1)z}, = in the table.

as do the threshold and error-floor predictions.

5 Simulation Results

The following two figure shows the performance of several of the QBP algorithms
applied to a regular (3,6) LDPC code.

Comparison of sub-optimal message passing rules
10 T T T T T

T
— bpBER
. — - rule VII (4/414)
. . rule V (3/3/3)
\ — - rule IV (3/212) [
\ — rule Il (2/2/2)

bit error rate
=
o
T

10° I I I I I I I I
0.5 1 15 2 25 3 35 4 45 5

In the waterfall region, the performance of each rule is predicted quite well
from density evolution. In addition, in each instance where an error floor
appears in density evolution, it appears in the simulation. However, there is
in fact an error floor on rule IT which is not predicted from density evolution.
Preliminary analysis strongly suggests that this error floor is in fact due to loops
in the graph, as opposed to tree-like configurations as in the other error floors.

In general, the error floors inherent in all of the above rules can be understood
to be caused by the inability of the strongest internal messages to completely
overcome the strongest messages from the channel. This suggests increasing the
reliability values and thresholds 7, and ¢, on the internal messages, effectively
trading resolution at low reliability levels for range of expression, which would
likely decrease the error floor at the expense of a threshold further from capacity.
Other methods have also been suggested[2] to mitigate or eliminate error floors,
such as artificially lowering the channel messages at a sufficiently late iteration.
More work is needed to explore this tradeoff (and should be completed by the
time of this presentation)

6 Acknowledgements

The author would like to thank Kenneth Andrews and Gill Chinn for contribut-
ing time and effort to the simulation of several of the decoding rules.

References

[1] R. G. Gallager. Low Density Parity Check Codes. Number 21 in Research
monograph series. MIT Press, Cambridge, Mass., 1963

[2] T. Richardson, R. L. Urbanke. The Capacity of Low-Density Parity-Check
Codes Under Message-Passing Decoding. TEEE Trans. Inform. Theory, vol.
47, Feb. 2001.

