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Abstract

We demonstrate the versatility of the Belief-propagation (BP) algo-
rithm by applying it to the game of Mastermind. Furthermore, we argue
that Mastermind may provide a reasonable model for the robot colony in-
ference problem. We also propose that Mastermind could provide a basis
for comparison of different inference alogrithms.

Although simulation results show an appreciable gap between BP and
optimal inference, the BP algorithm is feasible for large problems. The
challenge now is to find better performing, yet practical algorithms.

1 Background

In the future, spacecraft that scientists send to extraterrestrial planets to
collect scientific data may be filled with small, inexpensive robots.

Each of the robots would be equipped with a small number of sensors
with which to sense its own environment. We may imagine that one
robots own measurements would be insufficient to accurately determine
its environment. The robots could overcome this by communicating with
their neighbors estimated probabilities

The robots should be able to remove as much of their uncertainty about
the environment as possible while using as little energy in communication
as possible.

[Below] is an illustration of one possible scenario. A colony of robots
has landed on Mars. The robots will together form a coherent idea of
their environment and then communicate that idea back to an orbiter
and eventually back to earth for consumption by JPL scientists. Another
compelling scenario is that the robots must use their observations to act
autonomously, locating prime samples for analysis or for transport back
to the earth, all without the intervention of earth-bound decision-makers.

2 Mastermind

Popularized by Hasbro, Mastermind is a popular childrens game. The
object of the game is to guess the colors of a certain row of pegs hidden
from the players view. The player obtains information through making
guesses and receiving replies which tell him how close his guess is to actual



colors of the pegs. The game ends when the guess matches the actual
vector of colors.

In this analysis, we simplify the game considerably. First, we suppose
that the elements of the hidden vector X comes from the binary alphabet
1,-1. The elements of each guess G come from the alphabet 1,-1,0. The
reply, Y, is equal to the inner product between X and G. Note that a zero
component of G is equivalent to not guessing at that position. The game
is also simplified in that the guesses are made at random before the game
begins, instead of being selected by the player after knowing the result of
the previous guess.

An instance of the game is parameterized by n, the length of X and
G, m, the number of guesses, and s, the number of non-zero components
per guess.

A player is given the values of all of the Gs and Ys and must return
an estimate of the probability of each of the Xs individually. The dis-
tortion [1] between this estimate and the true value of X, along with the
complexity of the algorithm determine its fitness.

3 Concepts

3.1 Communication Network

The communication network represents the ability and cost of communi-
cation among the robot colony members. If the robots are dropped from a
spacecraft, the communication network is likely to be an ad hoc network-
that is, a network whose topology cannot be known in advance. If the
robots are mobile, then the topology of the network may also be time-
varying; connections become available when two robots come in contact
with each other.

3.2 Inference Problem

Technically speaking, an inference problem is to compute the a posteriori
distribution PrX—Y=y, when some a priori distribution PrXY is given.
The solution is given by Bayes Rule and is always PrX,Y=y/PrY=y. More
generally, we may be interested in an approximate distribution, or just the
value of X which is most probable given the value of Y.

Examples of inference problems include decoding of error-correcting
codes received over noisy channels, detection of airplanes from radar data,
and the childrens game of Mastermind.

3.3 Output Goodness Measure

We think of the robot colony as a producer of soft, or probabilistic, in-
formation. Robots may also consume probabilistic information since they
may make decisions about where to go and where to point their sensors.

We choose a goodness measure [1] that reflects the need for accurate
soft information. Briefly, it is minus the logarithm of the estimated prob-
ability of the event that happens.



4 Belief Propagation Algorithm

Belief Propagation is a powerful and general algorithm which solves, ex-
actly in some cases and approximately in others, an inference problem.
The BP algorithm solves an inference problem in the case where the a
priori probability distribution can be represented by a Bayesian Network.

If the Bayesian Network is characterized by a tree-like graph whose
edges represent the dependencies between variables, the BP algorithm
solves the inference problem exactly. However, if the Bayesian Network
has cycles, then BP solves it only approximately.

BP is an iterative algorithm which works by making progressively bet-
ter estimates of probability functions (or beliefs) about each of a set of
basic variables. The iterations work in two parts:

1) In the first half of an iteration, probabilities of each random variable
are generated from a priori beliefs and likelihoods generated in the second
half of an iteration. On the very first iteration, only a priori beliefs are
used. The estimated probabilities are passed in one direction on each edge
in the graph.

2) In the second half of an iteration, likelihoods of each random variable
are generated (the conditional probability PrY—X is called a likelihood
of X). Likelihoods are passed in the opposite direction on the graph.

5 Robot Colony/Mastermind analogy

There is meant to be an analogy between the robotic colony inference
problem and Mastermind. The vector variable X represents all of the
environmental variables which the robots wish to determine.

Each of the guesses G represent the way in which each sensor is depen-
dent on the environment—sensitivity can be positive or negative to different
environmental variables. We imagine that each one of the sensors is phys-
ically located on a different robot from the other sensors. Naturally, the
variable Y represents the value that the sensor observes.

6 Mastermind BP Decoder

The Belief-Propagation decoder for the game of Mastermind is shown in
the figure to the left. The yellow circles form a graph which can be seen
to be a Bayesian Network since the Xis are chosen independently of each
other and then the Yis are stochastic functions only of the Xs with which
they share an edge (deterministic functions, in fAact).

This is a bipartite graph, and the variables which we estimate are
on the right side of the graph. The evidence nodes are on the left. In
this graph, probability functions are passed from right to left; likelihood
functions are passed from left to right.

The performance of the BP algorithm is shown in the two slides to the
right. The game parameters are 10 non-zero elements per guess, and the
length of X 20 and 50. The independent variable is the number of guesses,
and the dependent variable is the distortion as measured by our defined
distortion measure. Lower on the graph represents better performance.



In the upper figure, it takes 20 sensors to reduce the uncertainty to
approximately 1/10 of a bit for each of 20 bits in X, compared to about
half that number for exhaustive search. However, in the lower figure, it
takes only about 34 sensors to reduce the uncertainty of 50 components
to 1/10 of a bit.

Another point of comparison is marked by the blue vertical line, which
represents the number of sensors whose total entropy is equal to the vector
X which we are trying to determine. To the left of this line, it is impossible
to drive the uncertainty to zero.

It is also noteworthy that the number of messages which must be
passed (a measure of complexity relevant to robot colonies) is linear in
g, s, and the number of iterations used. The complexity of exhaustive
search is exponential in n, although the number of messages passed is just
proportional to g
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normalized average uncertainty per bit vs number of sensors, sizex =50, sizeS =10
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