
Memory-Efficient Decoding of LDPC Codes
Jason Kwok-San Lee

University of California, Berkeley
Email: jlee@eecs.berkeley.edu

Jeremy Thorpe
Jet Propulsion Laboratory

California Institute of Technology
Email: thorpe@caltech.edu

Abstract— We present a low-complexity quantization scheme1

for the implementation of regular (3, 6) LDPC codes. The
quantization parameters are optimized to maximize the mutual
information between the source and the quantized messages.
Using this non-uniform quantized belief propagation algorithm,
we have simulated that an optimized 3-bit quantizer operates
with 0.2dB implementation loss relative to a floating point
decoder, and an optimized 4-bit quantizer operates less than
0.1dB quantization loss.

I. I NTRODUCTION

Low-Density-Parity-Check (LDPC) codes[1] have recently
received a lot of attention because of their excellent error-
correcting capability. LDPC codes have been shown to be able
to perform close to the Shannon limit[2]. In the past decade
or so, much of the research on LDPC codes has focused
on the analysis and improvement of codes under decoding
algorithms with floating point precision. However, to make
LDPC codes practical in the real world, the design of an
efficient quantization scheme used in hardware implementation
is crucial.

Belief propagation algorithm is used to decode LDPC codes.
The standard belief propagation algorithm defines real-valued
messages passing along edges in a code graph. The standard
way to simulate this algorithm is to store and update the
messages in a very accurate representation such as floating-
point numbers. However, for very high-speed LDPC decoders,
it is clear that the high complexity associated with computing
and storing a very accurate representation is to be avoided
if possible. Therefore, we propose a low-complexity LDPC
quantization scheme to make efficient hardware implementa-
tion possible.

In this paper, we present a general quantization scheme
whose parameters we have optimized to target regular (3,6)
codes. In addition to being a test-bed for comparing quantized
algorithms, this class of codes remains an appealing choicein
rate 1

2 applications that cannot tolerate the error floors typically
induced in codes highly optimized to perform close to capacity.

II. M OTIVATION

The advantages of using a low-complexity quantization
schemes are many. They include:

1) In the belief propagation algorithm, messages passing
along edges in a code graph may have to be stored.

1The work described was funded by the IND Technology Program and
performed at the Jet Propulsion Laboratory, California Institute of Technology,
under contract with the National Aeronautics and Space Administration.

variable

node

check

node

........

........

Memory Memory Memory........

Memory size

proportional to

#Quantization bit

Logic complexity

proportional to

#Quantization bit

#Interconnect

(routing complexity)

proportional to

#Quantization bit

check

node

variable

node
variable

node

Fig. 1. Complexity proportional to quantization

The memory needed scales with then-bit quantization
asO(n).

2) The number of interconnect wires to connect variable
nodes and check nodes is proportional to then-bit
quantization. The complexity of interconnect routing
scales at least linearly withn.

3) A smallern-bit quantization makes it simpler for vari-
able nodes and check nodes to update the messages. The
logic complexity of variable nodes and check nodes units
are often more than linear withn-bit quantization. In the
worst case, ann-bit-inputn-bit-output look-up table has
logic complexityO(2n). Other schemes have complexity
which scales asO(n2).

Recently, several research groups have developed LDPC
decoders running on FPGA.[3][4] New generations of FPGA
chips, such as Xilinx Virtex-II and Virtex-4, provide a suf-
ficient amount of on-board block memory for the memory-
demanding applications of digital signal processing. However,
these devices also impose a practical constraint since the block
memory is only divisible into 4-bit wide, or high-resolution
such as 9-bit, 18-bit, or 36-bit.[5][6] Therefore, in orderto
utilize the on-board memory efficient, we should apply an-bit
quantization scheme compatible to the block memory division.
9-bit quantization provides very fine resolution, but can limit
the size of code implementable in the device and can require
significant amounts of power to be consumed. By comparison,
an efficient 4-bit quantization can allow larger codes to be
decoded, and is especially attractive if it can achieve small

quantization loss.

III. QUANTIZED BELIEF PROPAGATION ALGORITHM

In [8] a general non-uniform quantized belief propagation
algorithm to decode regular LDPC codes is proposed. That
scheme was a generalization of a message passing rule de-
scribed in [9]. In it, the messages representing the likelihood
ratios are essentially compressed by each computation node
before being transmitted to the adjacent computation nodes.

The operation of each type of computation node (check
and variable) occurs in a domain in which updates can be
performed through simple additions and subtractions. For
the variable nodes, this is essentially the log-likelihood-ratio
(LLR) domain or ”reliability” domain. For check nodes, the
domain is called ”unreliability” domain. Note that values in
the two computational domains are typically represented by
many more bits than are required to transmit and store inter-
node messages.

The functionsQv and Qc which quantize the messages in
the reliability domain and unreliability domain respectively
into n-bit compressed messages. Complimentary to these are
the functionsφv and φc which restore then-bit compressed
messages into the computational domains of each node. Note
that since variable nodes always send messages to check nodes
and vice-versa, a message which is compressed from the
reliability domain will always be restored into the unreliability
domain, and vice-versa.

Initially, information from the channel is interpreted and
quantized by a channel quantizerQch which takes real-valued
log-likelihood-ratios and produces a quantized representation.
The functionφch takes a message produced by the channel
quantizer and outputs a value to be used by the variable node.

At each iteration the variable node produces the messages
vi→j At iteration 0, the messages are given byvi→j(0)

vi→j (0) = Qch (channeli) , i ∈ {1..n} (1)

At the tth iteration, the parity check phase occurs first. All
r check node units read the variable-to-check messagesvi→j

from some edge memory connecting theith variable node to
the jth check node in the code graph, update the message by
equation 2, then write the resulting check-to-variable messages
uj→i back to the edge memory according to the code graph
connections.

uj→i (t) = Qc(
∑

i′

φc(vi′→j(t − 1))), j ∈ {1..r} (2)

wherei′ ranges over all edges connected connected to the
jth check node excludingi, Qc is the quantization rule for the
check-to-variable messageuj→i, andφc is the reconstruction
function for the variable-to-check messagevi→j . The archi-
tecture diagram of a check node unit is shown in Fig.2.

Next, the variable phase occurs.n variable node units
read the check-to-variable messagesuj→i from edge memory,

. .

+

-

-

-

φc

φc

φc

Qc

Qc

Qc

n- bit

input 1
output 1

output 2

output 6

n- bitn- bit

n- bitn- bit

n- bitn- bit

//

//

//

8-bit
/

8-bit
/

.

.

. .

.

......

......

......

......

.

.

.

......

......

.

.

.

......

M
S

B
(i

n
p

u
t
6
)

M
S

B
(i

n
p

u
t
2
)

M
S

B
(i

n
p

u
t
1
)

XOR

XOR

XOR

XOR

n- bit

input 3

n- bit

input 2

Fig. 2. Check Node Unit’s architecture

+

-

-

-

φch

φv

φv

φv

Qv

Qv

Qv

n-bit

channel i

n-bit

input 1

n-bit

input 2

n-bit

input 3

n-bit

output 1

n-bit

output 2

n-bit

output 3

.

.

. .

.

Fig. 3. Variable Node’s architecture

update the message by equation 3, then write the variable-to-
check messagesvi→j back to edge memory according to the
code graph connections.

vi→j (t) = Qv

(

φch (Qch (channeli))
+

∑

j′ 6=j φv (uj′→i(t))

)

(3)

, i ∈ {1..n}

wherej′ ranges over all edges connected connected to the
ith variable node excludingj, Qv is the quantization rule
for the variable-to-check messagevi→j , φv is the reconstruc-
tion function for the check-to-variable messageuj→i, and
φch is the reconstruction function for the channel message
Qch (channeli). The architecture diagram of a variable node
unit is shown in Fig.3.

At the final Kth iteration, hard decisionsXi are made in
variable nodes following:

Xi =
0,

∑

j uj→i(K) ≥ 0

1,
∑

j uj→i(K) < 0
(4)

Encoder

Quantizer

Decoder

Noise ~ N(0,σ2)

Gaussian Channel

X Y

Z

Fig. 4. Quantization of channel messages

IV. OPTIMIZING THE QUANTIZATION PARAMETERS

We targeted regular(3, 6) codes to optimize the quanti-
zation parameters. In order to optimize the error-correcting
performance in the quantization scheme, the intuition is to
maximize the mutual information between the source and the
quantized message. As the binary source signal is corruptedby
the gaussian noise channel, the signal before the quantization
process is a Gaussian-distributed real-valued messageY =
X + noise. Therefore, the mutual information betweenX

(binary source) andY (Gaussian channel output) is:

I(X ; Y) = 1 +

∞
∫

−∞

Pr(y|x) log2(1 +
Pr(y| − x)

Pr(y|x)
)dy (5)

Next, then-bit quantizer maps the real-valued messageY

into the appropriated quantized messageZ according to the
quantization parameters,Z = Qch(Y).(See Fig.4) Therefore,
the mutual information between the binary sourceX and the
quantized messageZ is:

I(X ; Z) = 1 +
∑

z

Pr(z|x) log2(1 +
Pr(z| − x)

Pr(z|x)
) (6)

In order to maximize the mutual information, the quantiza-
tion functionQch is found such that:

arg max I(X ; Z) = arg max{1 + (7)
∑

z

Pr(z|x) log2(1 +
Pr(z| − x)

Pr(z|x)
)}

where

Pr(z|x) =

max Q
−1

ch
(z)

∫

minQ
−1

ch
(z)

Pr(y|x)dy (8)

OnceQch is determined, initial values forφch can be found
by taking the midpoints ofQch quantized to an appropriate

TABLE I

OPTIMIZED 3-BIT QUANTIZATION PARAMETERS: RECONSTRUCTION

VALUES

x φch(x) φv(x) φc(x)

−4 −21 −20 −1

−3 −15 −12 −2

−2 −9 −6 −6

−1 −3 −2 −26

0 3 2 26

1 9 6 6

2 15 12 2

3 21 20 1

TABLE II

OPTIMIZED 3-BIT QUANTIZATION PARAMETERS: QUANTIZER INTERVALS

Qch(ch)/
Qv(v)/
Qc(c)

ch v c

−4 ch < −3.3 v < −18 −5 ≤ c < 0

−3 −3.3 ≤ ch < −2.2 −18 ≤ v < −12 −9 ≤ c < −5

−2 −2.2 ≤ ch < −1.1 −12 ≤ v < −6 −26 ≤ c < −9

−1 −1.1 ≤ ch < 0 −6 ≤ v < 0 c < −26

0 0 ≤ ch ≤ 1.1 0 ≤ v ≤ 6 c > 26

1 1.1 < ch ≤ 2.2 6 < v ≤ 12 9 < c ≤ 26

2 2.2 < ch ≤ 3.3 12 < v ≤ 18 5 < c ≤ 9

3 ch > 3.3 v > 18 0 ≤ c ≤ 5

scale. Initial values for the other four parameters can be found
similarly.

After initial values of the quantization parameters are de-
termined, these values are optimized using both simulation
and density evolution. Currently, significant amount of hand-
optimization is used, and we have not had time to explicate
our optimization procedures in detail.

Using this strategy, we found several sets of optimized non-
uniform quantization parameters, and listed as follows:

Table I: Optimized 3-bit Quantization rules: Reconstruction
functionsφch(x), φv(x),andφc(x).

Table II: Optimized 3-bit Quantization rules: Quantizers’
interval valuesQch(ch), Qv(v),andQc(c).

Table III: Optimized 4-bit Quantization rules: Reconstruc-
tion functionsφch(x), φv(x),andφc(x).

Table IV: Optimized 4-bit Quantization rules: Quantizers’
interval valuesQch(ch), Qv(v),andQc(c).

V. SIMULATION PERFORMANCE

Using the optimized 3-bit and 4-bit quantization parameters
targeted for regular (3,6) codes, we simulated our proposed
non-uniform quantization scheme on a (4096, 2048) regular
code. Using the 3-bit optimized quantizer, the LDPC decoder
operates with0.2dB implementation loss relative to a floating

TABLE III

OPTIMIZED 4-BIT QUANTIZATION PARAMETERS: RECONSTRUCTION

VALUES

x φch(x) φv(x) φc(x)

−8 −114 −114 −1

−7 −87 −87 −4

−6 −64 −64 −12

−5 −48 −48 −27

−4 −36 −36 −50

−3 −25 −25 −88

−2 −15 −15 −153

−1 −5 −5 −312

0 5 5 312

1 15 15 153

2 25 25 88

3 36 36 50

4 48 48 27

5 64 64 12

6 87 87 4

7 114 114 1

TABLE IV

OPTIMIZED 4-BIT QUANTIZATION PARAMETERS: QUANTIZER INTERVALS

Qch(ch)
or
Qv(v)
or
Qc(c)

ch v c

-8 ch < 5.0 v <-210 -2≤ c <0

-7 -5.0≤ ch <-3.7 -210≤ v <-115 -7≤ c <-2

-6 -3.7≤ ch <-2.8 -115≤ v <-67 -18≤ c <-7

-5 -2.8≤ ch <-2.1 -67≤ v <-36 -36≤ c <-18

-4 -2.1≤ ch <-1.5 -36≤ v <-18 -67≤ c <-36

-3 -1.5≤ ch <-1.0 -18≤ v <-7 -115≤ c <-67

-2 -1.0≤ ch <-0.5 -7≤ v <-2 -210≤ c <-115

-1 -0.5≤ ch <0 -2≤ v <0 c <-210

0 0≤ ch ≤0.5 0≤ v ≤10 c >210

1 0.5< ch ≤1.0 10< v ≤20 115< c ≤210

2 1.0< ch ≤1.5 20< v ≤30 67< c ≤115

3 1.5< ch ≤2.1 30< v ≤42 36< c ≤67

4 2.1< ch ≤2.8 42< v ≤56 18< c ≤36

5 2.8< ch ≤3.7 56< v ≤74 7< c ≤18

6 3.7< ch ≤5.0 74< v ≤100 2< c ≤7

7 ch >5.0 v >100 0≤ c ≤2

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
E

R

floating−point, 3−bit, and 4−bit quantization performance

floating−point BP

4−bit non−uniform
quantization;
less than 0.1 dB loss
than floating−point BP

3−bit non−uniform
quantization;
0.2 dB loss
than floating−point BP

Simulations on (4096, 2048)
regular (3,6) code

Fig. 5. Simulation performance of various quantization scheme

point belief propagation decoder. Using the 4-bit optimized
quantizer, the LDPC decoder achieves quantization loss less
than0.1dB.(See Fig. 5) For the sake of quantization simplicity,
we adopted the optimized 3-bit quantizer into our FPGA-based
structured LDPC decoder.[3]

VI. COMPARING NON-UNIFORM QUANTIZATION AND

UNIFORM QUANTIZATION

[7] examined various uniform quantization schemes in-
cluding uniform quantized offset BP-based decoding algo-
rithms in details. While computationally more involved, our
proposed non-uniform quantization schemes outperforms the
uniform quantized counterpart when constrained by stored
bit width. For example, decoding a regular (8000, 4000)
LDPC code, [7]’s5-bit uniform quantized offset BP-based
algorithms suffers a degradation of0.1dB compared with the
unquantized BP algorithms. In comparison, simulating on a
similar block-length (8192, 4096) regular LDPC code, our
proposed4-bit non-uniform quantization scheme operates less
than0.1dB implementation loss relative to a unquantized BP
decoder.(See Fig. 6) Benefiting from a smaller quantization
bit number while enjoying less implementation loss, non-
uniform quantization may be preferable to be adopted in
hardware implementation of LDPC decoder, especially on
a FPGA-platform in which 4-bit quantization optimizes the
block memory utilization.

VII. C ONCLUSION

We have presented a general non-uniform low-complexity
quantization scheme for the implementation of LDPC de-
coders, and demonstrated the 3-bit and 4-bit optimized quan-
tization rules for regular(3, 6) LDPC decoders. Maximizing
the mutual information between the binary source and received
quantized message allows the optimization of quantized LDPC
decoding. As demonstrated by this work, an efficient low-
complexity quantization can reduce the memory requirements
and routing complexity in the hardware implementation of
practical LDPC decoders.

1 1.2 1.4 1.6 1.8
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
E

R
 o

f 5
−b

it
un

ifo
rm

 q
ua

nt
iz

er

5−bit Uniform Quantization Vs. 4−bit Non−uniform Quantization

1 1.2 1.4 1.6 1.8
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
E

R
 o

f 4
−b

it
no

n−
un

ifo
rm

 q
ua

nt
iz

er

5−bit uniform quantizer
(8000, 4000) regular code

4−bit non−uniform quantizer
(8192, 4096) regular code

floating−point
BP

5−bit uniform
quantized
Offset BP

0.1 dB gap

floating−point
BP

4−bit non−uniform
quantized BP

less than
0.1 dB gap

Fig. 6. 5-bit uniform quantizer Vs. 4-bit non-uniform quantizer

REFERENCES

[1] R. G. Gallager, Low-Density Parity-Check Codes, MIT Press, Cam-
bridge,MA, 1963.

[2] S. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, ”On the design
of low-density parity-check codes within 0.0045 dB of the Shannon limit,”
IEEE Comm. Letters, vol.5, pp.58-60, Feb. 2001.

[3] J. Lee, B. Lee, J. Thorpe, K. Andrews, S. Dolinar, J. Hamkins, ”A
Scalable Architecture of a Strructured LDPC Decoder,” Proc. IEEE ISIT
2004, Chicago, Jun 27- Jul 2 2004, pp.292.

[4] T. Zhong and K. Parhi, ”A 54 Mbps (3, 6)-Regular FPGA LDPC
Decoder,” Proc. IEEE SIPS 2002, San Diego, CA, Oct. 16–18, 2002,
pp. 127–32..

[5] 18 Kbit Block SelectRAM Resources, Xilinx Virtex-
II Platform FPGAs Complete Data Sheet, pp. 21,
http://direct.xilinx.com/bvdocs/publications/ds031.pdf

[6] Block RAM Summary, Xilinx Virtex-4 User Guide, pp. 109,
http://direct.xilinx.com/bvdocs/userguides/ug070.pdf

[7] J. Chen, A. Dholakia, E. Eleftherioum M. Fossorier, and X.-Y Hu,
”Reduced-Complexity Decoding of LDPC Codes.”

[8] J. Thorpe, ”Low-complexity approximations to be-
lief propagation for LDPC codes,” available at
http://www.systems.caltech.edu/jeremy/research/papers/research.html.

[9] T. J. Richardson and R. L. Urbanke, ”The Capacity of Low-Density Parity
Check Codes Under Message-Passing Decoding,” IEEE Trans. on Info.
Th., vol. 47, no. 2, pp. 599–618, 2001.

