
Enumerators for Protograph Ensembles of LDPC
Codes

S. L. Fogal
Caltech

1200 E. California Blvd
Email: sarah@acm.caltech.edu

Robert McEliece
Caltech

1200 E. California Blvd
Email: rjm@systems.caltech.edu

Jeremy Thorpe
Caltech

1200 E. California Blvd
Email: jeremy@systems.caltech.edu

I. INTRODUCTION

LDPC codes are becoming a standard in today’s error
correcting systems. However, even as the number of codes
investigated by researchers has swelled, it remains difficult
to find codes achieving ”near zero” error probability at rates
close to Shannon capacity. Instead, codes which are designed
to behave well close to the capacity limit typically exhibit an
Error floor.

Error floors are generally attributed to small sets of variables
such as low-weight codewords, low-weight stopping sets [1],
pseudocodewords [2] of small pseudo-weight, or, in the case of
quantized decoders, small trapping sets [3]. Often, these sets
are discovered only after specific codes have been designed
and simulated. However, it is desirable to be able to predict
the existence and frequency of such sets for entire ensembles
of codes.

Speaking more formally, we are interested in certain asymp-
totic weight enumerators of LDPC code ensembles. Gallager
was able to compute asymptotic codeword weight enumerators
for regular LDPC codes at least as early as 1963[4]. Litsyn
and Shevelev[5] extended this result to include unstructured
irregular ensembles. More recently, Di[6] has computed weight
enumerators and stopping set enumerators also for unstruc-
tured irregular ensembles (in both average and typical case).

In this paper, we consider the problem of finding average
enumerators for the class of protograph ensembles, which are
related in a certain way to quasi-cyclic codes. Our methods,
which are necessarily different from those used to compute
enumerators for irregular ensembles, can be applied to both
codeword and stopping set weight enumerators, based on their
simple combinatorial characterizations.

In section II, we define the quantity AΘ,G which is the
number of vectors of fractional weight Θ having a certain
relationship to the graph G (e.g. being a codeword or a
stopping set). The expectation of this quantity with respect
to an ensemble is AN (Θ). This quantity typically grows
exponentially with N and the enumerator exponent E(Θ) is:

E(Θ) = lim
N→∞

1
N

ln AN (Θ) (1)

We show that

E(Θ) = max
〈θ〉=Θ

E(θ) (2)

for a certain function E(θ) where θ is a vector fractional
weight or partial weight. In section IV, we show how to
compute the value of E(θ). In section V, we show that E(θ)
is in general not convex, and thus is difficult to optimize.
Nonetheless, we apply steepest ascent to solve the maxi-
mization, and show that this method gives results that are
reasonable.

In section VI, we outline some future research directions

II. WEIGHT ENUMERATORS DEFINED

Protograph ensembles are defined and characterized by a
bipartite graph P = (V, C,E), where V = {v} is a set of
variable nodes, C = {c} is a set of check nodes, and E = {e}
is a set of edges each adjacent to one element v(e) ∈ V and
one element c(e) ∈ C. Formally, a protograph is equivalent to
a code’s Tanner graph, except that multiple edges are allowed.

A protograph P is equivalent to an r × n protomatrix H
where the columns of H are indexed by V , rows are indexed
by C, and Hc,v is the number of edges in E adjacent to c and
v.

The ensemble corresponding to P generates a graph G of
length N · n whose Tanner graph is a random N -lift of P . A
random N -lift of P , which we denote PN = (V N , CN , EN),
is constructed from a set of random permutation matrices
{πe}e∈E each of length N . We let V N = V × {1..n},
CN = C × {1..n}, and EN = E × {1..n}, where (e, i) is
adjacent to (c, i) and (v, πe(i)). We refer to v as the type of
node (v, i), and to i as its index, using a similar convention
for check nodes (c, i) and edges (e, i).

The codewords x ∈ G are the assignments of (0, 1) to
each vN ∈ V N such that each (c, i) ∈ CN is adjacent an
even number of times to variable nodes assigned the value 1.
Similarly, the stopping sets s of G are assignments such that
each (c, i) ∈ CN is adjacent 0 times or at least 2 times to
variable nodes assigned the value 1.

We are now ready to define a set Ω which generalizes the
notions of codeword and stopping set. For each check c ∈
C in the protograph define a set of allowed vectors Ωc ⊂
(0, 1){e:c(e)=c}.

For a particular word x and check node (c, i) ∈ CN , define
ω(c,i)(x) to be the vector of variables connected to (c, i):

ω(c,i)(x) = (xv(e))e:c(e)=(c,i) (3)

Then the set Ω is the set of x such that every vector ω(c,i)(x)
is in the corresponding allowed set Ωc, formally:

Ω =
{
x : ω(c,i)(x) ∈ Ωc, c ∈ C, i ∈ {1..n}} (4)

is a set of words x with a certain combinatorial property.
By choosing an appropriate definition of Ωc, it is possible

make Ω the set of codewords or the set of stopping sets. If,
for each c ∈ C, Ωc is the set of vectors of even weight, then
Ω is the set of codewords in G. If Ωc is the set of vectors of
weight not equal to 1, then Ω is the set of stopping sets.

We are interested in the number of words in Ω of fractional
weight Θ(x), defined to be the the number of 1’s in x divided
by the word length N · n. For a given graph G the number
of such words is denoted A(Θ,G), and the expectation with
respect to the ensemble of graphs of length N is denoted
AN (Θ)Ṫhis expectation typically grows exponentially with N ,
and the exponent E(Θ) is defined by equation 1.

III. APPROACH

Our approach to computing E(Θ) is based on the method of
types [9]. For a particular word x (not necessarily in Ω), denote
its type (or partial weight) by θ(x) = (θv)v∈V , where θv

denotes the fraction of times that x assigns 1 to variables (v, i)
of type v ∈ V . The following lemma says that the probability
that x ∈ Ω depends only the type θ.

Lemma 1: if x and y are assignments of (0, 1) to each v ∈
V N such that θ(x) = θ(y) then P (x ∈ Ω) = p(y ∈ Ω)

Proof: θv(x) = θv(y) implies that there exists a vector
of permutations (πv)v∈V such that for each v, xv = πv(yv),
where xv is the value x assigns to {v, i}.

The permutations (πv)v∈V define a bijection on elements
of the ensemble defined by f((πe)) = (πe · π(v(e))) such that
y ∈ Ω(f((πe))) if and only if x ∈ Ω(πe). Since all lifts in the
ensemble are equiprobable, the conclusion holds.

Thus the expected number of words of type θ, which we
denote AN (θ) is just the number of words of type θ times the
probability that any word of that type is in Ω.

AN (θ) = |{x : θ(x) = θ}| · P (x ∈ Ω|θ(x) = θ) (5)

It is straightforward to see that the number of words of type
θ can be approximated as:

|{x : θ(x) = θ}| = eN
P

v H(θv) (6)

Define the indicator function that x satisfies all of the
constraints

Definition 1:

fΩc(x,G) =
{

1, if ω(c,i)(x) ∈ Ωc∀i ∈ {1..n}
0, otherwise (7)

The following lemma says that for any x, the probability
of satisfying each type of constraint Ωc is independent over
c ∈ C.

Lemma 2:

P (x ∈ Ω) =
∏

c∈C

P (fΩc(x,G) = 1) (8)

Proof: for a particular x, fΩc
(x,G) is a function only of

the set of permutations {πe}e:c(e)=c. The permutations {πe}
are mutually independent, and thus independent with respect
to the partitioning

{{πe}e:c(e)=c

}
c∈C

. The result follows since
functions of independent variables are independent.

We define the asymptotic exponent of the probability that
all ω(c,i) ∈ Ωc for all checks of type c:

Φc = lim
N→∞

ln(P (fΩc(x,G) = 1))/N (9)

For a particular word x, this probability depends only on
the vector of weights αc associated with the variables adjacent
to check c in the protograph:

αc = (θv(e))e:v(e) (10)

From a computational point of view, it is unfortunate that
independence does not factor further. Although fΩc(x,G)is in-
dependent from type to type, ω(c,i)(x) are generally dependent
among values of i. Nonetheless, we can apply large deviation
theory and Sanov’s theorem to obtain the following theorem,
which shows in principle how to compute the asymptotic
probability exponent Φc.

Theorem 1:

Φc = max
p∈P

H(p)−
∑

e:c(e)=c

H(θv(e)) (11)

where P is the set of distributions over Ωc satisfying the
marginal constrains:

∑

ω∈Ω

ωp(ω) = αc (12)

Proof: see the appendix.

Taking the log of equation 5, and substituting equation 6
and 9, we have:

E(θ) =
∑

v∈V

H(θv) +
∑

c∈C

Φc(αc) (13)

In the following section, we show how to numerically
compute the value of Φc and thus how to compute E(θ).

IV. NUMERICAL METHODS FOR COMPUTING E(θ)
In the previous section, we have seen that computing

each function Φc(θ) requires solving a constrained entropy
maximization problem.

In this section, we describe the computational mathematics
used to calculate E(Θ), for a given protograph described by
an r × n matrix H.

Let mc be the degree of c. We have seen that Ωc is a set
of mc−vectors. We seek Φc(αc) = maxH(p) − ∑

e H(θv)
where p(ω) is the set of all probability mass functions satis-
fying equation 12

Applying Euler-Lagrange theory, we will see how this
constrained optimization problem can be transformed into a
non-linear system of equations. The Lagrangian corresponding
to our constrained optimization problem can be written

L(p) = −
∑

ω∈Ω

p(ω)(log(p(ω))− s · ω) (14)

The constrained optimum must satisfy ∂L
∂p = 0, and this

condition implies a Boltzmann distribution on ω given by

p∗(s, ω) =
1

z(s)
e−s·ω (15)

The normalizing constant z(s) takes the value that ensures p
is a probability distribution, appropriately summing to 1.

z(vecs) =
∑

ω∈Ω

e−s·ω, (16)

The Helmholtz free energy can be written in terms of Z(s)
:

F (s) = − log(Z(s)) (17)

and has the property that its gradient with respect to s is equal
to the l.h.s of equation 12.

∇F (s) =
1

Z(s)

∑

ω∈Ω

ωe−s·ω (18)

=
∑

ω∈Ω

ωp(ω). (19)

Thus, if we find s∗ which solves

∇F (s∗) = αc (20)

then the probability density that leads to the maximum entropy
is given by p∗(s∗, ω) and Φc(αc) can be expressed

Φc(αc) = −F (s∗) + s∗ · ∇F (s∗) (21)

The domain of αc, usually denoted K, is the convex hull
of all ω ∈ Ωc. Outside of this domain, no distribution p can
satisfy 12. As a side remark, we note that if each Ωc is the set
of even weighted vectors, then the feasible region is formally
equivalent to the pseudocodeword fundamental polytope.

The domain of s is the entire space Rn of real vectors. It
is shown in a concurrently submitted paper by Aji et. al[7]

that there is a one-to-one correspondence between these two
domains. That result follows from considering the Helmholtz
free energy and its Legendre conjugate.

Once we have this non-linear system of equations 20,
we can numerically solve for s∗ using either Broyden’s or
Newton’s Method. We found Broyden’s Method[8] to be far
faster, and thus use it whenever possible. However, since
Broyden’s Method uses only an approximation to the Jacobian,
it is not always able to find a solution. In practice, this
typically happens near the boundary of the feasible set(where
calculations of gradients and Jacobians become more difficult
by any method). The values of αc on the boundary of K
correspond to values of s with infinite norm, and care must
be taken to avoid numerical problems in this region.

In the following section, we will show how to optimize the
function E(θ) over θ to obtain E(Θ).

V. OPTIMIZATION OF E(θ)

Since there are only polynomially many types, each having
an exponential number of elements, it is a standard result
that the sum is dominated by a a single type, as expressed
in equation 2.

In general, the function E(θ) is not convex. For protographs
with no check nodes of high degree, it may be possible to
essentially search the whole space {θ : 〈θ〉 = Θ for the global
maximum of 2, but this is impractical for protographs with
any large check nodes. A second approach is to use a gradient
following method such as steepest descent. Unfortunately, this
is not guaranteed to converge to the global minimum. A third
approach is to use steepest descent starting from a number of
different starting locations. In practice, this approach is suffi-
cient to compute curves that appear continuous for protographs
that have been investigated.

Still, it is an artifact of certain protographs that there are
critical values of Θ at which the global minimum of E(θ)
jumps from one place to another, which is reflected in a
discontinuity in the first derivative of E(Θ).

Figure V shows our evaluation of the weight enumerator for
a rate 1/3 protograph defined by the matrix in equation 22.
The zoomed section, shown in figure V shows a discontinuity
at approximately Θ = 0.13 in which the global maximum of
2 jumps from one value of θ to another. The dashed lines
indicate other local maxima.

H =
(

3 0 3
0 3 4

)
(22)

For a given matrix, H, and a value of Θ perhaps only
some vectors θ have a solution to the entropy maximization
problems for each row of H, as for some problems there are
no probability mass functions which satisfy the constraints. A
simple algorithm can be used to determine whether a vector
θ is feasible. In the steepest ascent code, if we find ourself
stepping outside the feasible set, we just take a smaller step
size until either we remain in the feasible set or the step size
becomes effectively zero.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
Code Word Weight Enumerator

Fig. 1. Numerical evaluation of the weight enumerator for a rate 1/3
protograph

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

Code Word Weight Enumerator

Fig. 2. This weight enumerator has an elbow

VI. DISCUSSION

A primary motivation for computing enumerators has been
to use them to design ensembles of codes with low error
floors. The general idea is to use a combination of enumerator
properties, such as the asymptotic expected minimum weight,
and density evolution threshold. Preliminary experiments in
which such codes have been designed and simulated have
suggested that this approach can be effective.

Multi-Edge-type ensembles are a superclass of both proto-
graph ensembles and unstructured irregular ensembles. Since
the theory for computing enumerators for unstructured ensem-
bles is by now established, we hope to be able to combine our
techniques with those techniques in order to find enumerators
for this class of ensembles.

APPENDIX

From the definition of the protograph ensemble, the check
(c, i) is adjacent to {(v(e), πe(i))}e∈E:c(e)=c

With m fixed and n very large, denote by Ωn −
Ωn(θ1, . . . , θm) the set of all m× n (0, 1)-matrices with row

sums w1, . . . , wm. There are
m∏

i=1

(
n

wi

)
=

m∏

i=1

(
n

θin

)
(23)

(here θi = wi/n, for i = 1, . . . , m.) such matrices, and so we
define a uniform probability measure on Ωn:

Qn(X) =
m∏

i=1

(
n

wi

)−1

for all X ∈ Ωn. (24)

Let Xj be the jth column of X ∈ Ωn. Then X1, . . . , Xn

are identically distributed (but not independent) Vm-valued
random vectors, which we summarize with the notation

(X1, . . . , Xn) ∼ Qn(X). (25)

We denote the common density of the Xj’s by Q∗(α):

Q∗(α) = Pr Xj = α =
m∏

i=1

θαi
i (1− θi)1−αi (26)

for α = (α1, . . . , αm) ∈ Vm

We define the type of a matrix X ∈ Ωn as the empirical
density on Vm defined by (X1, . . . , Xn):

PX(α) =
1
n

j : Xj = αfor α ∈ Vm. (27)

The set of all such empirical densities will be denoted by ¶n.
By C. & T. Theorem 12.1.1,

|¶n| ≤ (n + 1)2
m

. (28)

The type class of P ∈ ¶n is defined as

T (P) = {X ∈ Ωn : PX = P} (29)

If X ∈ Ωn, then clearly (by conservation of 1’s):
∑

α∈Vm

PX(α)αi = θifor i = 1, . . . , m. (30)

A density satisfying 30, empirical or not, is called consistent.
The set of consistent densities on Vm is denoted by ¶.

Theorem 2: (Cf. Cover and Thomas[9] Theorem 12.1.2.)
Let (X1, . . . , Xn) ∼ Qn(X). Then to first order in the
exponent the probability of X depends only on its type:

2−n(H(PX)+D(PX‖Q∗)) ≤ Qn(X) ≤ 2−n(H(PX)+D(PX‖Q∗))(n+1)m.

Theorem 3: (Cf. Cover and Thomas Theorem 12.1.4). For
any consistent type class T (P),

2−nD(P‖Q∗)(n+1)−2m ≤ Qn(T (P)) ≤ 2−nD(P‖Q∗)(n+1)m.

On the other hand, if P is not consistent, Qn(T (P)) = 0.
Theorem 4: (Cf. Cover and Thomas Theorem 12.4.1). Let

(X1, . . . , Xn) ∼ Qn(X), and let E ⊆ ¶n be a set of consistent
probability distributions. Then

(n+1)−2m

2−nD(P∗‖Q∗) ≤ Qn(E) ≤ (n+1)2
m+m 2−nD(P∗‖Q∗)

where P ∗ = arg minP∈E D(P‖Q∗).

Summary 1: If X = (X1, . . . , Xn) ∼ Qn(X), P ∈ ¶n,
E ⊆ ¶n:

Qn(X) = 2−n(H(PX)+D(PX‖Q∗) (31)
Qn(T (P)) = 2−nD(P‖Q∗) (32)∑

P∈E

Qn(T (P)) = 2−nD(P∗‖Q∗) (33)

where P ∗ = arg minP∈E D(P‖Q∗).
REFERENCES

[1] C. Di, D. Proietti, E. Telatar, T. Richardson, and R. Urbanke, “Finite
length analysis of low-density parity-check codes.” Submitted IEEE
Trans. on Information Theory, 2001.

[2] B. J. Frey, R. Koetter, and A. Vardy, “Skewness and pseudocodewords in
iterative decoding,”

[3] T. Richardson, “Error floors of ldpc codes.” 2004.
[4] R. Gallager, “Low-density parity-check codes.”
[5] S. Litsyn and V. Shevelev, “On ensembles of low-density parity-check

codes: Asymptotic distance distributions.,” IEEE Transactions on Infor-
mation Theory, vol. 48, no. 4, pp. 887–908, 2002.

[6] C. Di, “Asymptotic and finite-length analysis of low-density parity-check
codes,” 2004.

[7] S. Aji, S. Fogal, R. McEliece, and B. Wang, “Constrained entropy, free
energy, and the legendre transform,” 2005. Submitted to International
Symposium on Information Theory.

[8] J. Nocedal and S. J. Wright, Numerical Optimization. Springer-Verlag,
1999.

[9] T. Cover and J. Thomas, Elements of Information Theory. Wiley
Interscience, 1991.

