Universal DNA TAT Systems: Combinatorial Designs

EE 150, CALTECH, Fall 2004 Presentation by: Mostafa El-Khamy

Main Reference

[0] Universal DNA Tag Systems: A Combinatorial Design Scheme, A. Ben-Dor, R. Karp, B. Schwikowski and Z. Yakhini

Figure from `The Way Life Works,'Mahlon Hoagland and Bert Dodson.

DNA

• A: Adenylic Acid

T: Thymidylic Acid

- G: Guanylic Acid
- C: Cytidylic Acid
 - **A=T**^c

 $C=G^{c}$

Figure from `The Way Life Works,'Mahlon Hoagland and Bert Dodson.

►Protien

translation

mRNA

- Array Based Hybridization assays [6,13,15,..]
- Probe (Antitag): A target specific set of Oligonucleotides is immobilized to a substrate. (Microarray)
- Target sample of RNA or DNA is flourescently labeled (Tags)
- Brought in Contact with the Microarray and allowed to hybridize
- Information about the sample content is obtained by scanning the fluorescent labels

- "Yeast genome microarray. The actual size of the microarray is 18 mm by 18 mm.
- A fluorescently labeled cDNA probe was prepared from mRNA isolated from cells harvested shortly after

inoculation

 Similarly, a second probe was prepared from mRNA isolated from cells taken from the same culture 9.5 hours later"

• `Exploring the Metabolic and Genetic Control of Gene Expression on a Genomic Scale,' Joseph L. DeRisi, Vishwanath R. Iyer, Patrick O. Brown

AFFYMETRIX GENECHIP(R) BRAND HUMAN GENOME U133 PLUS 2.0 ARRAY

Affymetrix News Release - 10/2/03

"10,000 new probe sets representing about 6,500 new genes, for a total of nearly 50,000 RNA transcripts and variants. This new information, verified against the latest version of the publicly available genome map, provides researchers the most comprehensive and up-to-date genome-wide gene expression analysis."

Universal Microarrays

- Developed by Brenner [1], Morris et. al [2],...
- Example: SNP (Single Nucleotide Polymorphisms Detection)

- Microarrays are efficient in detecting genetic variations in multiple samples simultaneously.
- A microarray is designed with a set of *universal* antitags, $\Omega = \{J_1, J_2, ..., J_n\}$.
- A unique Tag in Ω^c is ligated to a target specific complementary sequence to form a reporter molecule.

$$J^c$$
 z^c

Solution Phase: Hybridization between target DNA and reporter ٠ molecules. J^{c} 7^{c}

In Polymerase driven reaction each hybridized reporter molecule is ٠ extended by a fluorescently labeled dideoxynucleotide. (ddA, ddT, ddC, ddG).

Separate Extended Reporters from the Sample fragments. •

- Solid Phase: Tags form duplexes with corresponding Antitags on the ٠ Microarray.
- Reporters are sorted into different locations on the array ٠
- Dyes at each site determine the SNP variation of the tested ٠ sequence.

 7^{c} J^{c} Ρ Ζ

Ζ

Ρ

DNA TAT Design Tradeoff:

- Maximize the number of SNPs that can be genotyped in Parallel ≡Maximize the Number of tags
- Maximize the accuracy of the array \equiv Minimize Cross-Hybridization due to similar tags

Construct the Largest Possible λ Free Code over $\Sigma = \{A, C, T, G\}$

 \bullet A stable duplex requires perfectly complementary Substrings of length more than λ

• λ -Free Code: No two elements of the set of tags of length n have a common substring of length more than λ .

• A De Bruijn sequence of order λ : A cyclic sequence in which each possible λ subsequence occurs exactly once.

 S. Brenner, "Methods for Sorting polynucleotides using oligonucleotide tags," US Patent 5604097, 1997 · By parsing a De Bruijn Sequence of order λ : We get a λ -free code of size

$$4^{\lambda}/(n-\lambda+1)$$

• The model does not take into account the thermodynamic properties of DNA duplexes. · Greedy (Heurestic) Algorithm:

Start with an empty set

•Iteratively add a new tag provided that it does not hybridize with any of the tag complements already included

•Allows the use of complex thermodynamic models

•No analysis available.

M. Morris, D. Shoemaker, R. Davis and M. Mittman, "Methods and Components for selecting tag nucleic acids and probe arrays," European Patent.

Thermodynamic Model

Melting temperaturebetween two sequences U & V: t_M(U,V)

- Half of the U and V oligoneucleotides will be in single stranded form and half occur in duplexes
- Measure of Hybridization, Ψ between U
 & V

- C-G pairs have one more hydrogen bond
- 2-4 Rule (for short oligonucleotides) [20]:
 t_M(U,V)=2(# of A-T pairs) + 4(# of C-G pairs)

TAT Design Problem:

- For each tag-antitag pair $t_M(U,\overline{U}) \ge H$
- For any two distinct tags U&V, and for each nucleotide substring x, $x \in V\&x \in U$, $t_M(x, \overline{x}) < C$.
- Restriction [2]: x does not occur twice in the same tag if $t_M(x, \overline{x}) \ge C$ (not only in any 2 distinct tags).

• Weight:
$$w(s) = \sum_{i=1}^{k} w(s_i)$$
, where $s_i \in \Sigma = \{A, C, T, G\}$
 $w(C) = w(G) = 2w(A) = 2w(T) = 2.$

Combinatorial Tag Design Problem:

Find the maximum valid *c-h* code:
1) Each tag has a weight *h* or more.
2) Any substring of weight *c* or more occurs at most once.

Corresponds to C=2c and H=2h

2') Any c-token occurs at most once

- *t* is a *c*-token: $w(t) \ge c$, No suffix of weight $\ge c$ is properly contained in *t*.
- Example: c=4

Weight	2122111	Tail Wt.
TAG	GACCAAT	7
	CAAT	1
	CAA	1
tokens:	CCA	1
	СС	2
	GAC	2

•
$$\{A,T\} \rightarrow W, \quad \{C,G\} \rightarrow S, w(W) = 1, \quad w(S) = 2$$

• $G_1 = 2, G_2 = 6, G_n = 2G_{n-1} + 2G_{n-2}, n \ge 3$

$$G_n = \left[\left(\frac{3 + \sqrt{3}}{6} \right) (1 + \sqrt{3})^n \right]$$

G2=6
AA
ΤТ
ΑT
ТΑ
С
G

- Lemma 1: Any tag in a valid c-h code has a tail weight of at least h-c+1
- Lemma 2: Total tail weight of a valid c-h code is at most $2G_{c-1} + 6G_{c-2} + 8G_{c-3}$

	Maximum	Maximum	Token	
Token Class	Occurrence	Tail Weight	Weight	
<c-2>S</c-2>	$2 G_{c-2}$	$4 G_{c-2}$	С	
S <c-3>S</c-3>	4 G $_{c-3}$	8 G _{c - 3}	c+1	
<c-1>W</c-1>	2 G _{c-1}	$2 G_{c-1}$	С	
S <c-2>W</c-2>	$2 G_{c-2}$	$2 G_{c-2}$	c+1	

• Theorem 1: Any valid c-h code contains at most $\frac{2G_{c-1} + 6G_{c-2} + 8G_{c-3}}{h-c+1}$ • Optimal 4-10 code with 12 tags:

Construction Approach:

•Construct a (maximal) set of circular strings over Σ where each c token occurs (at most) once

•Extract minimal substrings of weight h or more with overlap at most c-1

• h=10, c=4

...CATTAATCAGCTATATAGTC.... 2 3 4 5 6 7 8 10 ...CATTAATCAGCTATATAGTC.... 4 3 2 ...CATTAATCAGCTATATAGTC....1 3 4 6 8 9 10 ...CATTAATCAGCTATATAGTC... 4 2 1 ...CATTAATCAGCTATATAGTC.... 1 2 3 4 5 6 8 9 11 ...CATTAATCAGCTATATAGTC....

- Max tag weight = h+1
- Min overlap weight= c-2
- Max no overlap weight= h-c+3

 Idea: Each metastring of weight c will be paired with a different bit string.

$$a = (\mu, \beta); a \in \Sigma, \mu \in \{W, S\}, \beta \in \{0, 1\}.$$

• Idea: Use binary de-Bruijn sequences (D_k^i has length 2^k , each sequence of length k occurs once, and the linear string starts from offset *i*.

Rotating Drum Problem:

Inspired from `A Course in Combinatorics,' J. van Lint & R. Wilson

Cycle Construction (Simple Case):

•For metastring μ ; $w(\mu) = c(even)$:

gcd(
$$|\mu| + 1, 2^{|\mu|}) = 1$$

• μw cannot be represented as a concatenation of two or more identical strings

•
$$C_0(\mu) = ((\mu w)^{2^{|\mu|}}, (D_{|\mu|}^0)^{|\mu|+1})$$

•Example:

 $\mu = SS, \quad |\mu| = 2, \quad D_{|\mu|}^{0} = 0011$ $SSWSSWSSWSSW(\mu w)^{2|\mu|}$ $\underline{00110011}_{0011}_{0011}_{0011}_{00111}_{00111}_{00|\mu|}^{0})^{|\mu|+1}$ $CCTGCAGGACGTC_{0}(\mu)$ * * * * *

$$\mu = SS, \quad |\mu| = 2, \quad D_{|\mu|}^{0} = 0011$$

$$SSWSSWSSWSSW \quad (\mu w)^{2|\mu|}$$

$$\underline{001100110011} \quad (D_{|\mu|}^{0})^{|\mu|+1}$$

$$CCTGCAGGACGT \quad C_{0}(\mu)$$

$$+ * ^{+} * ^{+} * ^{+} * ^{+} * ^{+} * ^{+} * ^{-}$$

• Observation: Total weight=Sum of tail weights.

- General Case: $\mu w = (\alpha)^p$, $k = \gcd(|\alpha|, 2^{|\mu|})$ $C_i(\mu) = ((\alpha)^{2^{|\mu|/k}}, (D_{|\mu|}^i)^{|\alpha|/k}), \quad i = 0, ..., k - 1$
- **Example:** $c = 4, \mu = SWW, \alpha = SWWW, |\mu| = 3, k = 4$

 $D_3^0 = 10111000 = d_0 d_1 d_2 d_3 d_4 d_5 d_6 d_7$

S W W W S W W $d_0 d_1 d_2 d_3 d_4 d_5 d_6 d_7$ $d_1 d_2 d_3 d_4 d_5 d_6 d_7 d_0$ $d_2 d_3 d_4 d_5 d_6 d_7 d_0 d_1$ $d_3 d_4 d_5 d_6 d_7 d_0 d_1 d_2$ + * + *

SWWWSWW $d_0 d_1 d_2 d_3 d_4 d_5 d_6 d_7$ $d_1 d_2 d_3 d_4 d_5 d_6 d_7 d_0$ $d_2 d_3 d_4 d_5 d_6 d_7 d_0 d_1$ $d_3 d_4 d_5 d_6 d_7 d_0 d_1 d_2$ ^ + * ^ + *

S W W W S W W W $d_0 d_1 d_2 d_3 d_4 d_5 d_6 d_7$ $d_1 d_2 d_3 d_4 d_5 d_6 d_7 d_0$ $d_2 d_3 d_4 d_5 d_6 d_7 d_0 d_1$ $d_3 d_4 d_5 d_6 d_7 d_0 d_1 d_2$ $^{+} * # ^{+} * #$

- c-tokens: SWW, WSW, WWS
- c+1-tokens: SWWW

• Recall:		Maximum	Maximum	Token
	Token Class	Occurrence	Tail Weight	Weight
-	<c-2>S</c-2>	$2 G_{c-2}$	$4 G_{c-2}$	С
	S <c-3>S</c-3>	4 G $_{c-3}$	8 G _{c - 3}	c+1
	<c-1>W</c-1>	$2 G_{c-1}$	$2 G_{c-1}$	С
	S <c-2>W</c-2>	$2 G_{c-2}$	$2 G_{c-2}$	c+1

- (Assuming) Total weight of Ω = sum of tail weights= $\Pi = 4G_{c-2} + 2G_{c-1} + 0.5(8G_{c-3} + 4G_{c-2}) = 2G_{c-1} + 6G_{c-2} + 4G_{c-3}.$
- (Corrollary 2:) Total weight of Ω , $\Pi = 2G_{c-1} + 6G_{c-2} + 4G_{c-3}.$
- Max weight of extracted string with no overlap: hc+3.
- Theorem: The above construction yields at least

$$\frac{1}{h-c+3}$$
 tags.

- Optimality of the construction:
 - In a valid set of cycles:
 - # of strong characters is upper bounded by G_{c-1} .
 - # of weak characters is upper bounded by G_{c}
 - The total weight is upper bounded by $G_c + 2G_{c-1}$.

Note that:
$$2G_{c-1}+6G_{c-2}+4G_{c-3}=G_c+2G_{c-1}$$
.

Proof:

- # of instances of $S^k W$ is (at most) $2^k G_{2r-2k}$
 - There are $2^{k+1}G_{2r-2k-1}$ tokens of weight 2r of the type $< 2r-2k-1 > S^kW$
 - There are $2^{k+1}G_{2r-2k-2}$ tokens of weight 2r+1 of the type $S < 2r-2k-2 > S^kW$.
 - Each instance of $S^k W$ is the suffix of exactly one token.
- 2^r of the metastring S^r .
- # of strong characters is the sum of # of instances of S^r and of S^kW.
- # of weak characters is at most G_{2r} (k=0).

$$\sum_{k=1}^{r} 2^{k} G_{2(r-k)} = G_{2r-1}$$

• The total weight is upper bounded by $G_c + 2G_{c-1}$.

Conclusions and Discussions

- Since the thermodynamic model is approximate violations may occur.
- Secondary structure in a tag may cause it to fail to hybridize to an anti-tag even though its weight> h
- Tag-foreign antitag pairs may occur due to near complementary sequences
- With the aid of computational and experimental approaches the violating tags may be deleted.