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ABSTRACT. In an attempt to determine the ultimate capabilities of the Sudan-
Guruswami/Kotter-Vardy algebraic soft-decision decoding algorithm for Reed-
Solomon codes, we present a new method, based on the Chernoff bound, for
assigning interpolation multiplicities for algebraic soft-decision list decoding. A
mathematical framework for optimizing the interpolation multiplicities is laid
down. In many cases, the algorithm developed in this paper demonstrates that
the potential performance of algebraic soft-decision decoding of Reed-Solomon
codes is significantly better than previously thought.

1. Introduction

Reed-Solomon codes [22] are one of the most important types of error-correcting
codes, due to their wide applicability in data-storage and communication sys-
tems. Through the seminal work of Sudan [23], Guruswami-Sudan [8], and Kotter-
Vardy [11], we now have a polynomial-time algebraic soft-decision decoding (ASD)
algorithm for Reed-Solomon codes. In an attempt to find asymptotic (in decoder
complexity) performance limits for ASD, we develop a new class of multiplicity
assignment algorithms for ASD in this paper. Roughly speaking, the idea is to
choose the multiplicity matrix so as to maximize the probability that the causal
codeword is on the decoder’s list, as suggested by [18], rather than to maximize
the expected score of the causal codeword, as is done in [11]. However, whereas in
[18], a Gaussian approximation is employed, we use a Chernoff bound instead. (It
was independently suggested in [21], in a somewhat different context, to use the
Chernoff bound in optimizing symbol based multiplicity matrices ).

Here is an overview of the paper. Some preliminaries are given in Section 2.
In Section 3, a brief overview of the Guruswami-Sudan (GS) algorithm is given.
In Sections 4-8, we describe the theory behind our method. A quick review of
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previously proposed multiplicity assignment ASD algorithms is given in section 6.
Our algorithm is developed and explained in Sections 9-13. In Section 14, we present
some numerical results and discussions. Conclusions and future research directions
are offered in Section 15. Briefly, we conclude that our method is theoretically
superior to previously proposed ASD algorithms, although whether it will prove to
be practical remains to be seen.

2. Preliminaries

Throughout this paper F' will denote a finite field with ¢ elements, and a typical
element of F' will be denoted by 3. C will be an (n, k, d) Reed-Solomon code over
F.!' Let the information data vector of k elements be m = (mg,m1,---mg_1). Then
the corresponding codeword ¢ = (¢, ..., ¢,) is generated by polynomial evaluation
of the information polynomial M(z) = Zfz_ol m;z® at n distinct nonzero elements
of F' constituting the support set of the code, S = {s;;s; € F for i =1,2,--- ,n}.
That is ¢; = M(s;) for i =1,2,...,n.

We will often encounter ¢ x n arrays (or matrices) of real numbers, typically
denoted by W = (w;(8)), where i =1,...,n and § € F. The cost of such an array
is defined to be

1 n
= 3 Z Z w;i(B) (wi(B) +1).
i=1 BEF
If u=(uy,...,u,) is a n-dimensional vector over F', the score of u with respect to
the array W is is defined to be

(2.1) (u, W) £ Zwi(ui).

The underlying (discrete input, memoryless) channel model has input alphabet
F, output alphabet R (which could be of infinite size for continuous channels),
and transition probabilities Pr{Y = r|X = £}, where X and Y denote the channel
input and output respectively. Given a received symbol r € R, there is a unique a
posteriori density function on F' corresponding to each § € F

pr(B) =Pr{X =pIY =r}.

Observing a channel output 7 is therefore equivalent to being given p,(3) for all
B € F. From this viewpoint, the output alphabet is not R but

R=A{p:(B);r € R,B € F}.

Thus in this paper we will assume that if ¢ = (c¢1,...,¢,) is transmitted, the
received word is an array of density functions IT = (w;(8)), where 7;(8) € R, for
i=1,...,n and 8 € F. We call TI the a posteriori probability, or APP, matrix.
We denote by R the set of all possible APP matrices. It should be noted that
the density functions 7;(8) could be calculated from the soft channel output as is
the case for additive white Gaussian noise (AWGN) channels. However, the density
functions could also be delivered directly as the soft output of an inner decoder such
as the BCJR algorithm [1] or the soft output Viterbi algorithm (SOVA) [9, 24] in
concatenated coding systems.

IMore precisely, C may be a coset of the parent RS code. See Section 5.
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The indicator function A is defined to be

1 if condition is true;

(22) Afcondition] = { 0 if condition is false.

Finally, we will denote the ubiquitous quantity (k — 1) by v.

3. The Guruswami-Sudan Algorithm.

Given a g x n array of nonnegative integers M = (m;(5)), called a multiplicity
matriz, the GS algorithm is a list decoding algorithm which produces as an output
a list of at most /2|M|/v codewords [12], which contains all codewords ¢ such
that
(3.1) (c, M) > Dy(|M]),

where D, () is the least positive integer D such that | {(i,j) € N%;i+vj <D} | >
v+ 1. In other words, D, (|M|) is the minimal (1,v) weighted degree of a bivariate
polynomial B(z,y) in order for such a nontrivial polynomial that could be interpo-
lated to pass through all the points (s;, 8) with multiplicity at least m;(8) exists.
If the sufficient condition of (3.1) is satisfied, then this bivariate polynomial will
have a linear factor of the form y — M(z) where M(z) has a degree at most v and
is the data polynomial associated with the codeword c [8, 11]. Explicitly,

(3.2) Dy(y) = {%erJ , where m = b/?+i+%J .

In the rest of the paper we will denote the important relationship (3.1) by
(3.3) chk M.
We conclude this section with two technical results needed later.

LeEMMA 3.1. An upper bound on the function D,(vy) is
v3/2

827"

ProOF. Let m be the unique integer satisfying [16]

(3.5) <?>§%<<m;1>.

Thus, v > % Let ¢)(m) = L + vm=1) then ¢(m) > v(m — 1). Thus,

(3.4) D,(7) € =5 + 207 +

which implies that 1(m) is a non-decreasing function of rn if 7 satisfies (3.5). Since

m < (\/ 77 + % + %), it follows that
(3.6) Dy(y) = i(m)] < $(m) <4 (\/277 v+ %) .

With some algebra, we get

v 02 v v
. <—— 44/ <24y —
(3.7) D,(v) < 2-|- 20y + T 2+ 207y <1+ 167)’
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which implies the assertion. O
From the derivation of the above lemma it is clear that
(3.8) Dy(7) < 20y

is a looser upper bound than that of (3.4). In fact, the function D,(y) is well
approximated by

(3.9) D)~ |20y - 3]

Indeed, if v is fixed, 0 < Dy(7) — [v/2vy — %] < 1 for all sufficiently large 7. In
Figure 1, the discrete function D, (|M|) is plotted for v = 6 as a function of the
cost |M]. The upper bounds of (3.4) and (3.8) are also plotted. It is clear that the
upper bound of (3.4) is a tight (continuous) upper bound. The approximation of
(3.9) is also compared to the function D, (|M]).

LemmMA 3.2. If v > 0,

2
lim M = +/2v7.

A—00 A

2

PRrOOF. Using (3.4), limy_, oo Dv(/{\ ) = limy o L+ ’\—Vf””’ = /2v7. O
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4. A Mathematical Model for ASD Decoding of Reed Solomon Codes.

In this section we describe our model for algebraic soft—decision decoding of RS
codes.

A codeword ¢ = (c1,...,¢,) which we call the causal codeword, is selected at
random from C, transmitted over a memoryless channel, and received as the APP
matrix II = (7;(8)) where i = 1,...,n and 8 € F. Given the APP matrix II,
the ASD decoding algorithm converts II into a ¢ x n multiplicity matrix M. This
multiplicity matrix is forwarded to the GS algorithm, which in turn produces a list
of codewords, as described in Section 3. If ¢ F M, then the causal codeword ¢ will
be on the list in which case the decoder is declared to have succeeded.

The situation is summarized by the following chain of random vectors and
matrices:?

(4.1) c— I3 M.

The only quantity in (4.1) under engineering control is the multiplicity algorithm
A, so the problem of optimizing the ASD algorithm is equivalent to choosing the
right multiplicity algorithm:

(4.2) P(A) = Hleig Pr{€a},
where
(4.3) Ea={c¥F M},
and A is some suitably restricted class of multiplicity algorithms. Note that
(4.4) Pr{€a} =Y Pr{€4I}Pr{Il},
MeR

so that A minimizes Pr{€4} iff it minimizes Pr{€4|II} for each APP matrix II.
The following theorem shows that Pr {€4|II} depends only on C, IT and M, and so
we introduce the notation

Pe(I, M) £ Pr{&Ea|Il}.
THEOREM 4.1. For x = (x1,...,2,) € F" define P(x) = [[., mi(z;) and
P(C) = > ccP(c). Then
(4.5) P(IL, M) = % S Afe¥ M]P(e).
ceC

PrOOF. First,

Pr{€all} = AfcF M]Pr{c|Il}.

ceC
Second (cf. [11], Appendix A)

Pr{c|II} = II:((S.

O

2In order to minimize our notational complexity, we do not distinguish notationally between
a random variable and an instance of the random variable.
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5. The Kotter-Vardy Simplification.

In Theorem 4.1, it was implicitly assumed that the channel is memoryless and
that the components of ¢ are uniformly drawn from the field F. But because of the
maximal distance separable (MDS) property of RS codes, the elements of any subset
of k or fewer components of ¢ are independent and could be treated as information
symbols. However, minimizing Pc (II, M) directly is not easy due to the difficulty of
calculating P(C) for an arbitrary code C and an arbitrary reliability matrix II. But
the following trick, due essentially to Kotter and Vardy [11], allows us to replace
the Markov chain (4.1) with

(5.1) x — I 2 M,

which is identical to (4.1) except that the random codeword drawn uniformly from
the code ¢ ~ U[C] in (4.1) has been replaced with a random vector x ~ U[F"] in
(5.1), whose components are independent, where x ~ U[X] means that x is drawn
uniformly at random from the space X.

COROLLARY 5.1. If Cy,...,Cg are the cosets of C, with K = ¢"~*, then

K
(5.2) S PC)P,(IL,M) = > Alx¥ M]P(x)
i=1 xeFn
£ P(IL M).

Since the left hand-side is an average of the error probability Pc, (11, M), then
P, (I, M) <P, M) for at least one coset C;.

6. Review of Multiplicity Assignment Algorithms

Algorithms for assigning interpolation multiplicities for the GS algorithm were
proposed based on different criteria [8, 11, 18, 19, 17]. We will briefly review two
algorithms of particular interest.

The Kotter-Vardy Algorithm: The Koétter-Vardy algorithm finds the multi-
plicity matrix M that maximizes the expectation of the score, E {(x, M)}, where
x ~ U[F™] is an n dimensional random vector of independent components [11]. A
reduced complexity KV algorithm is [7]

(6.1) mi(f) = [Ami(B)],

where A > 0 is a complexity parameter determined by |M|.

The Gaussian Approximation: By definition (2.1), the score of a random vector
with respect to a multiplicity matrix M is a sum of n random variables. Assuming
that the n random variables are independent, the distribution of the score is ap-
proximated by a Gaussian distribution. Based on this approximation, an iterative
algorithm is derived to find the multiplicity matrix of infinite interpolation cost that
will minimize the error probability [18]. Note however that this approximation is
valid if n is sufficiently large.

7. Optimization Problem

In view of Corollary 5.1, in the rest of the paper we will focus on choosing M
so as to minimize P(II, M), with the understanding that upper bounds on P(II, M)
technically apply only to the best cosets of the parent RS code.
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Usually the ASD decoder will have a cost restriction, so we introduce the no-
tation

7.1 P(I,y) = min P(II, M

(7.1) (IL,7) min P(IL, M)

(7.2) M(II,v) = argy min P(II, M).
| M| <~

Here P(II,) is the minimum possible ASD decoder error probability, given II
and an upper bound of v on the cost of M. The matrix M(II,v) is the optimal

multiplicity matrix of cost less than or equal to v corresponding to the APP matrix
II.
We also define

(7.3) P(II,00) £ lim P(II,7),

Y00

which is the minimum possible decoder error probability, given the APP matrix II,
without regard to cost.
Finally, let us consider (cf. (4.2)) the problem of computing

(7.4) P(y) £ [min Pr{€a},

the minimum possible ASD decoder error probability for decoder cost < -y, and
(7.5) P(c0) £ lim P(v),
Y00

the absolute minimum ASD decoder error probability, regardless of cost. By (4.4)
we have

(7.6) P(y) = ) P(Ly)Pr{i}
IER

(7.7) P(oo) = > P(II,00) Pr{Il}.
IIER

8. Soft Multiplicity Matrices

It is difficult to deal with the requirement that the entries of M are integers, so
we now define a slightly different problem in which the integer constraint is relaxed
and the multiplicities can be arbitrary (nonnegative) real numbers.

Thus let Q@ = (¢;(8)) be a “soft” multiplicity matrix, i.e., foreachi=1,...,n,
and each § € F, ¢;(f8) is a nonnegative real number. We define

(8.1) PILQ) £ > ARX¥QIP(x)
xeFn

(8.2) P*(I,y) = lglisnf(H,Q)

(8.3) Q*(I,y) = arg min P(IL, Q)

(8.4) P (Il,0) = 711330 P*(I1, 7).

These quantities are the same as the corresponding unstarred ones, (7.1), (7.2),
and (7.3), except that the integral matrices (with integer elements) M are replaced
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with real matrices ), so that logically
(8.5) Pr(1L, ) P(11,7)
(8.6) P*(I1, 00) P(II, 00).
Surprisingly, if cost is no object, we loose nothing by relaxing the constraint
that the multiplicities be integers. In the following lemma, we show that up-scaling

a multiplicity matrix @ with a scalar A > 1, results in a lower error probability at
the expense of a larger interpolation cost.

LeMMA 8.1. For any (11, Q),

<
<

(8.7) )\lim P(ILAQ) < P(IL, Q).
—00
PROOF. Suppose A [x F Q] =1, then with high probability this implies that
(8.8) (x,Q) > v/2v|Q|

for reasonably large costs |Q|. If X > 1, [AQ| < N?|Q|, and
(D) Mx,Q)
Dy(IAQ]) = Dy(X*|Q))
But by Lemma 3.2, the limit of the RHS of (8.9) is (x,Q)/+/2v|Q| > 1, with high

probability, where the last inequality follows from (8.8). Thus limy_,oc A [x F AQ] =
1. It follows that for any x,

(8.9)

(8.10) /\li_)ngo{ > Ax¥ )\Q]P(x)} < ) AXFQIP(x).
xerm xerm
Comparing this to (8.1), we’re done. O

THEOREM 8.2. P*(II, 00) = P(II, c0)

PRroOOF. Define P* to denote rational matrices. Then

(8.11) P*(II, 00) = P (I, o0),

by continuity, and

(8.12) P (11, 00) = P(II, 00),

by the following argument. If () is rational, then A() is integral for arbitrarily large
values of A. Then lemma 8.1 and (8.6) imply (8.12). O

9. The Chernoff Bound.—Finite Cost

We have seen that the number P*(II,v) (see (8.2), above), delimits the best
possible ASD decoding performance, if the APP matrix II is given. Unfortunately,
however, it is very difficult to compute P*(Il,7). In this section, we derive a
Chernoff bound on P*(II,v) (see (9.9), below), which is easy to compute.

Let Q = (F™,1I) be a discrete sample space, i.e., for x = (z1,...,2,) € F™ and
II = (m;(B)) define the probability measure P(x) = []\_, m;(z;). Define (indepen-
dent) random variables Sy, ..., S, by
(9.1 Si(x) = qi(x;) fori=1,...,n.
where @ = ((¢;(8)) is the multiplicity matrix, and the score
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Now we have

(9.3) Pr{So<di= Y AlxQ)<P).

xeFrn

Let ¢;(s,m;,q;) be the moment generating function for S;, i.e.,

(9-4) ¢i(s,mi,q;) = Es, {%} = Z mi(B8)es% (8).

BEF

Then the moment generating function for Sg is

(95) (D(Sa H: Q) = Z Pr {SQ = t} €St = ESQ {G'SSQ}
(96) = ESQ {es i Si} — ESQ {ﬁ eSSi}

(9.7) =] Es, {e*°} = H¢i(57ﬂ-i1Qi)7
i1

—.

i=1

where the expectation and the product are interchanged due to the assumption that
the random variables S; are independent (see Section 5). Then by the the Chernoff
bound (cf. [20, 25]),

(9.8) Pr{So <6} =Y Pr{Sq =t}

<6
. — s((‘)vft) — : s0 _
Srsnzlg{;Pr{SQ t}e } rsnzlg{e ®(—s,11,Q) } .
Finally, if we recall that P*(II,~) £ min|g|<, P(II, Q) we have

(9.9) PY(ILy) < PXILA) 2 min {eP0a(-s5,11,Q)}.
|Q|="7,5>0
It is a bit awkward to deal with the constraint |Q| = v in (9.9). We could
replace this constraint with the more natural constraint || X||* = 3, ; X;(8)* = L?,
where X = (X;(8)) is of the same size as @, by the following transformation:

(9100 X(B)=a(®+1/2 P=2n+75 D'=Diy)+

DS

Thus (9.9) could be written as

9.11 P*(IL~) < mi ‘{SDIQ—,H,X},
(9.11) ( 7)—Hx1ﬁlzlfm?£3 e’ @(—s, 11, X)

and the optimum matrix is given by

* 3 B sD’ _
(9.12) X* = argg ”Xrﬁlzlile ISIIZIO {e o( s,H,X)} .
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10. The Chernoff Bound—Infinite Cost.

In this section, we derive a methodology for performance analysis at asymptot-
ically large costs. We begin by defining an auxiliary function G*(IL, ():

(10.1) G'(IL() = min > Al(x,R) < (JP(x).

R 2
IRIZ=1 £,

In the following theorem, we shall see that the case of v — oo is the special case of
L?> =1and D' = \/v.

THEOREM 10.1. P*(II, 00) = lim,—,oc P*(II,v) = G*(I1,/v).
Proor. Define R = X/||X]|, then ||R||? = 1. By using (9.10) and Lemma 3.1,

D' VUt g
(10.2) lim — = lim o7 oy

y—oo L y— 00 /1+ 1813

Specifically, for large v the R.H.S. of (10.2) is approximated by

Vi G+ b (Vi i) <_%%+£<%>+>
— o +o(1),

where o(1) = 0 as v — oo. Thus,
lim min Pr{Sx < D'} = lim min Pr{SR<D/L}— rnlln Pr{Sg < v}

Yoo |IX]|2=L2 Yoo || R||*=

which by comparing with (9.11) implies the assertion. O
COROLLARY 10.2. P(Il,00) = P*(II,00) = G*(11, /).
Proor. By Theorem 8.2 and Theorem 10.1 we are done. O

Thus G*(I1, v/k — 1) is the minimum possible decoder error probability for the
ASD decoder, given the APP matrix II. Similarly,

(10.3) P(c0) = G*(I,Vk —1)Pr{Il},
erR
is the unconditional minimum possible decoder error probability. The quantity
G*(I1,\/v), like its finite-cost counterpart P*(II,~), is difficult to compute ex-
actly, but easy to approximate with the Chernoff bound. To summarize: suppose
R = (r;(8)), with ||R||* = 1 is given. On the Q = {F™, 11} sample space, define
corresponding random variables R; = r;(x;), for i =1,...,n . Then
(10.4) GILO = min Pr{Ry -+ +Ry <.
Let
(10.5) Yils,mir) = Y mix)es i)
zcF
be the moment generating function for R;, i = 1,...,n. Then the moment gener-
ating function for Sp =Ry +---+ R, is
(10.6) L(s,IL R) = [ vi(s, mi,m3),

i=1
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and the Chernoff bound says that

(10.7) Pr{S, < (} < min {T(-s,II, R)e*  } .

Thus if we define

(10.8) GX(II,¢) = ||II%I|1|1211 rsnzlg {T(-s,II,R)e**}  and
(10.9) RX(I,{) = argp min min{l(-sII,R)e"},

we have the following theorem.
THEOREM 10.3. P(II,00) = P*(II, 00) = G*(I,1/v) < GX(IL, /v).

The function GX(II, /v) = GX(II,+/k — 1) is our main tool, since it is (a)
relatively easy to calculate, and (b) a tight upper bound on P(II, o), at least when
P(II,0c) is small. Furthermore, the matrix RX(II,+/k — 1), when appropriately
scaled and quantized, represents a near-optimal choice for the multiplicity matrix
for large values of the cost. In the next section, we derive key equations which form
the heart of the algorithm used to find the near-optimum multiplicity matrices.

11. The Lagrangian

In this section, we will focus on finding the optimum matrix X = (X;(8)) with
a finite cost v and with L? and D’ defined as in (9.10). As seen in the previous
section, the case of an optimum infinite-cost multiplicity matrix is the special case
with L? = 1 and D’ = /v. The problem of finding the optimum matrix, X*, in
(9.12) could be reformulated as the constrained optimization problem,

(11.1) min <SD’ + Zln (ﬁi(—s,wi,Xi))
i=1
subject to
s>0

1
X2 = L2 = 2y + gna.

Define the Lagrangian,

n
A
L(,X,0) = D'+ > Ingi(—s,m:, X;) + 5 (IX|1? - L?).
i=1
It is required to solve for s*, X* and A* that satisfy

0| g Oy g O
E2Y VR 7S 0X:(B) |y -

If the optimization for s results in a negative value for s*, then this value is
discarded and s* is taken to be at the boundary, i.e. s* = 0. (This may be the case
at low signal to noise ratios when the matrix IT has a random like structure.) The
corresponding optimized multiplicity matrix X* is calculated by optimizing for X.

=0.

§=s§
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Since D' = Dy(y) + n/2 and v = (|[X||* — 5)/2, then D' is a function of
X. Since D,(7) is actually a discrete function, then it could not be differentiated,
however it is well approximated by the continuous upper bound in (3.4),

oD' N \/5 B ,US/Z
OX,(B) " \VIKF =7 s (jx2 - 22

In fact the term +(||X]|?) will cancel while solving for X* below. Solving for X* and
s*;

)3/2> Xi(B) = ¢(IIX]1*) X (B)-

oL
11.2 — =0 X|]? = L?
(112) o] =0 = =1t
oL " (Y per Xa(B)mi(B)es X (B)
11. —=| =D- el =
(11.3) 05 |,y ;( Gi(—s,mi, Xi) - >
oL 7Ti(g)e—sxi(ﬁ)
(114) o= = sY(IXI*)Xi(8) — s~ + AXi(B) =0.
5Xz’(ﬁ) X=X* ¢z’(—5;7fz';Xz’) X=X*
Multiplying (11.4) by X;(8), summing over 8 € F and then summing over i,
we get
Y Xper Xi(B)mi(B)e X
11 X 2 X 2 _ BeF X 2 -0
(115) syl -5 ) ( ] 0
i=1 X=X~
Substituting (11.2) and rearranging;
1 & [ 2per X;(B)mi(B)e™sXi8) 9
11. A=s|—= — (L) ] .
(11.6) s <L2 ; ( P E—e Y(L7)
Substituting back in (11.4) we reach the following equation
) n X; (B)e—sXi(B) ) —5X;(B)
(11.7) Xi(B) Z ZBEF (B)mi(B) _ mi(B)e —0.
L* < ¢i(—s,mi, X;) ¢i(—s,mi, Xi)
i=1 X=X*
If s = s*, then this equation reduces to
D mi(B)e=+ X:)
(11.8) —Xi(B) - X, =0.
L? Zﬁepﬂi(ﬁ)eis Xi(8) _—

In summary, the optimization problem is reduced to finding s* and X* which
are the solutions for equations (11.3) and (11.7) (or (11.8)), respectively.

12. Convexity

In this section, we show that the optimized Lagrangian, £*(s,X) = L(s, X, \*),
is convex in both s and X. Thus an iterative algorithm that will minimize £*(s, X)
could be developed. Specifically we show that for a given multiplicity matrix X',
the optimized Lagrangian is convex in the parameter s, and for a given s (at s = s%),
the optimized Lagrangian is convex in the ng variables which are the components
of the multiplicity matrix X. Let

(12.1) Ls(s)
(12.2) Lx(X)

L(5,X)|x—x
£* (87 X) |s=S* °

> >
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12.1. L4(s) is convex in s.

The gradient of L;(s) is defined to be Gs(s) = Mgs(s) and is given by (11.3).

The second derivative of L,(s) with respect to s is

0*Ls(s) _ z”: Yper X (B)mi(Be X <Zﬁep Xi(ﬂ)m(ﬂ)esxi(ﬁ)>2

9s2 P 2 per mi(B)esXi(B) 2 per mi(B)e~sX:i(5)

Define the ¢ x 1 dimensional vectors A; and ©; such that

A= {XB)VmBe X D/2) and 0, = {V/mi(B)e D2} for € F,

then the second derivative of L4(s) with respect to s is reformulated as

OLs(s) _ 5~ (JAlPN0P — (AT )
Hy = = d ,
DY < [1©4]]* >

=1

where for any vector x, [|x|| = (x7x) '/2 is the Euclidean norm of x. By the Cauchy

Schwartz inequality
A€l > (A7 €I,

where ||.||; is absolute value and (.)? is the vector transposed, with equality if and
only if there exists an a > 0 such that A; = a®;. Thus H; > 0, which implies that
Ls(s) is convez. In fact, Hy = 0 if and only if for each i = 1, ...,n, X;(f) = a; where
a; > 0 for all § € F. Since X;(f) is a function of 7;(8), then this implies that for
each i, m;(f) = 1/q. This would imply that all symbols § € F are equally likely
given the received symbol. At reasonable operating conditions, such a condition
does not occur for all i = 1, ..,n, as it is equivalent to receiving all n symbols of the
codeword in error. So in general, H, > 0 and L,(s) is strongly convez in s.

12.2. Lx(X) is convex in X.
Define the gn dimensional vector

X ={X1(B1),-- -, X1(Bg)s s Xn(B1), -, Xn(Bg)} -
So the gradient of L£x(X) is defined by the (¢gn x 1) dimensional vector,

GX = {GXI(B1)7"'7GX1(Bq)7""GXn(Bl)""7GXn(Bq)}7

where

C0Lx(X) (D' mi(B)e " Xi(®)
12 “x = axXi(B) ’ (ﬁXl(ﬁ) - 2 per mi(B)e=s"Xi(B) |

The second derivatives are given by
(ZﬁGF mi(B)e (B)) — mi(B)e " Xi(d)
2
(Z,@eF mi(B)e—s" X (B))

L mi(B1)mi(Ba)es (Xi(B)+Xi(B2)
= —S

10°Lx(X) D', Cxu5)
woxap) o2 Tl

b

1 9Lx(X)

- =2 = , and
5 DX (B0OX:(Ba) |1, (Soer milg)e = x6)’

1 PLX) .

s* 0Xi(P1)0X;(B2) g, 2,25
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Define the ¢ x ¢ matrix, Hx,, such that for a,b=1,2,...,¢,

L rx(X)
— 0X(Ba)0Xi(Bb)’

then using the above second order derivatives

[HXi]a,b

" D' s* T : T
Hy, =s <ﬁIq + T ((J* z;)Diag(z;) — zi2; )> )

where z; = {m;(Bq)e™* Xi¥a) a=1,...,q} is a (g x 1) vector, J is the all ones g
vector and Diag(z) is the diagonal matrix with the elements of z on the diagonal.
The Hessian of Lx(X) defined by
0? Lx(X)
H ===
Hx]as 09X (a)0X (b)

is thus given by the block diagonal matrix

(124) HX =Diag(HX1,HX2,...,HX )

n

Let v; be any ¢ vector,

T

o= {VaD. . Va@)  and = {u@OVaD.. . u@Va@]

then

! *

(D
(12.5) vl Hx,v; = s (ﬁ”iT”i + T

(T w)(®] ;) — (\IJ?@)Z)) ,

By the Cauchy-Schwartz inequality,
(U] i) (2] &) — (¥ 2:)* 2 0,

and by substituting in (12.5) it follows that

T s*D'
(12.6) v; Hx,v; > 72 Vi i >0,
where the last inequality is due to the fact that s* > 0 and vlv; = |jv;||* > 0 for
any vector v;. If s* > 0, then vl Hx,v; > 0 for any nonzero vector v; which implies
that Hy, is positive definite. Let v = {v{ ,v], ...,v,{}T be an arbitrary gn vector,
then from (12.6) and (12.4), it follows that

n
vIHxv= ZviTHXivi >0,

i=1

which proves that Lx(X) is convex. Generally, s* > 0 which would imply that Hx
is positive definite and thus Lx(X) is strongly convez. In this analysis, we assumed
that s = s* since we will optimize for s and then for X. However, for another s > 0,
the term D’ in (12.3) could be treated as another positive quantity and the analysis
holds.
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13. Iterative Algorithm

The proposed iterative algorithm for finding X* = (X;(8)), and thus the opti-
mum multiplicity matrix, could be summarized as follows:

ALGORITHM 13.1. Let s/ and XJ = (Xf(ﬁ)) be the values of s and X at the j"
iteration respectively. € ~ 1075 is a small number greater than zero.

Initialize X = %2, , 82 =0.1x %’ and j =0.
Do
ji=j+l
I. Solve for s?, (Eq. 11.8),
; OL* (s, XI71
Vs(ﬁ*(s,XJ_l) — L =0
88 s—sd
If s7 is negative then set si to be zero.
II. Solve for XJ, (Eq. 11.7),
. oL*(s7,X
V(L (s, X)) = {#,i:l,...,n,ﬁeF} =0
6X’L (18) X:Xj
While ‘ ,
S] — 5‘771
—| <e
si=bo |l —

For the case of finite costs, the optimized integer multiplicity matriz, M = (m(5))
is found from the optimized matriz X* = (X}(B)) by the inverse transformation,

(13.1) m;(f) = Round {max {0, X;(5) — 0.5}},
where Round {} is the rounding to the nearest integer.

In our implementation and for the simulation results in this paper, we replace
the command Solve by a Newton type algorithm. Other algorithms such as the
gradient descent algorithm, which is less computationally complex, were also tested.
However, the Newton algorithm described in appendix A, achieved the best results.
Since Step II in the above algorithm is an optimization in gn variables, the entries
of X, it is computationally expensive. However, the computational complexity could
be reduced dramatically by observing that the entries of each column in II, 7;, sum
to one, and that for reasonable operating signal to noise ratios (SNRs) only a small
fraction of them have a relevant value while the rest tend to be negligible or zero.
Thus, in optimizing for X only the elements X;(3) corresponding to elements 7;(5)
above a certain threshold are considered for optimization while the others are set
to zero. Practically, this threshold could be set to 1076 or 10~7. This implies that
the complexity of our algorithm decreases with an increase in the operating SNR,
which is usually the case for operating conditions.

14. Numerical Results

In this section we will refer to our method as the Chernoff method. The Gauss-
ian approximation of [18] is referred to as the Gauss method and the Kotter-Vardy
algorithm, (6.1), as KV. A hard decision bounded minimum distance decoder, as the
Berlekamp-Massey algorithm, is referred to as BM. It is to be noted that we used
the condition of (3.1) to test if the transmitted codeword is on the GS generated
list for all ASD algorithms compared. If the sufficient condition is satisfied then a
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ASD of (15,11) RS code BPSK modulated over AWGN Channel
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F1GURE 2. A comparison of the performance of ASD algorithms
when decoding an (15,11) RS code BPSK modulated over an
AWGN channel. Their performance is also compared to an av-
eraged upper bound on the performance of the ML decoder.

decoding success is signaled. This is somehow justified by the fact that, on average,
the list size is one [14]. If the GS generated list is empty, then the condition will
not be satisfied, and a decoder error is signaled. In a real time implementation, if
more than one codeword is on the generated list, then the most reliable codeword
(with respect to the soft output from the channel) is chosen as the decoder output.

To test our theories, we simulated the performance of the (15,11) RS code
over the finite field F' of 16 elements, GF(16), on an additive white gaussian noise
(AWGN) channel. These results are shown in Fig. 2 and Fig. 3 for the cases of
binary phase shift keying (BPSK) and 16-ary phase shift keying (PSK) modulation
schemes respectively.

We see that the Chernoff technique shows a marked superiority when compared
to the KV technique, for both finite and infinite cost matrices. For BPSK mod-
ulation, infinite cost v, and an error rate of 4 x 1078, our algorithm has about
0.9 dB, 1.8 dB and 2.5 dB coding gains over the Gauss, KV and BM algorithms
respectively. Simulation results for a finite cost of 10 also show the potential of
our algorithm over previously proposed ones. A tight averaged upper bound on
the maximum likelihood error probability [3] is also plotted. Since it is the binary
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ASD of (15,11) RS Code 16-PSK modulated over AWGN
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FIGURE 3. Performance curves for decoding an (15,11) RS code,
16-PSK modulated over an AWGN channel, using different ASD
algorithms.

image of the RS code which is modulated and transmitted over the channel, and the
binary image is not unique but depends on the basis used to represent the symbols
in GF(16) as bits, this bound was derived by averaging over all possible binary
images over an RS code. By comparing with actual simulations for maximum like-
lihood decoding of the (15,11) RS code over an AWGN channel this bound was
shown to be tight [3]. Our algorithm has a near-ML performance at high signal to
noise ratios.

Similarly, for the case of 16-ary PSK, the Chernoff algorithm has about 2.6 dB
gain over the BM algorithm at a codeword error rate of 10~7. The performance
gain over KV is about 1.7 dB at an error rate of 1075,

Numerical results for ASD decoding of the (31, 25) RS code over GF(32) BPSK
modulated over AWGN channel are shown in Figure 4. As seen the Chernoff algo-
rithm has up to 2 dB gain over the hard-decision BM algorithm. The coding gain
over the KV algorithm and the Gaussian approximation increases at the tail of
error probability. The averaged bound on the ML error probability is also plotted.
It is observed that that at high SNRs, our algorithm is near optimal.

To demonstrate the convergence of our proposed algorithm, we plot the value
of s/, (see Algorithm 13.1), versus the iteration number j for a fixed value of
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ASD of (31,25) RS code BPSK modulated over AWGN Channel
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FiGureE 4. An (31,25) RS code is BPSK modulated over an
AWGN channel. ASD algorithms are compared at infinite inter-
polation costs. The Chernoff algorithm has a better performance
than the Gauss and KV algorithms. The performance curve of a
bounded minimum distance decoder and an averaged upper bound
on the performance of the ML decoder are also plotted.

SNR. This is shown in Figure 5 for a randomly transmitted (15,11) RS codeword
and BPSK modulation with an SNR of 6 dB. The average codeword error rate
is plotted in Figure 6 versus the number of iterations at a SNR of 5.5 dB. These
figures demonstrate the fast convergence of the algorithm in terms of the number
of (global) iterations.

The performance gains of our algorithm over that of the Gaussian approxi-
mation could be reasoned by observing that the Gaussian approximation finds the
multiplicity matrix of infinite cost that minimizes the error probability assuming
that the score has a Gaussian distribution.It could be shown that this is equivalent
to minimizing the Chebychev bound [20, 25] on the error probability assuming that
the score is symmetrically distributed around its mean. It is well known that the
Chernoff bound is a tighter upper bound than the Chebychev bound (cf. [20, 25]).
Further more, no assumptions about the distribution of the score is made in deriving
our algorithm.
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Chernoff ASD Instance of (15,11) RS code BPSK modulated at SNR=6 dB
10 T T T T T T T T

—— ¢l i
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FIGURE 5. A decoding instance of the (15,11) RS code, BPSK
modulated over an AWGN channel at a fixed SNR of 6 dB, using
Chernoff ASD. The convergence of the algorithm is conveyed by
the fast adaptation of the exponential parameter s7.

It is observed that the coding gains of the Chernoff algorithm, developed in this
paper, over other ASD algorithms increases as the SNR increases and approaches
that of the ML bound. This somehow proves the conjecture that our algorithm is
optimal at the tail of error probability. The reasoning behind that is the fact that
the Chernoff bound, in general, is an exponentially tight upper bound at the tail
of error probability and closely approximates the true error probability. In another
way, this shows the potential of using the Chernoff algorithm in favorable operating
conditions.

15. Conclusions

The goal of this paper was to find the ultimate capabilities of algebraic soft
decoding of Reed-Solomon codes. Since the performance of ASD depends mainly
on the interpolation multiplicities assigned, we explored a novel multiplicity assign-
ment algorithm that results in an improved performance. The multiplicity assign-
ment algorithm proposed aims at directly minimizing the decoding error probabil-
ity. Reasonable approximations and relaxations were made to simplify the problem.
However, since the actual error probability is relatively hard to compute, we aimed
at finding the multiplicity matrix that will minimize an upper bound (the Chernoff
bound) on the error probability. We explore the cases of both finite and infinite
cost multiplicity matrices. The problem is formulated as a constrained optimiza-
tion problem and an iterative algorithm is developed that will find the optimum
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(15,11) RS code, BPSK over AWGN, SNR=5.5 dB, Chernoff ASD
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FI1GURE 6. The convergence of the Chernoff ASD algorithm is
demonstrated by plotting the average codeword error probability
versus the number of iterations at a fixed SNR of 5.5 dB.

multiplicity matrix. Numerical results show that our algorithm is superior to other
multiplicity assignment algorithms found in the literature.

Topics of future research include finding algorithms that will directly minimize
the decoding error probability. A future direction is to use belief propagation type
algorithms [6, 15] to precondition the channel reliability matrix before passing it to
the multiplicity assignment algorithm. The initial results of this research direction
are promising [4].

Appendix A: The Newton Algorithm

We briefly sketch the Newton algorithm used to minimize an arbitrary function
f(x) in m variables. For more details, we refer the reader to [2] and [10]. The
gradient of f(x) is the (m x 1) dimensional vector V f(x), and its (m x m) Hessian
is Hy(x). We assume that f(x) is twice continuously differentiable, there exists at
least one solution Xep¢ such that V f(xepe) = 0 and the Hessian Hy(x) is positive
definite for x = Xgp¢.-

Let x, be the initial iterate, then for iteration n:

1. Test for termination:

Stop if |V f(xn)|| < 7||V f(%Xo)||+ 74, 7r and 7, are small positive numbers and
are called the relative tolerance and absolute tolerance respectively.

2. Find the Newton Direction, d:

Calculate the Hessian, Hy(xy,) if an analytical expression is found, otherwise
approximate Hy(xpn) with a finite difference Hessian. The later case involves m
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new evaluations, Vf(xn + de;), j = 1,...,m where e; is the unit vector in the j*
coordinate direction. The Newton direction satisfies

Hf(xn)d = _Vf(xn)

This requires the LU factorization of the Hessian using Gaussian elemination,
H¢(xn) = PLU = L'U, and solving for L'z = =V f(x) and Ud = z. The LU
decomposition require m? + O(m?) flops and solving for the triangular systems
requires m? + O(m) flops. The complexity of the algorithm lies here.

3. Line Search:
The Armijo rule for calculating the length of the Newton step, A, iteratively finds
Aoy AL, A till

VS (xn + Aed)[] < (1 = adp)[[Vf (xn)]]

for the smallest & > 0 and « € (0, 1) is typically 10~* to easily satisfy the equation.
One method is to let A, =1 and A\, = A\;—1/2 for £ > 1. In this implementation,
Ak+1 is the minimizer of the parabola fitted to the points ¢(0), ¢(Ax) and ¢(Ag—1)
on the interval [\ /10, \;/2] where ¢(A) = ||V f(x + Ad)|]?.

4. Update x:

Xn+1 = Xn + Ad.

Since the Hessian is computationally excessive to compute and factor, a hybrid
Chord-Newton strategy is used; the Hessian is updated only after a certain number
of nonlinear iterations or if the ratio of successive norms of the nonlinear residuals
IV f (xu)ll/IIV f(xn=1)]| is larger than a certain threshold, i.e. the rate of decrease
in the residual is not sufficiently rapid.
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