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Abstract

In this paper, we propose an iterative soft decision
decoding scheme for Reed Solomon codes with near
maximum likelihood performance. The advantage of
this decoding algorithm over previously proposed algo-
rithms is its fast convergence in terms of the number
of iterations required. This is achieved by combining
two powerful soft decision decoding techniques which
were previously regarded in the literature as competi-
tive ones, namely, algebraic soft decision decoding and
belief propagation based on adaptive parity check ma-
trices. This algorithm could also be viewed as a mul-
tiplicity assignment scheme for the Guruswami-Sudan
list decoding algorithm.

1. Introduction

Maximum likelihood (ML) decoding of general
(n, k) linear codes, and specifically Reed Solomon (RS)
codes, is NP-Hard [1, 2]. It remains an open problem
to find efficient polynomial time algorithms with near
maximum likelihood performance. Guruswami and Su-
dan (GS) [3] invented a polynomial time list decoding
algorithm for RS codes capable of correcting errors be-
yond half the minimum distance of the code. In [4],
Kötter and Vardy (KV) developed an algebraic soft de-
cision decoding (ASD) algorithm for RS codes based on
a multiplicity assignment (MA) scheme for the GS al-
gorithm. Alternative multiplicity assignment schemes
with better performance were proposed in [5] and [6,7].
In [8], Fossorier combined BP with order statistics de-
coding (OSD) for soft decoding of LDPC codes which
led to faster convergence. Jiang and Narayanan [9]
proposed an adaptive belief propagation (ABP) algo-
rithm and reported near ML performance for RS codes.
In this paper we combine the ABP algorithm with ASD
for faster convergence and performance enhancement.
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2. Preliminaries

An (n, k) RS codeword u = [u0, u1, .., un−1] over the
finite field Fq of q elements is generated by evaluating
a data polynomial M(x) of degree k − 1 at n elements
of the field, that is

u = [M(1),M(α1), ...,M(αn−1] (1)

where α is a primitive element of the field and n = q−1.
The set T = {1, α, α2, ..., αn−1} is called the support
set of the code and is vital for the GS interpolation
step. From the following lemma (the proof is omitted)

Lemma 1 The polynomial U(x) =
∑n−1

i=0 uix
i asso-

ciated with a codeword u generated as in (1) has
α, α2, .., αn−k as zeros.

it follows that

n−1∑

i=0

uiα
ij = 0 for j = 1, 2, .., n− k, (2)

and a valid PC matrix H, such that HuT = 0, is [10]

H =








1 α . . . αn−1

1 α2 . . . α2(n−1)

...
... . . .

...
1 αn−k . . . α(n−k)(n−1)







. (3)

Let W = [Wi(β)], where i = 0, 1, ..., n − 1 and β ∈ Fq,
be an q×n array of real numbers. The cost of W is de-

fined to be |W | ∆= 1
2

∑n−1
i=0

∑

β∈Fq

Wi(β) (Wi(β) + 1)

and the score of u with respect to W is 〈u,W 〉 ∆
=

∑n−1
i=0 Wi(ui). Assuming that a codeword u is trans-

mitted and the corresponding channel output is y, then
the reliability matrix Π of a a-posteriori probabilities
is

Πi(β) = Pr{ui = β|yi}.
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3. Algebraic Soft Decoding

Given Π, a multiplicity assignment (MA) algorithm
generates an q × n multiplicity matrix, M , of non-
negative integers. The multiplicity matrix M is then
passed to the GS algorithm. A decoding success is sig-
naled if the transmitted codeword is on the generated
list. A sufficient condition for a codeword u to be on
the GS generated list is [4],

〈u,M〉 > Dk−1(|M |), (4)

where Dv(γ) =
⌊
γ
m

+ v(m−1)
2

⌋

for m =
⌊√

2γ
v
+ 1
4 +

1
2

⌋

[7].

A reduced complexity KV MA algorithm is [4]

Mi(β) = bλΠi(β)c (5)

where λ > 0 is a complexity parameter determined by
|M |. For |M | ≤ γ, it could be shown that λ = (−1 +
√

1 + 8γ/n)/2. Asymptotically, for large interpolation
costs, a sufficient condition for a codeword u to be on
the KV-GS generated list is

〈u,Π〉
‖Π‖2

>
√
k − 1. (6)

Whereas, the KV MA algorithm attempts to maximize
the mean of the score, the algorithms in [5] and [6]
attempt to minimize the error probability directly. The
algorithm of [5] (Gauss) assumes a gaussian distribu-
tion of the score, while that of [6] (Chernoff) minimizes
a Chernoff bound on the error probability. The later
has the best performance at the expense of computa-
tional complexity [7]. However in this paper, we will
focus on using the KV algorithm due to its relatively
low complexity.

4. Binary Image of the Reed Solomon Code

Let p(x) = ao+a1x+am−1x
m−1+xm be a primitive

polynomial in F2[x]. Let α be a root of p(x), then α is
a primitive element in F2m . The companion matrix of
p(x) is given by the m×m matrix

C =








0 . . . 0

Im−1

∣
∣
∣
∣
∣
∣
∣
∣

ao
a1
...

am−1







,

where Im is the m × m identity matrix [11]. Rep-
resenting the primitive element, α, by its binary com-
panion matrix C, the mapping αi ↔ Ci, {i = 0, 1, 2, ..}
induces a field isomorphism. So every element in the

parity check (PC) matrix of (3) can be replaced with an
m×mmatrix resulting in a binary PC matrix, H. Also,
any element, β ∈ F2m , has an m-tuple representation
{β0, β1, ..., βm−1} where β = β0+β1α+ ...+βm−1α

m−1

and βi ∈ F2. Thus the binary image of a codeword u

is given by the nm tuple ub where

ub = [u0,0, u0,1, ..., u0,m−1, . . . , un−1,0, un−1,1, ..., un−1,m−1].

Such a mapping results in Hub
T = 0.

5. Log-Belief Propagation

BP was originally invented by Gallager for decoding
LDPC codes [12]. Hi,j will denote the element in the
ith row and jth column of the binary PC matrix H.

Define the sets, J(i)
∆
= {j | Hi,j = 1} and I(j)

∆
=

{i | Hi,j = 1}. Given the vector Λin of initial log-
likelihood ratios (LLRs), the BP algorithm outputs the
extrinsic LLRs Λx.

Algorithm 1 Log Belief Propagation
For all (i, j) such that Hi,j = 1:
Initialization: Qi,j = Λin

j

DO
Horizontal Step (HS):

Ri,j = log

(

1 +
∏

k∈J(i)\j tanh(Qi,k/2)

1−∏k∈J(i)\j tanh(Qi,k/2)

)

(7)

= 2 tanh−1




∏

k∈J(i)\j

tanh(Qi,k/2)



 (8)

Vertical Step (VS):

Qi,j = Λin
j + θ

∑

k∈I(j)\i

Rk,j

While stopping criteria is not met.
Extrinsic Information: Λx

j =
∑

k∈I(j)Rk,j.

The factor θ is termed the vertical step damping factor
and 0 < θ ≤ 1. θ is typically 0.5. Eq.(8) is specif-
ically useful for fast hardware implementations where
the tanh function will be implemented as a lookup ta-
ble. In our implementation, BP is run for a small num-
ber of iterations on the same PC matrix, so the stop-
ping criteria is the number of iterations. In case only
one iteration is run, the VS is eliminated.

6. Adaptive Belief Propagation

Let the received vector to be y = x + η, where
x = 1− 2ub is the BPSK modulation of a codeword u.
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ASD of (15,11) RS code BPSK modulated over AWGN Channel

HD−BM
ABP, SIM I
KV,C=∞
Gauss,C=∞
Chernoff,C=∞
ABP−BM,SIM I
ABP−ASD,SIM I
ABP−ASD,SIM II
ML Simulation
ML TSB

SIM I: N
1
=5, N

2
=1, It

H
=1 SC:BM

SIM II: N
1
=5, N

2
=1, It

H
=3 SC:KV 

Figure 1: Iterative ASD of (15,11) RS code BPSK mod-
ulated over an AWGN channel, infinite cost, α1 = 0.1

η is the AWGN vector with variance σ2. The channel
LLRs are Λch := 2y/σ2. In concatenated systems,
where the RS code is implemented as an outer code,
the ‘channel’ LLRs will be the soft output of an inner
decoder which could be for example an BCJR, SOVA
or another BP decoder.

Algorithm 2 Adaptive Belief Propagation [9]
Initialization Λp := Λch

DO

1. Sort Λp in ascending order of magnitude. The
resulting vector of sorted LLRs is

Λin = [Λin
1 ,Λ

in
2 , ...,Λ

in
nm],

|Λin
k | ≤ |Λin

k+1| for k = 1, 2, ..., nm−1 and Λin :=
PΛp where P is a permutation matrix.

2. Rearrange the columns of the binary parity check
matrix H to form a new matrix HP where the
rearrangement is defined by the permutation P .

3. Perform Gaussian elimination (GE) on the ma-
trix HP from left to right. GE will reduce the first
independent (n−k)m columns in HP to an iden-
tity sub-matrix. The columns which are depen-
dent on previously reduced columns will remain
intact. Let this new matrix be ĤP .

4. Run Log Belief Propagation on the parity check
matrix ĤP with initial LLRs Λin for a maxi-
mum number of iterations ItH and a vertical step
damping factor θ. The log BP algorithm outputs
extrinsic LLRs Λx.
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Figure 2: Iterative ASD of (15,11) RS code BPSK mod-
ulated over an AWGN channel, finite cost, α1 = 0.1

5. Update the LLRs, Λq = Λin + α1Λ
x where 0 <

α1 ≤ 1 is called the ABP damping factor. Λp :=
P−1Λq where P−1 is the inverse of P .

While Stopping criteria not satisfied.

To reduce the complexity, GE could be run on the
parity check matrix already reduced by GE at the pre-
vious the step (after appropriate permutations). As
suggested in [9], if the algorithm with the specified SC
fails for N1 inner iterations, the algorithm is repeated
again until it succeeds and for a maximum number of
N2 outer iterations. Each one of these N2 iterations
starts with a different permutation of the sorted chan-
nel LLRs in the first inner iteration. We propose doing
this in a systematic way to ensure that most bits will
have a chance to pass their information by being in the
identity sub-matrix of the eliminated PC matrix. In a
real time implementation, these iterations could be run
on N2 parallel processors and the decoding stops once
the stopping criteria is satisfied for any of the N2 par-
allel decoders. Let z = bmn/N2c, then at the (r+1)th

outer iteration, r > 0, the initial LLR vector at the
first inner iteration is

[Λin
rz+1, ..,Λ

in
(r+1)z ,Λ

in
1 , ...,Λ

in
rz,Λ

in
(r+1)z+1, ...,Λ

in
nm],

(9)
where Λin is the vector of sorted channel LLRs. The
columns of HP will also be rearranged according to
the same permuatation. If rz < (n − k)m, then it
is less likely that this permutation will introduce new
columns into the identity submatrix area of the PC
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matrix reduced at the first inner iteration and thus it
is recommended to continue with r > (n− k)m/z.

The performance of this algorithm as well as the
convergence speed depends largely on the stopping cri-
teria (SC). Different stopping criteria are suggested:

• SC:HD: Perform hard decisions on the LLRs,
û = (1 − sign(Λp))/2. Stop if HûT = 0 or the
number of iterations is N1.

• SC:BM: Perform hard decisions on the LLRs,
û = (1−sign(Λp))/2. The vector û is input to the
Berlekamp-Massey (BM) algorithm. If this vec-
tor is within a Hamming distance of bn−k2 c from a
valid codeword, g, output g and stop. Otherwise
if the number of iterations is N1 stop.

• SC:ASD Using Λp generate an q × n reliability
matrix Π̂ which is then used as an input to an MA
algorithm to generate multiplicities according to
the required interpolation cost. This multiplicity
matrix is passed to the GS list decoding algo-
rithm. Stop if the generated codeword list is not
empty or if the maximum number of iterations,
N1, is reached. If more than one codeword is on
the list choose the one with the highest reliability
with respect to the channel LLR’s Λch.

In this paper, the KV algorithm is used as the MA
scheme and we will denote this stopping criteria by
‘SC:KV’. More efficient but more complex MA schemes
could also be used [6]. The SC should also be checked
before any ABP iteration is carried out. If the SC is
satisfied, then the decoding stops.

We highlight the main differences between our pro-
posed algorithm and that proposed in [9]. We propose
running a small number of iterations, ItH , on the same
PC matrix using a damped vertical step. This has the
effect of updating the LLRs using the information from
other parity checks and the independence assumption
used by the BP algorithm still holds. A small number
of iterations is not enough for the information passed
to start to propagate in the loops of the reduced PC
matrix. The main contribution in this paper is the uti-
lization of the pseudo-posterior LLRs output from the
ABP algorithm as the soft information input to an ASD
algorithm. SC:KV improves the convergence speed of
the ABP algorithm in terms of the number of itera-
tions and thus could render it more practical. Since
our algorithm transforms the channel LLRs into inter-
polation multiplicities for the GS algorithm, then by
definition it is an interpolation multiplicity assignment
algorithm.
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SD of (31,25) RS code BPSK modulated over AWGN Channel
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H
=3, N2=10,SC: KV  

Figure 3: Iterative ASD of (31,25) RS code BPSK mod-
ulated over an AWGN channel, α1 = 0.1

7. Optimality of ABP-ASD

The authors of [4] point out that it is hard to
maximize the mean of the score according to the true
posteriori channel reliabilities. Previous MA algo-
rithms [4–7] assumed approximate a-posteriori relia-
bilities. The problem is simplified by assuming that
the transmitted codeword is drawn uniformly from F n

q .
Also, the n received word symbols are assumed to be
independent. In such a case, the a-posteriori probabil-
ities are approximated to be a scaling of the channel
transition probabilities,

Πch
i (β) =

Pr{yi|ui = β}
∑

ω∈Fq

Pr{yi|ui = ω} . (10)

However, from the MDS property of RS codes any k
symbols (only) are k-wise independent and could be
treated as information symbols and thus uniformly dis-
tributed. The independence assumption is thus more
valid for higher rate codes and for memoryless chan-
nels. It is well known that the extrinsic information
Λx generated by a BP algorithm takes into account
the geometry of the code and the correlation between
symbols (see for example [13]). Thus adding Λx to the
(approximate) channel LLRs Λch, tends to transform
approximate channel reliabilities to more appropriate
a-posteriori reliabilities. Thus, for a codeword u, an
MA algorithm A we have the following Markov chain,

u→ Πch ABP−→ Π̂
A−→M →
︸ ︷︷ ︸

ASD

û, (11)

whereM is the multiplicity matrix and û is the decoder
output.
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Figure 4: Iterative ASD of (255,239) RS code BPSK
modulated over an AWGN channel

8. Numerical Results

An (n, k) RS code is BPSK modulated and trans-
mitted over an AWGN channel. The stopping criteria
compared here are ‘SC:BM’ and ‘SC:KV’. To demon-
strate the convergence speed of the proposed algo-
rithms, if the stopping criteria is ‘BM’ then ‘KV’ (ASD)
could be checked after the loop stops using the modi-
fied LLRs. In this case, the performance of BM and KV
will be denoted by ‘ABP-BM, SC:BM’ and ‘ABP-ASD,
SC:BM’ respectively. If the SC is KV, then the perfor-
mance of KV (checked at each iteration) and that of
BM when checked after the loop exits will be denoted
by ‘ABP-ASD, SC:KV’ and ‘ABP-BM, SC:KV’ respec-
tively. We could also check if hard decisions only on the
resulting LLRs after the loop exits will result in a code-
word and this is referred to as ‘ABP’. The performance
depends largely on which SC is used. The performance
is also compared with other ASD algorithms. A tight
upper bound on the ML performance, based on an av-
eraged binary weight enumerator and the tangential
sphere bound, is shown and labelled ‘ML TSB’ [14].

In simulating ‘KV’, the sufficient condition (4) is
used to check if the transmitted codeword is on the GS
generated list [4]. This is partially justified by the fact
that the average list size is 1 [15]. In a real implementa-
tion, if the list is empty then the condition will not be
satisfied. However, if the condition (4) is not satisfied
and a codeword other than the transmitted one is on
the list, then this is an ML error.

Figure 1 shows simulation results for the (15, 11)
RS code over GF(16). All ASD and MA algorithms
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Figure 5: Iterative ASD of (31,25) RS code BPSK mod-
ulated over a Rayleigh fading channel , α1 = 0.1

shown here are asymptotic in the interpolation cost,
C, to show their potential. Using SC:KV with only
N1 = 5 inner iterations and ItH = 3 iterations on each
PC matrix (SIM II), the performance of ABP-ASD is
close to ML decoding. ML decoding was simulated us-
ing the BCJR algorithm on the trellis associated with
the binary image of the RS code [16]. The ‘ABP-ASD,
SC:KV’ curve has a significant coding gain over ‘ABP-
BM , SC:BM’. With SC:BM, ABP alone, if checked
when BM fails, does not improve over BM. The per-
formance of ‘ABP-BM, SC:KV’ becomes very close to
the BM curve (and thus is not plotted) due to the fast
convergence of the KV algorithm and thus not enough
iterations are carried out for BM to succeed. On the
other hand, for ‘SC:BM’ (SIM I), the performance of
KV checked after the loop exits, ABP-ASD, has a bet-
ter performance than ABP-BM. This is due to fact that
in most cases if ‘BM’ succeeds, the KV algorithm will
also succeed but the opposite is not true. It is worth
noting that with SC:BM, the performance with N1 = 5
and ItH = 3 is better than that with N1 = 10 and
ItH=1. These curves were omitted for the sake of fig-
ure clarity. It is also interesting to compare the per-
formance with other MA schemes. It has about 2 dB
coding gain over the KV algorithm at a codeword error
rate (CER) of 10−6. As expected, the Chernoff method
has a comparable performance at the tail of the error
probability. Near ML decoding for the same code is also
achieved with a finite cost of 103 and SC:KV as shown
in Fig.2. Comparisons are made between the possible
coding gains if the maximum number of iterations is
limited to k = 1, 2, 5 (denoted by ’Iteration #k’). Note

1460



that KV decoding is done at each iteration.
The performance of the (255, 239) code over an

AWGN channel is shown in Fig.4. At an CER of 10−6

the coding gain of ABP-ASD (SC-KV) with N1=20
and N2=25 over BM is about 1.5 dB. Increasing the
number of outer iterations N2 to 50 results in a coding
gain of about 0.1 dB more. For the (31,25) RS code
over AWGN, Fig.3, the performance of ‘ABP-ASD, SC:
KV’ with 20 inner iterations (N1) and 10 outer itera-
tions (N2) is better than the ML upper bound and has
more than 3 dB coding gain over the BM algorithm at
an CER of 10−4. As expected from the discussion in
Sec. 7, the coding gain of ABP-ASD is much more if the
underlying channel model is not memoryless. This is
demonstrated in Fig.5 where an (31, 25) code is BPSK
modulated over a relatively fast Rayleigh fading chan-
nel with AWGN. The coding gain of ABP-ASD over
the BM algorithm at an CER of 10−4 is 5 dB when the
channel is unknown to the decoder.

In general, it is noticed that the performance gain
between iterations decreases with the number of iter-
ations. It is to be noted that for the same simula-
tion parameters, the performance of KV checked after
the iteration loop with an BM stopping criteria exits
is worse than that of ABP-ASD if the KV SC was em-
ployed in every iteration. Since on average BM requires
more iterations for success, this implies that running a
large number of iterations of ABP only may result in
saturating the reliabilities at a non-desired solution. In
other words, ASD should be employed after each iter-
ation of ABP to make use of the improved reliabilities.

9. Conclusions

In this paper, we proposed a joint ABP-ASD al-
gorithm based on the ABP algorithm proposed in [9]
and the ASD algorithm in [4]. Our algorithm has
faster convergence in terms of the number of iterations
required. A small loss in performance results when us-
ing reasonable interpolation costs. The coding gain is
larger for channels with memory. Our algorithm is also
a multiplicity assignment algorithm for the GS algo-
rithm.

References

[1] Berlekamp, R. McEliece, and H. van Tilborg, “On
the inherent intractability of certain coding prob-
lems,” IEEE Trans. Inform. Theory, vol. 24, pp.
384–386, May 1978.

[2] V. Guruswami and A. Vardy, “Maximum like-
lihood decoding of Reed Solomon codes is NP-
hard,” submitted to IEEE Trans. Inform. Theory.

[3] V. Guruswami and M. Sudan, “Improved decod-
ing of Reed-Solomon codes and algebraic geome-
try codes,” IEEE Trans. Inform. Theory, vol. 45,
no. 6, pp. 1757–1767, Sept. 1999.

[4] R. Kötter and A. Vardy, “Algebraic soft-decision
decoding of Reed-Solomon codes,” IEEE Trans.
Inform. Theory, vol. 49, no. 11, pp. 2809–2825,
Nov. 2003.

[5] F. Parvaresh and A. Vardy, “Multiplicity assign-
ments for algebraic soft-decoding of Reed-Solomon
codes,” in Proc. ISIT, 2003.

[6] M. El-Khamy, R. McEliece, and J. Harel, “Per-
formance enhancements for algebraic soft-decision
decoding of Reed-Solomon codes.” in Proc. ISIT,
2004.

[7] M. El-Khamy and R. J. McEliece, “Interpolation
multiplicity assignment algorithms for algebraic
soft-decision decoding of Reed-Solomon codes,”
submitted to AMS-DIMACS volume, ”Algebraic
Coding Theory and Information Theory”.

[8] M. Fossorier, “Iterative reliability-based decoding
of low-density parity check codes,” IEEE J. Select.
Areas Commun., vol. 19, pp. 908–917, May 2001.

[9] J. Jiang and K. Narayanan, “Iterative soft decision
decoding of Reed Solomon codes based on adap-
tive parity check matrices,” in Proc. ISIT, 2004.

[10] R. J. McEliece, The Theory of Information and
Coding, 2nd ed. Cambridge: Cambridge U. Press,
2002.

[11] R. Horn and C. Johnson, Matrix Analysis. Cam-
bridge University Press, 1985.

[12] R. Gallager, Low Density Parity Check Codes.
MIT Press, 1963.

[13] R. McEliece, D. MacKay, and J. Cheng, “Turbo
decoding as an instance of pearl’s belief propaga-
tion algorithm,” IEEE J. Select. Areas Commun.,
vol. 16, pp. 140–152, Feb 1998.

[14] M. El-Khamy and R. J. McEliece, “Bounds on the
average binary minimum distance and the max-
imum likelihood performance of Reed Solomon
codes,” submitted to 42nd Allerton Conf. on Com-
munication, Control and Computing.

[15] R. J. McEliece, “On the average list size for the
Guruswami-Sudan decoder,” in ISCTA03, 2003.

[16] M. Kan, private communication.

1461


