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ABSTRACT 
 
We study the performance of a DS-CDMA blind 
multiuser detector in multipath Rayleigh fading 
channels for high data rates where the delay 
spread can be larger than one symbol duration. 
We propose blind recursive minimum output 
variance detectors for multipath channels with an 
additional constraint on the energy of the filter tap 
weights. This constraint prevents the cancellation 
of the desired signal in case the estimated 
subspace of the desired signal suffers from a 
mismatch. Simulations show that in cases of high 
Signal to Interference and Noise Ratios (SINR) as 
well as in cases of severe Inter-Symbol 
Interference (ISI), our proposed detector is 
superior to previously proposed detectors for 
multipath channels.  

 
1. INTRODUCTION 

 
In Direct Sequence Code Division Multiple 
Access (DS-CDMA) systems, each user is 
assigned a spreading code. All users transmit 
simultaneously in the same frequency band. 
Conventional detectors implemented in current 
systems simply correlate the received signal with 
the desired user’s signature and treat the Multiple 
Access Interference (MAI) due to other users as 
noise. Multiuser Detection (MUD) aims to 
suppress the interference due to MAI in order to 
increase the capacity of current systems and to 
avoid the need for strict power control. Next 
generation systems will support high data rates for 
multimedia applications. In such systems, the 
delay spread can be longer than the duration of 
one symbol, and the Inter-Symbol Interference 
(ISI) will be no longer negligible.  

A blind multiuser detector based on minimizing 
the Minimum Output Energy (MOE) was 
proposed in  [1] for an Additive White Gaussian 
Noise (AWGN) channel. It was borrowed from 
the theory of adaptive arrays and is also known as 
the Linear Constrained Minimum Variance 
receiver. It was shown that this detector could 
converge to the Minimum Mean Square Error 
(MMSE) solution without a training sequence, 
requiring only the knowledge of the desired user’s 
spreading sequence. The minimum variance 
receiver was modified to operate in multipath 
channels by several researchers as in  [2]. 
Adaptive algorithms for its implementation along 
with joint channel estimation were proposed in  
[3]. The order of the channel (the maximum delay 
spread) is assumed known. This algorithm showed 
good performance for channels with small 
multipath delays. 
 
In this paper, this algorithm is modified for cases 
where the order of the channel is underestimated 
or the delay spread is larger than one symbol 
duration. In such cases, the estimated signal 
subspace in which the desired signal was assumed 
to lie would suffer from a mismatch. Our 
proposed algorithm also showed better 
performance in channels with small multipath 
delays and high Signal to Interference Ratios 
(SINR).     

 
2. SYSTEM MODEL 

 
Consider a multiuser DS-CDMA system with K 
users and N chips per symbol transmitting 
asynchronously in a multipath Rayleigh fading 
channel. The kth user’s spreading code is given by 

T
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that 1=k
T

k ss . cTTN /=  denotes the spreading 
gain, where T and Tc are the continuous time 
symbol and chip duration respectively. The 
received signal is processed by chip matched 
filtering and taking U samples per chip. The 
baseband representation of the signal at the nth 
symbol interval is 
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where z(n) is an AWGN with zero mean and 
variance 2

zσ . The signal due to user k is 
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where )()()( njbnand kkk +=  is the nth QPSK 
symbol of the kth user, Pk is the received power of 
the kth user. The signature of user k is 
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where ckk T∆=τ , [ )Tk ,0∈τ  is the kth user’s 
delay, 

)/()()( UTntkk c
tgng ==  is the sampled 

multipath channel impulse response, where L is 
the number of paths, ∑
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[ )mlk T,0, ∈τ  is the delay of the lth path of the kth 

user, where Tm is the delay spread. )(ngk
 is of 

maximum order q where  cm TTq /=  and    
denotes upper integer. The complex gain and 
power of the lth path of the kth user are lk ,α  and 
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α=σα  respectively. The fading channel 
coefficients are complex Gaussian random 
variables with zero mean and normalized variance 
such that ( )∑
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process for each path is taken to be statistically 
independent of other paths as 

mljkmjlk lk
nnE ,,

2
,, ,

))()(( δδσ=∗αα α , where δ  is 
the discrete Kronecker delta function. The 
spectrum of the Rayleigh process is given by the 
Jake’s model. The channel autocorrelation 
function, defined by )2()( 2

, ,
τπσ=τφ α dolk fJ

lk
, is 

only function of the time difference τ , df  is the 
maximum Doppler spread, and Jo is the zero order 
Bessel function of the first kind. 
 
If we consider chip rate sampling and that the 
receiver is synchronized to a desired user, k, then 
the signature of kth user can be written as  

kkk gSh = ,                          Eq. (4) 

where 
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3. BLIND MINIMUM OUTPUT 
ENERGY RECEIVER 

 
A linear receiver estimates the desired signal at 
symbol interval n as 

)()(ˆ)(ˆ)(ˆ nrwnbjnand H
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where wk are the filter tap weights. The hard 
symbol decisions are given by 

)(~)(~)(~ nbjnand kkk += , where ))(ˆsgn()(~ nana kk =  
and ))(ˆsgn()(~ nbnb kk = . The blind Minimum 
Output Energy detector was presented in  [1] for 
an AWGN channel with no multipath fading. In 
the absence of multipath, gk =1 and hk = sk.. 
 
The filter aims to minimize the output variance 
from the filter, defined by 
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where { })()( nrnrER H=  is the autocorrelation 
of the input vector, subject to the constraint that 
the response to the desired user, k, is a constant, 

.1=k
H
k sw  The tap weight vector can be 

decomposed into two orthogonal components, sk 
and xk,  such that 

kkk xsw += .                       Eq. (6) 
 
The optimum weight vector was shown to be 

111
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In multipath channels,  [2], the output variance is 
minimized subject to the constraint 

kk
H

k gwS = .                         Eq. (8) 
 
This algorithm assumed the receiver to be 
synchronized to the desired user and has 
knowledge of the maximum order of the channel, 
q. Using Lagrange multipliers, the optimum tap 
weight vector was shown to be  
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and the MOE from the filter is  
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In  [3], an RLS adaptive algorithm was presented 
to compute the minimum variance solution. It was 
shown that the channel vector, kg , could be 
estimated by maximizing the minimum output 
variance subject to the constraint that 1=kg . 
This max/min criterion maximizes the output 
signal power after the interference has been 
eliminated. Thus, kg  is estimated to be the 
eigenvector, min,kg , corresponding to the 

minimum eigen-value, minγ , of the matrix 
)( 1

k
H
k SRS − . Thus for a blind receiver with no 

knowledge of the channel response, the optimum 
tap weights are given by 

min,
1
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4. MOE RECEIVER WITH   

CONSTRAINED SURPLUS ENERGY 
 

In this paper, we consider an MOE receiver for 
multipath channels with constrained surplus 
energy. The receiver proposed in  [3] assumed 
correct knowledge of the maximum order of the 
channel, q. If q is under estimated, then the set of 
constraints developed by Eq. (8) will suffer from a 
mismatch. Also, the maximum delay spread was 
assumed smaller than one symbol interval, or q is 
less than N for chip rate sampling. 
 
The tap weights of Eq. (9) can be written as 

kkk xhw += ,                      Eq. (12)                                                     
where kh and kx  are two orthogonal 
components. The energy of the tap weights is  

χ+=12
kw ,                      Eq. (13) 

where 2
kx=χ  is called the surplus energy and 

12 =kh . This surplus energy can cause signal 
cancellation as well as noise enhancement. A 
constraint is put on kw  to prevent the increase in 
surplus energy. A similar constraint was proposed 
in  [1] for the MOE algorithm proposed for 
AWGN channels to combat signal mismatch. The 
surplus energy was constrained to be equal to χ 
such that SI χ<χ≤χ  where Iχ  and Sχ  are 

the minimum values of surplus energy required to 
cancel out all the interference and the desired 
signal respectively.  
 
Minimizing the output energy subject to the 
constraint that kk

H
k gwS =  and χ+= 12

kw , we 
define the  following cost function 
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The optimum set of filter tap weights are  
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and the surplus energy is 
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constraint, 2λ , and the noise variance, 2
zσ , have 

the same role in determining the minimum 
variance solution. However, for a given value of 

)( 2
2 λ+σ z , the performance is worse for higher 

2
zσ . When no constraint is put on the surplus 

energy, 02 =λ  and the solution is the same as in 
Eq. (9). 
 
In case the maximum order of the channel is 
underestimated, the paths of delays larger than the 
estimated channel order, q, can be considered as 
an additional interference. The surplus energy 
determines the amount of allowable mismatch 
between the signature of the desired user, kh , 
available to the detector and the actual user’s 
signature. This constraint further prevents the 
increase of surplus energy at high Signal to Noise 
Ratios (SNR), or small 2

zσ , which results in 
cancellation of the desired signal.         
 
This algorithm can be implemented by using the 
RLS algorithm as follows: 
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where P(n) is the estimated inverse of the 
exponentially weighted autocorrelation matrix of 
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vector min,kg  provides an estimate of the channel 
vector, kg . 
 
A large value of the Lagrangian multiplier, 2λ , 
denotes a small value of χ, where a small value 
denotes a large permissible value. For blind 
detection, a reasonable value of 2λ  is chosen and 
can be made equal to the noise power that gives 
acceptable Signal to Interference Ratio (SIR) in 
the absence of the explicit constraint, i.e. when 

2λ is zero. 
 

5. BLIND TRAINING OF MMSE 
DETECTORS 

 
The MOE solution converges to the MMSE 
solution. Adaptive MMSE detectors using training 
sequences have better performance but training 
sequences add a burden to the system and should 
be sent often to scan new changes in the channel 
or interference structure. The MOE detector is 
blind in the sense that it converges to the MMSE 
solution without using training sequences. Thus, 
instead of being adapted by training sequences, 
the MMSE detector could be trained using the 
symbol decisions from the blind MOE detector. 
The performance of the MMSE detector would 
depend on the reliability of the decisions from the 
MOE detector. The MMSE detector implemented 
with the RLS algorithm  [4] and the same contents 
of the MOE filter is as follows: 

 
* Eq.(16) – Eq.(17) 
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*   )(ˆ)()( ndndne kk −′=            Eq. (21) 

*   )()()1()( nennwnw H
kk κ+−= ,  Eq. (22) 

where 0)0( =kw , )(nwk  is the vector of the 
RLS filter’s coefficients at iteration n and )(ndk′  
is equal to the hard symbol decisions of the blind 
detector during the training period and to the hard 
symbol decisions of the MMSE detector during 
the decision directed mode. 

 
6. SIMULATION EXAMPLES 

 
In this section, we consider simulation examples 
to demonstrate our approach, (CST MOE), and 
compare it to the recursive approach of  [3], 
(MOE). The system has 6 users transmitting 106 
QPSK symbols per second, equivalent to a bit rate 
of 2 Mega bit per second (Mbps). The spreading 
sequences are gold codes with a spreading gain of 
31. To avoid averaging over the relative delays of 
the users, a synchronous system is assumed. The 
multipath channel has a maximum Doppler shift 
of 100 Hz. The channel has 3 paths. The paths 
gains are normalized for unity gain. The channel 
adds zero mean AWGN. The estimated maximum 
order of the channel q is fixed to be 31 chips for 
all simulations. The BER is calculated over a 
frame of 2500 symbols or 5000 bits. 2λ  is set to 
100 and the forgetting factor,λ , to 1.  

 
Furthermore, the MOE and the CST MOE 
detector outputs are used to train an RLS filter in 
the MMSE sense, using the same input filter 
contents and the generated matrix, P(n), and are 
denoted by (MOE-MMSE) and (CST MOE-
MMSE) respectively. The RLS filter is trained for 
the first 300 symbols of an 2500 symbol frame 
then switches to a decision directed mode. The 
BERs are calculated by neglecting the first 300 
training symbols.  

 
Case A:  The maximum path delays are less than 
one symbol interval with relative gains and delays 
of [0, –3, –3] dB and [0, 2, 25] chips respectively. 
The average Bit Error Rate (BER) averaged over 
the six users is plotted versus Eb/No (Energy per 
bit to noise PSD ratio) in Figure 1. It is noticed 
that at a high SNR the constrained algorithm is 
superior as it prevents cancellation of the desired 
signal. Cancellation of the desired signal occurs 
due to imperfect estimation of the channel vector, 
which results in a mismatch in the desired user’s 



signature. 

A Near Far (NF) scenario is also simulated where 
the relative amplitude gain of one of the users is 
varied. The average BER of the other five equal 
power users is plotted versus the interferer gain in 
Figure 2. Eb/No was fixed to 15 dB. At a high 
SIR, the unconstrained algorithm has poorer 
performance due to the increase in the value of 
the surplus energy, χ, which leads to noise 
enhancement at the output of the receiver. 
However, at a lower SIR, the surplus energy of 
the constrained algorithm is not enough to cancel 
out the interference and thus the constrained 
algorithm has poorer performance. A lower value 
of λ2 would give better results in case of higher 
interference. 
 

 
 
Figure 1: BER Comparison for path delays =[0, 2, 
25] chips 
 
Case B:  The previous set of simulations is 
repeated for the same conditions except that the 
channel introduces ISI where the relative path 
delays are [0, 2, 35] chips respectively. Due to 
under-estimation of the maximum order of the 
channel q, the actual signature of the desired user 
will have a non-zero projection on the     
estimated signal subspace at the receiver. As a 
result, cancellation of the desired signal occurs if 
the value of the surplus energy is allowed to 
increase. Figure 3 shows the average BER versus 
Eb/No. It is noticed that the unconstrained 
receiver has poorer performance at higher SNRs 
due to cancellation of the desired signal. Figure 4 
shows the NF resistance at Eb/No = 20dB. Our 
constrained algorithm has better performance 
although the MMSE filter is sensitive to interferer 

gains. 
 

 
 

Figure 2:  NF resistance for path delays =[0, 2, 
25] chips 

 

 
 
Figure 3:  BER Comparison for path delays =[0, 

2, 35] chips 

 
7. CONCLUSIONS 

 
We proposed an MOE detector with 
constrained surplus energy for multipath 
channels. Simulations show that it has superior 
performance over unconstrained detectors at 
high Signal to Interference and Noise Ratios 
and in cases of imperfect estimation of the 
channel order or the desired signal subspace at 
the receiver. The RLS MMSE receiver could be 
trained by means of a blind detector, which 



reduces the burden of sending training 
sequences. The performance of the RLS 
detector depends on the reliability of the 
training symbols and thus on the performance 
of the blind detector. 

 

 
 
Figure 4:  NF resistance for path delays =[0, 2, 
35] chips 
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