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Abstract

MDS (e.g. Reed-Solomon) codes have many desirable properties which make them the code of

choice in network scenarios and distributed coding schemes. An average binary weight enumerator

of Reed-Solomon (RS) codes is derived assuming a binomial distribution of the bits in a non-zero

symbol. Lower bounds on the average binary minimum distanceof the ensemble of binary images

of a Reed-Solomon code are shown. The ensemble of binary images of the RS code is shown to

be, on average, asymptotically good. The performance of bit-level Reed-Solomon maximum likelihood

decoders is studied. Given an arbitrary partition of the coordinates of a code, we introduce the partition

weight enumerator which enumerates the codewords with a certain weight profile in the partitions. A

closed form formula of the partition weight enumerator of maximum distance separable (MDS) codes

is derived. Using this result, some properties of MDS codes are discussed. In particular, we show that

all coordinates have the same weight within the subcodes of constant weight codewords. The results are

extended for the ensemble of binary images of MDS codes defined over finite fields of characteristic

two. The error probability of Reed-Solomon codes in multiuser networks is then studied.
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I. I NTRODUCTION AND OUTLINE

Reed-Solomon (RS) codes are the most popular maximum distanceseparable (MDS) codes.

For any linear(n, k, d) code (of lengthn, dimensionk and minimum distanced) over any

field, maximum distance separable (MDS) codes have the maximum possible minimum distance

d = n− k+ 1 [3]. MDS codes have many other desirable properties which made them the code

of choice in many communication systems. MDS codes have the property that anyk codeword

coordinates can be considered as the information symbols ina systematic codeword and anyk

coordinates can be used to recover the information symbols.Moreover, punctured MDS codes

are also MDS codes. Such properties made MDS codes a natural choice in Automatic-Repeat-

Request (ARQ) communication systems (c.f. [4]). MDS codes arealso used in the design of

multicast network codes [5]. Reed Solomon codes are one of themost important linear block

codes and have been deployed in a wide range of applications [6]. Maximum-likelihood decoding

of linear block codes is well-known to be NP-hard [7]. The Guruswami-Sudan (GS) algorithm

was the first polynomial time hard-decision decoding algorithm for Reed-Solomon codes capable

of correcting beyond half-the-minimum distance of the code[8]. Moreover, the invention of the

GS algorithm has spurred a significant amount of research aiming at better soft-decision decoding

algorithms for Reed-Solomon codes (c.f. [9], [10], [11], [12], [13]).

Suppose a Reed-Solomon (RS) code is defined over a finite field of characteristic two, then it is

a common practice to send its binary image over the channel. In fact, the binary image has a large

burst-error correction capability which is one of the main reasons behind the ubiquitous use of

RS codes. The decoder can either be a bit-level decoder, whichdecodes the RS code as a binary

code, or a symbol level decoder, which treats the received word as a vector in the finite field. It is

often the case that hard-decision decoders, which do not make use of the reliability information

from the channel, are symbol based decoders. Such hard-decision decoders, as the Berlekamp-

Massey algorithm and the Guruswami-Sudan algorithm, usually operate on the symbol level

to make use of the nice algebraic properties of RS codes. Soft-decision decoders make use of

the channel reliability information. In case the code is sent over a binary input channel, then

the decoder is often a bit-level decoder. With the recent advances in soft-decision decoding of

RS codes, it was vital to benchmark the performance of such algorithms against the optimum

soft-decision maximum likelihood decoder.



3

A significant amount of research has been recently devoted tofinding tight bounds on the

performance of linear codes under maximum-likelihood decoding [14]. The maximum-likelihood

performance of linear codes requires the knowledge of the weight enumerator. Unfortunately,

knowing the weight enumerator of the binary images of RS codesis very hard. Some attempts

have been successful in giving the binary weight enumeratorfor particular realizations of RS

codes [15]. Other researchers considered enumerating the codewords by the number of symbols

of each kind in each codeword [16]. The average binary weightenumerators of a class of

generalized Reed-Solomon codes, derived from an original RS code either by using a different

basis to expand each column in the RS generator matrix into a binary representation or by

multiplying each column in the RS generator matrix by some non-zero element in the field,

were also studied [17].

Consider a network scenario, where users in a certain clustercan communicate in an error

free manner. These users would like to communicate with another set of users in another cluster

over a noisy channel. If the users in the first cluster are of limited power they will not be

able to reliably transmit their information to the users in the other cluster. One solution is for

the users to transmit their information to a local base station, which will then group their data

symbols, encode them with a channel code and transmit the codeword to the other set of users.

(See Fig. 1.) In other words, each codeword will be partitioned among more than one user or

application. After decoding at the receiving base station,the information will be routed to the

desired users. One other advantage of sharing a codeword among different users is the expected

improvement in the code performance as its length increases[18]. Moreover, the recent results

on the capacity of wireless networks suggest that networks with a smaller number of users and

clustered networks are more likely to find acceptance [19]. Using the results in this paper, we

will be able to analyze the performance of different users insuch a scenario.

This paper is organized as follows:

In Section II, we introduce a generalized weight enumerator, which we call the partition

weight enumerator (PWE). Given a partition of the coordinates of a code, the PWE enumerates

the codewords with a certain weight profile in the partitions. Our main result is a simple closed-

form expression for the PWE of an arbitrary MDS, e.g., Reed-Solomon, code (Section III,

Theorem 6). This generalizes the results of Kasami et al. [20] on the split weight enumerator

of RS codes. The PWE is a very useful tool in proving some of the nice algebraic properties of
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Fig. 1. A multiuser scenario where users within the same cluster transmit their information to a local base station, which, in

turn, groups their symbols into one data word and transmits it, after channel encoding, over a noisy channel to the users in

another cluster.

MDS codes. We then proceed in Section IV to derive a strong symmetry property for MDS codes

(Theorem 8) which allows us to obtain improved bounds on the symbol error probability for

RS codes. We show that an approximation widely used to estimate the symbol error probability

of linear codes is exact for MDS codes. We take this opportunity to discuss other codes which

also have this property.

One of the main motivations behind this paper was the following question:

How can one analyze the maximum-likelihood performance of the binary images of RS codes?

In Section V, we attempt to answer this question by studying the weight enumerator of the

ensemble of binary images of Reed Solomon codes. In fact we show that the ensemble weight

enumerator approaches that of a random code with the same dimension. It is also well known

that the minimum distance of a linear code provides a lot of insight about its performance.

This motivated us to study the minimum distance of the ensemble of binary images of RS

codes (Section VI). We show that the ensemble has an asymptotically good minimum distance.

Given this result, one can search for good codes within the ensemble of binary images of Reed

Solomon codes. We then attempt to answer the above question in Section VII, where we analyze

the performance of soft and hard-decision maximum likelihood decoding of the binary images of

the RS code. We show that the bounds developed using the techniques in this paper are indeed

tight.

As we have mentioned, the ensemble average weight enumerators of the binary images of RS
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codes have been rendered useful in analyzing their performance. We also study the case when

the binary images of an Reed-Solomon is partitioned among different users or applications. In

Section VIII, we show that the ensemble also has a similar symmetry property which becomes

useful when analyzing its bit error probability.

As an application to the results in this paper, we study, in Section IX, the codeword, symbol

and bit error probabilities of various Reed-Solomon code decoders in a generalized setting. In

Section X, we prove that if systematic MDS (e.g. RS) codes are used in a multiuser setting,

the unconditional symbol or bit error probabilities of all the users will be the same regardless

of the size of the partitions assigned to them. We also considered various network scenarios

where the Reed-Solomon code is the channel code of choice. We also proceed to show how one

can analyze the error probability of a certain user given some conditions on the performance of

other users. In Section XI, we conclude the paper and give some insights about the results in

this paper.

II. W EIGHT ENUMERATORS

We begin by generalizing the notion of Hamming weight. LetF
n
q denote the vectors of length

n over the finite field ofq elementsFq. A linear codeC of lengthn defined overFq is a linear

subspace ofFn
q . LetN = {1, 2, . . . , n} be the coordinate set ofC. SupposeN is partitioned into

p disjoint subsetsN1, . . . , Np, with |Ni| = ni, for i = 1, . . . , p 1. We stress that
∑p

i=1 ni = n. The

elements of the setNi ⊂ N are given byNi = {Ni(1), Ni(2), ..., Ni(ni)}. Let v = (v1,v2, ...,vn)

be a vector inFn
q , then theith partition ofv is the vectorv[Ni] =

(

vNi(1),vNi(2), ...,vNi(ni)

)

.

Note that the number of ways a set ofn coordinates could be partitioned intom1 partitions

of size of p1, m2 partitions of sizep2 andmr of size pr, i.e. the total number of partitions is
∑r

i=1mr andn =
∑r

i=1mrpr), is
n!

∏r
i=1(pi!)mimi!

, (1)

wherex! is the factorial ofx and the multinomial coefficient is normalized by the factor
∏r

i=1mi!

as we do not distinguish between partitions of the same size.

Denoting an(n1, ..., np) partition by T , the T -weight profile of a vectorv ∈ F
n
q is defined

as WT (v) = (w1, . . . , wp), wherewi is the Hamming weight ofv restricted toNi, i.e., the

1Throughout this paper, the cardinality of a setT will be denoted by|T |.
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Fig. 2. The figure shows two different vectors inF
7

q and two differentT : (2, 3, 2) partitions are applied. The weight profile of

the vectors isWT (v) = (1, 3, 0) where the zero and non-zero symbols are represented by white and black circles respectively.

weight of the vectorv(Ni). (For an example see Fig. 2.) Given a codeC of lengthn, the weight

enumerator ofC is

EC(w) = |{c ∈ C : W(c) = w}|, (2)

whereW(c) is the Hamming weight ofc. The weight generating function (WGF) ofC is the

polynomial

EC(X ) =
n
∑

h=0

EC(h)X h, (3)

where the coefficient ofX h is the number of codewords with weighth;

EC(h) = Coeff
(

EC(X ),X h
)

. (4)

(The subscriptC may be dropped when there is no ambiguity about the code.) Nowwe generalize

the notion of code weight enumerator. For an(n1, n2, ..., np) partitionT of then coordinates of

C, theT -weight enumerator ofC enumerates the codewords with a weight profile(w1, . . . , wp)

AT
C (w1, . . . , wp) = |{c ∈ C : WT (c) = (w1, . . . , wp)}|.

The partition weight generating function(PWGF) is given by the multivariate polynomial

P
T (X1, ...,Xp) =

n1
∑

w1=0

...

np
∑

wp=0

AT (w1, ..., wp)Xw1

1 ...Xwp

p . (5)

For the special case of two partitions, (p = 2), AT (w1, w2) is termed thesplit weight

enumeratorin the literature [3]. Theinput-redundancy weight enumerator(IRWE) R(w1, w2) is
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the number of codewords with input weight (weight of the information vector)w1 and redundancy

weight w2. For a systematic code, ifT is an (k, n − k) partition such that the first partition

constitutes of the coordinates of the information symbols,thenR(w1, w2) = AT (w1, w2). The

input-output weight enumerator(IOWE) O(w, h) enumerates the codewords of total Hamming

weight h and input weightw. Assuming that the first partition constitutes of the information

symbols, thenO(w, h) = R(w, h− w). For an(k, n− k) partition T , it is straight forward that

E(h) =
k
∑

w=0

AT (w, h− w) =
k
∑

w=0

O(w, h). (6)

It is useful to know the IOWE and IRWE of a code when studying its bit error probability (e.g.

[21]). The input-output weight generating function, O(X ,Y), and theinput-redundancy weight

generating function, R(X ,Y), of an (n, k) code are defined to be respectively,

O(X ,Y) =
k
∑

w=0

n
∑

h=0

O(w, h)XwYh, (7)

R(X ,Y) =
k
∑

w1=0

n−k
∑

w2=0

R(w1, w2)Xw1Yw2 . (8)

Since every non-zero symbol in the redundancy part of the code contributes to both its output

and redundancy weights,R(X ,Y) andO(X ,Y) are related by the following transformations

R(X ,Y) = O

(X
Y ,Y

)

, O(X ,Y) = R (XY ,Y) , E(X ) = R(X ,X ). (9)

For a systematic code, let thejth partition constitute of information symbols, then thejth

IOWE enumerates the codewords with a Hamming weightw in the jth partition and a total

weight h,

Oj(w, h) = | {c ∈ C : (W (c[Nj]) = w) ∧ (W(c) = h)} |, (10)

and is derived from the PWGF by

O
j(X ,Y) = P

T (Y ,Y , .,XY , .,Y) =

nj
∑

w=0

n
∑

h=0

Oj(w, h)XwYh (11)

where the invariantsXis in P
T
C
(X1,X2, ...,Xp) are substituted by







Xi := Y , ∀ i 6= j

Xi := XY , i = j.
(12)
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III. PARTITION WEIGHT ENUMERATOR OFMDS CODES

For an(n, k, d) MDS code overFq, it is well know that the minimum distance isd = n−k+1

[22] and that the weight distribution is given by [23, Theorem 25.7]

E(i) =

(

n

i

) i
∑

j=d

(

i

j

)

(−1)i−j(qj−d+1 − 1) (13)

=

(

n

i

)

(q − 1)
i−d
∑

j=0

(−1)j

(

i− 1

j

)

qi−j−d, (14)

for weightsi ≥ d. In the next theorem, we show that for an arbitrary partitionof the coordinates

of an MDS code, and for any number of partitions, the partition weight enumerator of MDS

codes admits a closed form formula.

Theorem 1: For an(n, k, d) MDS codeC defined overFq, let T define ap-partition of the

coordinates ofC into p mutually exclusive subsets,N1, N2,...,Np, such thatN1∪N2...∪Np = N

whereN = {1, 2, ..., n} and |Ni| = ni. Thep-partition weight enumerator is given by
(

n1

w1

)

....

(

np

wp

) w1
∑

j1=0

(

w1

j1

)

(−1)w1−j1

w2
∑

j2=0

(

w2

j2

)

(−1)w2−j2

....

wp
∑

jp=d−
Pp−1

z=1
jz

(

wp

jp

)

(−1)wp−jp(q
Pp

z=1
jz−d+1 − 1).

Proof: For i = 1, 2, ..p, let Ri be a subset ofNi. DefineS(c) to be the support set of the

codewordc, i.e. the set of indices of the non-zero elements. Define

f(R1, R2, .., Rp)
∆
= |c ∈ C : {S(c) ∩Ni} = Ri ∀i| = |c ∈ C : {S(c) =

p
⋃

i=1

Ri}| (15)

to be the number of codewords which are exactly non-zero on the setsRi. From the definition

of the p-partition weight enumerator, it follows that

AT (w1, w2, ..., wp) =
∑

R1⊆N1

|R1|=w1

∑

R2⊆N2

|R2|=w2

...
∑

Rp⊆Np

|Rp|=wp

f(R1, R2, ..., Rp). (16)

Define the mutually exclusive subsets,Si ⊆ Ni, i = 1, 2, .., p and let

g(S1, S2, ..., Sp) =
∑

R1⊆S1

∑

R2⊆S2

...
∑

Rp⊆Sp

f(R1, R2, ..., Rp) (17)

to be the number of codewords which are always zero on the setsNi \ Si (See Fig. 3.). It

follows from the MDS property of the code that if onlym symbols of an(n, k) MDS code are
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allowed to be non-zero, then −m zero symbols could be taken as information symbols, then

the dimension of the resulting subcode isk − n+m and

g(S1, S2, ..., Sp) =







1,
∑p

i=1 |Si| < d;

q1−d+
Pp

i=1
|Si|, n ≥∑p

i=1 |Si| ≥ d,
, (18)

Successively applying M̈obius Inversion [23, Theorem 25.1] to (17), we get

f(R1, R2, ..., Rp) =
∑

S1⊆R1

µ(S1, R1)...
∑

Sp⊆Rp

µ(Sp, Rp)g(S1, S2, ..., Sp)

∆
=

p
∏

i=1

(

∑

Si⊆Ri

µ(Si, Ri)

)

g(S1, S2, ..., Sp), (19)

where

µ(S,R) =







(−1)|R|−|S|, S ⊆ R;

0, otherwise.
(20)

Substituting (19) in (16),

AT (w1, w2, ..., wp) =

p−1
∏

i=1









∑

Ri⊆Ni

|Ri|=wi

∑

Si⊆Ri

(−1)|Ri|−|Si|









Gp(β)

=

p−1
∏

i=1

(

(

ni

wi

) wi
∑

j=0

(

wi

j

)

(−1)wi−j

)

Gp(β), (21)

such thatβ =
∑p−1

i=1 |Si| and by invoking (18)

Gp(β) =
∑

Rp⊆Np

|Rp|=wp

∑

Sp⊆Rp

(−1)|Rp|−|Sp|g(S1, S2, ..., Sp)

=

(

np

wp

)

(

d−β−1
∑

i=0

(

wp

i

)

(−1)wp−i +

wp
∑

i=d−β

(

wp

i

)

(−1)wp−iqi+β−d+1

)

=

(

np

wp

) wp
∑

i=d−β

(

wp

i

)

(−1)wp−i(qi+β−d+1 − 1) (22)

The last equality follows from the fact that
∑w

j=0

(

w
j

)

(−1)w−j = (1− 1)w = 0. Substituting (19)

in (16), the theorem follows.

For the special case of two partitions, the split weight enumeratorAw1,w2
(n1, n2) is given in

the following corollary.
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Fig. 3. The code is always zero on the coordinates in the setsNi \ Si for i = 1, 2, ..., p.

Corollary 2: LetT be an(n1, n2) partition of an(n, k, d) MDS codeC, then the split weight

enumerator ofC is

AT (w1, w2) =

(

n1

w1

)(

n2

w2

) w1
∑

j=0

(

w1

j

)

(−1)w1−j

w2
∑

i=d−j

(

w2

i

)

(−1)w2−i(qi+j−d+1 − 1).

From Theorem 1, it follows that the PWE of MDS codes does not depend on the orientation

of the coordinates with respect to the partitions but only onthe partitions’ sizes and weights

(see (17)). It thus intuitive that the ratio ofAT (w1, w2, ..., wp) to E(w) wherew =
∑p

i=1wi is

the probability that thew nonzero symbols are distributed among the partitions with aT -profile

(w1, w2, ..., wp). Next we calculate this probability for the special case ofp = 2 and we show

that the partition weight enumerator admits to a simpler closed form formula.

Theorem 3: LetT be an(n1, n2) partition for an (n, k, d) MDS code,n = n1 + n2, then

AT (w1, w2) = E(w1 + w2)

(

n1

w1

)(

n2

w2

)

(

n
w1+w2

) .

Proof: From Corollary 2, the split weight enumerator is

AT (w1, w2) =

(

n1

w1

)(

n2

w2

) w1
∑

j=0

(

w1

j

)

(−1)w1−j

w2
∑

i=d−j

(

w2

i

)

(−1)w2−i(qi+j−d+1 − 1). (23)

Doing a change of variables,α = i+ j, we get

AT (w1, w2) =

(

n1

w1

)(

n2

w2

) w1
∑

j=0

(

w1

j

)

(−1)w1−j

w2+j
∑

α=max(d,j)

(

w2

α− j

)

(−1)w2−α+j(qα−d+1 − 1).

By changing the order of summation and summing over the same region:

AT (w1, w2) =

(

n1

w1

)(

n2

w2

) w1+w2
∑

α=d

(qα−d+1 − 1)(−1)w1+w2−α

min(α,w1)
∑

j=0

(

w1

j

)(

w2

α− j

)

−
(

n1

w1

)(

n2

w2

) w1+w2
∑

α=w2+1

(qα−d+1 − 1)(−1)w1+w2−α

α−w2−1
∑

j=0

(

w1

j

)(

w2

α− j

)
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By doing the change of variablesβ = α− w2 in the second summation

AT (w1, w2) =

(

n1

w1

)(

n2

w2

) w1+w2
∑

α=d

(qα−d+1 − 1)(−1)w1+w2−α

(

w1 + w2

α

)

−
(

n1

w1

)(

n2

w2

) w1
∑

β=1

(qα−d+1 − 1)(−1)w1+w2−α

β−1
∑

j=0

(

w1

j

)(

w2

w2 + β − j

)

.

Sinceβ − j is always positive it follows that the second term in the right hand side is always

zero and by lettingw = w1 + w2

AT (w1, w2) =

(

n1

w1

)(

n2

w2

) w
∑

α=d

(

w

α

)

(−1)w−α(qα−d+1 − 1). (24)

By comparing with (13), the result follows.

Corollary 4: The IOWE of a systematic MDS code,O(w, h), for h ≥ d, is given by

O(w, h) = R(w, h− w) = E(h)

(

k
w

)(

n−k
h−w

)

(

n
h

)

=

(

k

w

)(

n− k

h− w

) w
∑

j=0

(

w

j

)

(−1)w−j

h−w
∑

i=d−j

(

h− w

i

)

(−1)h−w−i(qi+j−d+1 − 1).

By observing (6) and definingΨ(w) to be

Ψ(w) =
w
∑

j=0

(

w

j

)

(−1)w−j

h−w
∑

i=d−j

(

h− w

i

)

(−1)h−w−i(qi+j−d+1 − 1), (25)

we have an interesting identity:
k
∑

w=0

Ψ(w)

(

k

w

)(

n− k

h− w

)

= Ψ(0)
k
∑

w=0

(

k

w

)(

n− k

h− w

)

, (26)

where
(

n
h

)

=
∑k

w=0

(

k
w

)(

n−k
h−w

)

andΨ(0) =
∑h

i=d

(

h
i

)

(−1)h−i(qi−d+1 − 1).

Corollary 5: For an(n, k, d) MDS codeC, the number of codewords which are exactly nonzero

at a fixed subset of coordinates of cardinalityh and are zero at the remainingh coordinates is
E(h)

(n

h)
.

Proof: Let T be the implied(h, n− h) partition, then the required number of codewords

is AT (h, 0). The result follows by applying Theorem 3.

This result illustrates how the partition weight enumerator of MDS codes is independent of

the orientation of the partitions. Since there areE(h) codewords of weighth and there are
(

n
h

)

distinct ways to choose theh zero coordinates, then in such a case one expects that that there

are E(h)

(n

h)
codewords for any choice of theh coordinates.
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By following the same lines of proof, the result of Theorem 3 can be generalized to an arbitrary

number of partitions as in the following theorem:

Theorem 6: For an(n, k, d) MDS codeC with an (n1, n2, ..., np) partition of its coordinates

the p-partition weight enumerator is given by

AT (w1, w2, ..., wp) = E(w)

(

n1

w1

)(

n2

w2

)

....
(

np

wp

)

(

n
w

) ,

wherew =
∑p

i=1wi andE(w) = |{c ∈ C : W(c) = w}|.
We give numerical examples of PWEs using Theorem 1 and Theorem6. For these examples,

the PWGFs were also verified numerically by generating the(7, 3, 5) RS code.

Example 1:The PWGF for the(1, 1, 2, 3) partition of the coordinates of the(7, 3, 5) RS code

overF8 is

P(V ,X ,Y ,Z) =1 + 21VXY2Z + 42VXYZ2 + 21VY2Z2 + 21XY2Z2 + 63VXY2Z2

+ 7VXZ3 + 14VYZ3 + 14XYZ3 + 42VXYZ3 + 7Y2Z3 + 21VY2Z3

+ 21XY2Z3 + 217VXY2Z3.

It could be checked that the sum of the coefficients is the total number of codewords83. For

this example, one can also verify the PWGF numerically. �

Example 2:The (3, 2, 2) 3-partition enumerator of the(7, 5, 3) RS code overF8 is

P(X ,Y ,Z) =1 + 7X 3 + 42X 2Y + 70X 3Y + 21XY2 + 105X 2Y2 + 266X 3Y2

+ 42X 2Z + 70X 3Z + 84XYZ + 420X 2YZ + 1064X 3YZ + 14Y2Z

+ 210XY2Z + 1596X 2Y2Z + 3668X 3Y2Z + 21XZ2 + 105X 2Z2

+ 266X 3Z2 + 14YZ2 + 210XYZ2 + 1596X 2YZ2 + 3668X 3YZ2

+ 35Y2Z2 + 798XY2Z2 + 5502X 2Y2Z2 + 12873X 3Y2Z2.

It can also be verified thatP(1, 1, 1) = 83. �

Theorem 6 implies that the distribution of thewE(w) non-zero symbols within the codewords

of the same Hamming weightw is uniform among the partitions. This issue will be addressed

in more detail in the following section.
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IV. A RELATIONSHIP BETWEENCOORDINATE WEIGHT AND THE CODEWORD WEIGHT.

In this section, we will show that for MDS codes, one can derive the coordinate weight from

the codeword weight. We will discuss whether other linear codes also have this property.

DefineCh to be the subcode ofC with codewords of Hamming weighth;

Ch
∆
= {c ∈ C : W(c) = h}. (27)

The following lemma calculates the total weight of any coordinate in the setCh.

Lemma 7: For an(n, k, d) MDS codeC the total Hamming weight of any coordinate, summed

over the subcodeCh, is equal toh
n
E(h).

Proof: Let T be an(1, n − 1) partition of C, where the coordinate of choice forms the

partition of size one. By Theorem 3, it follows that for any such partition, the number of

codewords ofC which are non-zero in this coordinate and have a total weighth, i.e. a weight

profile (1, h− 1), is

AT (1, h− 1) =

(

n−1
h−1

)

(

n
h

) E(h) =
h

n
E(h). (28)

By observing thatAT (1, h− 1) is the total weight of the chosen coordinate over codewords in

Ch and that the choice of that coordinate was arbitrary, we are done.

This means that the codewords of the subcodeCh, when arranged as the rows of an array,

result in a design where the Hamming weight of each row ish and the Hamming weight of

each column ish
n
E(h). Furthermore, the Hamming distance between any two rows is at least

d = n− k + 1. We are now ready to prove an important property of MDS codes:

Theorem 8: For an(n, k, d) MDS codeC, the ratio of the total weight of anys coordinates

of Ch to the total weight ofCh is s
n
. If the s coordinates are ‘input’ coordinates, then
∑s

w=1w O(w, h)

s
=
h E(h)

n

for any Hamming weighth.

Proof: By Lemma 7, the total weight of any coordinate ofCh is (h/n)E(h). The total

weight of anys coordinates ofCh is the sum of the weights of the individual coordinates,

s(h/n)E(h). By observing that the weight of thes coordinates can be also expressed in terms

of the IOWE by
∑s

w=1wO(w, h) andhE(h) is the total weight ofCh, the theorem follows.

As a side result, we have proven this identity (c.f. (26)):
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Corollary 9: Let Ψ(w) be defined as in (25) then

∑

w

Ψ(w)

(

s− 1

w − 1

)(

n− s

h− w

)

= Ψ(0)
∑

w

(

s− 1

w − 1

)(

n− s

h− w

)

.

Proof: For anT : (s, n − s) partition of the coordinates, it follows from Theorem 8 that
∑s

w=1
w
s
AT (w, h − w) = h

n
E(h) =

(

n−1
h−1

)

Ψ(0). Also by Corollary 2,
∑s

w=1
w
s
AT (w, h − w) =

∑s
w=1

(

s−1
w−1

)(

n−s
h−w

)

Ψ(w). The proof follows from the identity
(

n−1
h−1

)

=
∑

w

(

s−1
w−1

)(

n−s
h−w

)

.

Definition 1: An (n, k) codeC (not necessary MDS) is said to have the multiplicity property

M, if for any T : (s, n− s) partition,
∑s

w=1
w
s
AT (w, h−w) = h

n
E(h) for all Hamming weights

h.

We will refer to the partition composed of thes coordinates as the input partition. By Theorem

8, all MDS codes have propertyM. In general not all linear codes have propertyM as seen in

the following counter-example:

Example 3:The (5, 3) linear code defined by

G =











1 0 0 1 1

0 1 0 0 1

0 0 1 0 1











is composed of the8 codewords00000, 10011, 01001, 11010, 00101, 10110, 01100, 11111. Let the

input partition be composed of the first3 coordinates. Fors = k = 3, let β(h) =
∑

w wO(w, h);

and ξ(h) = 3
5
hE(h), then from the following table it is clear that it is not true that this code

has propertyM.

h : 0 1 2 3 4 5

β(h) : 0 0 4 5 0 3

ξ(h) : 0 0 3.6 5.4 0 3

.

�

It is to be noted that all cyclic codes have propertyM. This is partially justified by the fact

that any cyclic shift of a codeword of weighth is also a codeword of weighth with h/n of the

coordinates holding non-zero elements [24]. However, thisneither implies Theorem 8 nor is it

implied by Theorem 8. For example, an extended RS code is an MDScode but not a cyclic code

while an (7, 4) binary Hamming code is cyclic but not MDS. Also, if a code satisfies property

M, it is not necessary that the code is either cyclic or MDS. Forexample, the first order Reed
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Muller codes as well as their dual codes, the extended Hamming codes, have propertyM but

are neither cyclic nor MDS. Next, we discuss some codes with the multiplicity property.

Theorem 10: The first order Reed Muller codes have the multiplicity propertyM.

Proof: The weight enumerator of the first order Reed Muller codes of length2m, R(1,m),

is E(W) = 1 + (2m+1 − 2)W2m−1

+ W2m

and their minimum distance is2m−1. Let H2m be the

Hadamard matrix of order2m and letM be the binary matrix that results from stackingH2m

on top−H2m and replacing each+1 by 0 and each−1 by 1. ( A Hadamard matrixH of order

n is ann× n matrix with entries+1 and−1 such thatHHT = nI andI is the identity matrix.

[23, Ch. 18].) The codewords ofR(1,m) are exactly the rows ofM [23, Ch. 18]. It follows

that each codeword of weight2m−1 has a unique codeword of the same weight which is its

binary complement. Thus each coordinate will be equally oneand zero in half the number of

such codewords. Since the remaining codewords are the all-zero and the all-one codewords, it

follows thatR(1,m) has the multiplicity property.

We now prove here that if a linear code has propertyM then its dual code also has property

M. By a straightforward manipulation of the McWilliams identities [3, Ch. 5, Eq. 52] one can

show the following relationship between the PWEs of a code andits dual code [25]:

Theorem 11: LetC be an (n, k) linear code overFq and C⊥ be its dual code. IfT is

an (n1, n2) partition of their coordinates,A(α, β) and A⊥(α, β) are the PWEs ofC and C⊥

respectively, thenA(α, β) andA⊥(α, β) are related by

A⊥(α, β) =
1

|C|

n2
∑

v=0

n1
∑

w=0

A(w, v)Kα(w, n1)Kβ(v, n2),

such that the Krawtchouk polynomial isKβ(v, γ) =
∑β

j=0

(

γ−v
β−j

)(

v
j

)

(−1)j(q − 1)β−j for β =

0, 1, ..., γ.

DefineAi(α, β) andA⊥
i (α, β) to be the PWEs forC andC⊥ respectively when an(1, n− 1)

partition is applied to their coordinates such that the firstpartition of cardinality one is composed

of the ith coordinate.

Theorem 12: An(n, k) linear code overFq has the multiplicity property iff its dual code has

the multiplicity property.

Proof: Let C be an(n, k) linear code overFq with propertyM and an(1, n − 1) PWE
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Ai(α, β). From Theorem 11 the PWE of the dual codeC⊥ is

A⊥
i (1, β) =

1

|C|

n−1
∑

v=0

1
∑

w=0

Ai(w, v)K1(w, 1)Kβ(v, n− 1). (29)

SinceC has propertyM, thenAi(1, v) = v+1
n
EC(v+1) andAi(0, v) = EC(v)−Ai(1, v−1) = (1−

v
n
)EC(v). By substituting in (29), it follows thatA⊥

i (1, β) = A⊥
j (1, β) for any i, j ∈ {1, 2, ..., n}

and
∑n

i=1A
⊥
i (1, β) = nA⊥

i (1, β) for any i. Counting the total weight of the codewords inC⊥

with Hamming weighth by two different ways, we get
∑n

i=1A
⊥
i (1, β) = (β + 1)EC⊥(β + 1). It

follows thatA⊥
i (1, β) = β+1

n
EC⊥(β + 1) andC⊥ has propertyM.

For the converse, assume thatC does not satisfy propertyM but C⊥ does. From the previous

argument(C⊥)⊥ has propertyM. Since for linear codes(C⊥)⊥ = C, we reach a contradiction.

Since the dual codes of MDS codes are also MDS codes, this result strengthens Theorem 8.

This theorem somehow strengthens the result of Theorem 8 since the dual codes of MDS codes

are again MDS codes. The dual codes of cyclic codes are also cyclic codes. One can also use

this theorem to show that certain codes have the multiplicity property.

Corollary 13: The extended Hamming codes have propertyM.

Proof: An extended Hamming code of length2m is the dual of the first order RM code

R(1,m) [3], which by Theorem 10 has propertyM.

Extended Hamming codes also have transitive automorphism groups [26] which gives another

proof to Corollary 13. Some product codes also have the multiplicity property [26], [27].

V. AVERAGE BINARY IMAGE OF REED SOLOMON CODES

The binary imageCb of an (n, k) codeC overF2m is obtained by representing each symbol by

anm-dimensional binary vector in terms of a basis of the field [22]. The weight enumerator of

Cb will vary according to the basis used. In general, it is also hard to know the weight enumerator

of the binary image of a certain Reed Solomon code obtained by aspecific basis representation

(e.g. [15], [16]). For performance analysis, one could average the performance over all possible

binary representations ofC. By assuming that the all such representations are equally probable,

it follows that the distribution of the bits in a non-zero symbol follows a binomial distribution

and the probability of havingi ones in a non-zero symbol is1
2m−1

(

m
i

)

. The generating function
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of the averageweight enumerator of the binary image of a non-zero symbol is

F (Z) =
m
∑

i=1

1

2m − 1

(

m

i

)

Z i =
(1 + Z)m − 1

2m − 1
, (30)

where the power ofx denotes the binary weight and the all zero vector is excludedsince the

binary weight of a non-zero symbol is at least one. Suppose a codeword hasw non-zero symbols,

and the distribution of the ones and zeros in each symbol is independent from other symbols,

then the possible binary weight,b, of this codeword ranges fromw to mw. Since there areE(w)

codewords with symbol Hamming weightw, then theaverage binaryweight generating function

can be derived by

ẼCb(X ) =
nm
∑

b=0

Ẽ(b)X b (31)

= EC(X )
∣

∣

X :=F (X ) (32)

=
n
∑

h=0

E(h)

(2m − 1)h
((1 + X )m − 1)h . (33)

A closed form formula for the average binary weight enumerator (BWE) is

Ẽ(b) = Coeff
(

ẼCb(X ),X b
)

(34)

=
n
∑

w=d

E(w)

(2m − 1)w

w
∑

j=0

(−1)w−j

(

w

j

)(

jm

b

)

; b ≥ d. (35)

These results apply to any maximum distance separable code defined overFq, whereq = 2m

and not necessarily an RS code. Widely used RS (MDS) codes have acode lengthn = 2m − 1.

In that case the BWE derived in (34) agrees with the average BWE of aclass of GRS codes

[17]. In other words two ensembles have the same weight enumerator; the first ensemble is

the ensemble of all possible binary images of a specific RS code, the second ensemble is the

binary image (with a specific basis representation) of the ensemble of generalized RS codes

derived from the original RS code by multiplying each column in the generator matrix by some

non-zero element in the field. It is easy to see thatGo = 1 and thatẼ(b) = 0 for 0 < b < d. By

substituting forE(w), for b ≥ d, the binary weight enumerator (BWE) is given by

Ẽ(b) = (q − 1)
n
∑

w=d

(

q

q − 1

)w (
n

w

) w−d
∑

v=0

(−1)v

(

w − 1

v

)





w
∑

j=⌈b/m⌉

(−1)w−j

(

w

j

)(

jm

b

)

q−(d+v)



 .

(36)
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Fig. 4. True BWE versus the averaged BWE for the (7,5) RS code overF8

Although it is easy to evaluate the above formula, the term
(

jm
b

)

may diverge numerically for

large j. Using the Stirling approximation for
(

jm
b

)

[3], Ẽ(b) could be approximated as

Ẽ(b) ≈
n
∑

w=d

(q − 1)

(

q

q − 1

)w (
n

w

) w−d
∑

v=0

(−1)v

(

w − 1

v

) w
∑

j=⌈b/m⌉

F(j), (37)

where

F(j) =



















(−1)w−j
(

w
j

)

2λ(j); j > b/m

(−1)w−j
(

w
j

)

2−m(d+v); j = b/m

, (38)

and λ(j) = m(jH(ψb,j) − d− v) − 1
2
log2 (2πjmψb,j(1 − ψb,j)) for ψb,j = b/jm and q = 2m.

These bounds could be further simplified (and thus loosened)by observing that forn ≤ q − 1,

1 ≤
(

q

q − 1

)w

≤
(

q

q − 1

)q−1

≤ lim
q→∞

(

q

q − 1

)q−1

= e (39)
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and substituting in (37).

In Fig. 4, the averaged BWE and the true BWE for a specific basis representation found by

computer search are plotted for the(7, 5) RS code overF8. The average weight enumerator of

(36) is labeled ”Average” while the approximation of (37) islabeled ‘Approximate Average’. It

is observed that a good approximation of the average binary weight enumerator forh ≥ d is the

normalized binomial distribution which corresponds to a random code with the same dimension

over Fq

Ẽ(h) ≈ q−(n−k)

(

mn

h

)

. (40)

This observation can be somehow justified by the central limit theorem, where the binary weight

of a codeword is a random variable which is the sum ofn independent random variables

corresponding to the binary weights of the symbols. For large n, the distribution of the binary

weight is expected to converge to that of random codes. The following theorem shows that the

average BWE can be upper bounded by a
(

q
q−1

)(n−k)

multiple of the above approximation.

Theorem 14: The average binary weight enumerator is upper bounded by

Ẽ(h) ≤ (q − 1)−(n−k)

(

mn

h

)

.

Proof: An upper bound on the symbol weight enumerator of an(n, k, d) MDS code defined

over Fq is [28, Eq. 12]

E(w) ≤
(

n

w

)

(q − 1)w−d+1; w ≥ d. (41)

Substituting in (34) it follows that forb ≥ d

Ẽ(b) ≤ (q − 1)k−n

n
∑

w=d

(

n

w

)





w
∑

j=⌈b/m⌉

(−1)w−j

(

w

j

)(

jm

b

)



 . (42)

By doing a change of variablesα = mj and changing the order of summations

Ẽ(b) ≤ (q − 1)k−n

n
∑

w=d

mw
∑

α=b

(−1)w−j

(

n

w

)(

w

α/m

)(

α

b

)

= (q − 1)k−n

nm
∑

α=b

(−1)−
α
m

(

α

b

) n
∑

w=max( α
m

,d)

(−1)w

(

n

w

)(

w

α/m

)

≤ (q − 1)k−n

nm
∑

α=b

(−1)−
α
m

(

α

b

) n
∑

w= α
m

(−1)w

(

n

w

)(

w

α/m

)

.
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From the identity
(

n
m

)(

m
p

)

=
(

n
p

)(

n−p
m−p

)

it follows that
∑n

k=m(−1)k
(

n
k

)(

k
m

)

= (−1)mδnm where

δn,m is the Kronecker delta function. It follows that

Ẽ(b) ≤ (q − 1)k−n

nm
∑

α=b

(

α

b

)

δ α
m

,n

= (q − 1)k−n

(

mn

b

)

,

which completes the proof.

In Fig. 5, we plot the ensemble average weight enumerator of (34) and compare it with the

weight enumerator of a random code with the same dimension (40). We also compare it with

the simple upper bound of Theorem 14. It is observed that the upper bound of Theorem 14 is

fairly tight and that a good approximation for the ensemble weight enumerator is that of random

codes. In fact, as length of the code (and the size of the finitefield) tend to infinity

Ẽ(h) ≤
(

q

q − 1

)(n−k)

q−(n−k)

(

mn

h

)

(43)

≤ e2−m(n−k)

(

mn

h

)

(44)

≤ e
√

2πmnλ(1 − λ)
2mn(H2(λ)−1+R), (45)
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whereb = λmn, R = k/n is the code rate andH2(λ) is the binary entropy function. The last

inequality follows from the Stirling’s inequality [3, p. 309]. Let the asymptotic weight enumerator

exponent of a codeC, of lengthN and weight enumeratorEC, to be defined as

Ξ(λ)
∆
= lim

N→∞

log2 (EC(λN))

N
. (46)

It follows that the asymptotic weight enumerator exponent of the ensemble of binary images

of Reed-Solomon codes is

Ξ̃(λ) = lim
n→∞
m→∞

log2

(

Ẽ(λmn)
)

mn

≤ lim
n→∞
m→∞

log2(e) − 1
2
log2(mn) − 1

2
log2(2πλ(1 − λ))

mn
+H2(λ) − 1 +R

= H2(λ) − (1 −R). (47)

In other words, as the code length and the finite field size tendto infinity, the weight enumerator

of the ensemble of binary images of an RS code approaches that of a random code.

The error correcting capability of a code relies a lot on the minimum distance of the code,

which will be analyzed in the next section.

VI. T HE BINARY M INIMUM DISTANCE OF THEENSEMBLE OFBINARY IMAGES OF

REED-SOLOMON CODES

The error correcting capability of a code relies a lot on the minimum distance of the code.

We will now consider the minimum distance of the ensemble of binary images of a certain Reed

Solomon code. The average minimum distance of the binary image of the RS code could be

defined to be the smallest weightb whose average BWẼE(b) is greater than or equal to one

(note thatẼ(b) is a real number). Letdb be the average BMD, then

db
∆
= inf

b≥d
{b : Ẽ(b) ≥ 1}. (48)

The numberdb could be found exactly by numerical search. However, it willalso be useful to

find a lower bound ondb. It is straight forward to note that the binary minimum distance (BMD)

is at least as large as the symbol minimum distanced;

db ≥ n− k + 1. (49)
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In the following theorems, we will give some lower bounds on the average binary minimum

distance of the ensemble of binary images.

Theorem 15: The minimum distance of the ensemble of binary images of an(n, k, d) RS code

over F2m is lower bounded by

db ≥ inf
b≥d

{

b :

(

mn

b

)

≥ (2m − 1)n−k

}

.

Proof: From the upper bound oñEb of Theorem 14, and the definition ofdb, the theorem

follows.

By taking only the term corresponding toj = w in the alternating sign summation in (42),

one can show that an upper bobound on the minimum distance of Theorem 16 will not be tighter

than that of Theorem 15. und on the ensemble weight enumerator is

Ẽ(b) ≤ (q − 1)k−n

n
∑

w=d

(

n

w

)(

wm

b

)

(50)

Theorem 16: A lower bound ondb is

db ≥ inf
b≥d

{

b :
n
∑

w=d

(

n

w

)(

wm

b

)

≥ (2m − 1)n−k

}

.

Proof: By taking only the term corresponding toj = w in the alternating sign summation

in (42), it follows that

Ẽ(b) ≤ (q − 1)k−n

n
∑

w=d

(

n

w

)(

wm

b

)

.

The theorem follows from the definition ofdb.

Since the upper bound on the weight enumerator of (50) is not tighter than the bound of Theorem

14, it is expected that the lower bound on the minimum distance of Theorem 16 will not be

tighter than that of Theorem 15.

Since the binary minimum distance of the ensemble is at leastas large as the symbol minimum

distance (cf. 49), it is interesting to determine when the binary minimum distance is equal to

the symbol minimum distance which is linear in the rateR of the code.

Lemma 17: The average binary minimum distance of an MDS code over F2m is equal to its

symbol minimum distance for all rates greater than or equal to Ro = 1 − do−1
n

wheredo is the

largest integerd′ such that

1

d′
log2

(

(2m − 1)

(

n

d′

))

≥ log2(2
m − 1) − log2(m). (51)
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Proof: The number of codewords in an MDS code with symbol weightd = n − k + 1

is E(d) = (q − 1)
(

n
d

)

. The binary image could be of binary weightd only if the codeword is

of symbol weightd and the binary representation of each non-zero symbol has only one non-

zero bit. This happens with probability
(

m
2m−1

)d
, wherem = log2(q). So the average number of

codewords with binary weightd is

Ẽ(d) = E(d)

(

m

2m − 1

)d

= (q − 1)

(

n

d

)(

log2(q)

q − 1

)d

. (52)

From the definition of the average binary minimum distance, the lemma follows.

Asymptotically, it could be shown thatRo is the smallest rate such that

H2(1 −Ro)

(1 −Ro)
≥ log2(n) − log2(log2(n)), (53)

wheren ≈ q and

H2(x) = −x log2(x) − (1 − x) log2(1 − x) (54)
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is the binary entropy function. This implies that the rateRo, at which the symbol minimum

distance is equal to the ensemble binary minimum distance, tends to one as the length of the

code tends to infinity.

The Gilbert-Varshamov (GV) bound is defined by [3],

lim
n→∞

{R(δ) − (1 −H2(δ))} ≥ 0 for 0 < δ <
1

2
, (55)

whereδ = db/(mn) is the ratio of the binary minimum distance to the total length of the code and

R(δ) is rate of the code with a relative minimum distanceδ. Retter showed that for sufficiently

large code lengths, most of the codes in the binary image of the ensemble of generalized RS

codes lie close to the GV bound by showing that the number of codewords with weights lying

below the GV bound in all generalized RS codes of the same length and rate are less than half

the number of such generalized RS codes [17]. Next, we show a related result for the ensemble

of binary images of an RS code, with a binary weight enumeratorẼ(b).

We will now determine a bound on the asymptotic relative binary minimum distance (as the

length tends to infinity) of the ensemble of binary images,δ∞

δ∞
∆
= inf

λ
{Ξ̃(λ) ≥ 0}. (56)

From the asymptotic analysis of (47), we showed that

Ξ̃(λ) ≤ H2(λ) − (1 −R). (57)

It thus follows that

δ∞ ≥ inf
λ
{H2(λ) ≥ (1 −R)} . (58)

One can then deduce that

H2(δ∞) − (1 −R(δ∞)) ≥ 0. (59)

In other words, we have proved the following theorem,

Theorem 18: The ensemble of binary images of an Reed Solomon code asymptotically satisfies

the Gilbert Varshamov bound.

This is not very surprising since we have shown that the ensemble average behaves like a

binary random code. Note that this is for the average binary image of the RS code and not for a

specific valid binary image. Since this theorem is for the ensemble average, it might imply that
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Fig. 7. The relative binary minimum distance for the ensemble of binary images of Reed Solomon codes, of length15 over

F16 plotted versus the code rate. The numerical minimum distance (48) is labeled ‘RABMD’ and compared with the lower

bounds of Theorem 15 and (49) which are labeled ‘Lower Bound’ and‘Linear LB’ respectively. The Gilbert-Varshamov bound

is plotted and labeled ‘GV Bound’.

some codes in the ensemble may have a minimum distance asymptotically satisfying the GV

bound. However, we do not know of a specific code in the ensemble that satisfies the bound.

In Fig. 6, we show the relative average binary minimum distance for binary images of Reed

Solomon codes, calculated numerically by (48), for different code lengths. It is observed that as

the length and the size of the finite field increases, the relative minimum distance decreases. From

Theorem 18, the relative binary minimum distance should approach the GV bound as the length

tends to infinity. In Fig. 7 and Fig. 8, we study the relative average binary minimum distance

for code lengthsn = 15 andn = 31 respectively. We compare it with the Gilbert-Varshamov
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Fig. 8. The relative binary minimum distance for the ensemble of binary images of Reed Solomon codes, of length31 over

F32 plotted versus the code rate. The numerical minimum distance (48) is labeled ‘RABMD’ and compared with the lower

bounds of Theorem 15 and (49) which are labeled ‘Lower Bound’ and‘Linear LB’ respectively. The Gilbert-Varshamov bound

is plotted and labeled ‘GV Bound’.

bound and the lower bounds of Theorem 15 and the linear bound of (49). We observe that the

lower bound of Theorem 15 is pretty tight and it provides a simple way to evaluate the minimum

distance of the ensemble. Moreover it is always lower bounded by the GV bound. By comparing

with the linear lower bound of (49), it is noticed that forn = 15 andk ≥ 8, the average BMD is

equal to the symbol minimum distance,d, as expected from Lemma 17. As the rate decreases,

this linear lower bound becomes very loose and the average binary minimum distance exceeds

the symbol minimum distance.
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VII. PERFORMANCE OF THEMAXIMUM L IKELIHOOD DECODERS

Let c be the binary image of a codeword in the(n, k, d) RS codeC. The binary phase shift

keying (BPSK) modulated image ofc is x = M(c) = 1 − 2c. This will be transmitted over

a standard binary input additive white Gaussian noise (AWGN)channel. The received vector

is y = x + z, wherez is an AWGN vector. Since the considered codes are linear, it issafe

to assume that the all zero codeword (in fact its binary image) is transmitted. Hard-decision is

done to the received bits to obtain the vectorȳ whereȳi = 1−sign(yi)
2

and the HD-ML decoder’s

output is the codeword̂c such that

ĉ = arg min
v∈Cb

d(ȳ,v) (60)

whered(u,v) is the (binary) Hamming distance betweenu andv. This is equivalent to trans-

mitting the codewordc through a binary symmetric channel (BSC) with cross over probability

p = Q(
√

2Rγ) whereγ is the bit signal to noise ratio andR is the code rate.

As discussed before, bounds on the error probability of linear codes require the knowledge of

the weight enumerator. For a specific binary image, it is veryhard to know the weight enumerator.

It is also hard to agree on the use of a specific binary image or to speculate which binary image

has been used. So the question we really need to answer is the expected performance if any

binary image of a specific RS code is used. Our approach is to consider the binary code of a

weight enumerator equal to the ensemble average weight enumerator.

The performance of the hard-decision maximum likelihood (HD-ML) decoder can be upper

bounded with the well known union bound by resorting to the average weight enumerator of the

ensemble

P (EHML) ≤
mn
∑

b=db

Ẽ(b)
b
∑

w=⌈ b
2
⌉

(

b

w

)

pw(1 − p)b−w, (61)

whereP (EHML) denotes the codeword error probability of the HD-ML decoder. Alternatively,

one could use the ensemble average weight enumerator with tighter bounds. The best well known

upper bound on the performance of a HD-ML decoding of linear codes on binary symmetric

channels is the Poltyrev bound [29].

The soft-decision maximum likelihood decoder solves the following optimization problem,

ĉ = arg min
v∈Cb

‖y −M(v)‖2 (62)
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where‖x‖ is the Euclidean norm ofx. Assuming that the all-zero codeword is BPSK modulated

and transmitted over a memoryless AWGN channel, the probability that a certain codeword of

binary weightb is chosen at the decoder instead of the transmitted all-zerocodeword is [30, Eq.

8.1-49]Pb = Q
(√

2γRb
)

, whereγ is the signal to noise ratio (SNR) per bit andR = k/n.

Then a heuristic union lower bound on the codeword error probability of the soft-decision

maximum-likelihood decoder (specifically true at high SNRs)is the probability that a codeword

of minimum weightdb is erroneously decoded,

P (ESML) & Ẽ(db)Q
(

√

2γRdb

)

. (63)

A union upper bound on the codeword error probability is the sum of all possible errors,

P (ESML) ≤
∑

b≥db

Ẽ(b)Q
(

√

2γRb
)

. (64)

The union bound is loose at low SNRs. Poltyrev described a tangential sphere bound (TSB)

on the error probability of binary block codes BPSK modulatedin AWGN channels [29]. This is

a very tight upper bound on the ML error probability. We use itin conjunction with the average

binary weight enumerator to find a tight upper bound on the error probability of ML decoding of

RS codes. Divsalar also introduced in [31] a simple tight bound (that involves no integrations)

on the error probability of binary block codes, as well as a comparison of other existing bounds.

The Berlekamp-Massey (BM) decoder is a symbol-based hard-decision decoder which can

correct a number of symbol errors upto half the minimum distance of the code,τBM = ⌊n−k
2
⌋.

The error plus failure probability of the BM decoder has been well studied [28], [32] and can

be simply given by

P (EBM) = 1 −
τBM
∑

j=0





n

j



 (1 − s)jsn−j,

where s is the probability that a symbol is correctly receiveds =
(

1 −Q
(√

2γR
))m

. The

Guruswami-Sudan decoder is also a symbol-based HD decoder but can correct more than half the

minimum distance of the codeτGS = ⌈n−
√
nk−1⌉. The performance of a hard-decision ‘sphere’

decoder that corrects any number ofτ ≥ τBM symbol errors as well that of the corresponding

maximum likelihood decoder overq-ary symmetric channels have been recently analyzed [33],

[34].
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Fig. 9. Performance bounds of the binary image of the(15, 11) RS code overF16 when transmitted over a binary input AWGN

channel: The analytic performance of the symbol-level hard-decisionBerlekamp-Massey and Guruswami-Sudan decoders are

shown and are labeled by ‘HD-BM’ and ‘HD-GS’ respectively. Theseare in turn compared to the bit-level HD ML decoder

labeled ‘HD-ML’. The union upper bound (64), lower bound (63) andthe tangential sphere bound on the soft-decision ML error

probability are labeled ‘SD-ML Union UB’, ‘SD-ML Union LB’ and ‘SD-MLTSB’ respectively. The simulated performance

of an SD ML decoder is labeled ‘SD-ML Simulation’.

We evaluate the average performance of RS codes when its binary image is BPSK modulated

and transmitted over an AWGN channel. In Fig. 9, we consider a specific binary image of

the (15, 11) RS code overF16. Soft-decision maximum likelihood decoding was simulated

using the BCJR algorithm [35] on the trellis associated with the binary image of the RS code

[36]. By comparing this with the average TSB, we observe that our technique for bounding

the performance of the soft-decision ML decoder provides tight upper bounds on the actual

performance of a specific binary image. It is clear that at lowSNRs the (averaged) TSB give

a close approximation of the ML error probability. By comparing this bound with the union
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upper and lower bounds of (64) and (63), we observe that the TSB coincides with the union

bounds at high SNRs. As from (63), the union lower bound is characterized by the minimum

distance term. Indeed, the SNR at which the performance of the maximum likelihood decoder

is dominated by the minimum distance term was recently studied by Fossorier and was termed

the critical point for ML decoding [37]. The decoding radius of the GS decoder isthe same as

that of the BM decoder for the(15, 11) code, which is of relatively high rate. However, their

performance is very close to that of the HD-ML decoder.

In Fig. 10, we consider the performance of the binary image ofthe (31, 15) RS code overF16

when BPSK modulated and transmitted over an AWGN channel. We compare the performance

of a bit-level HD-ML decoder with that of a symbol-level HD-ML decoder by deploying the

bounds of [29] and [34] respectively. The symbol-level decoder operates by first groupingm

bits to symbols inF2m after hard-decision. It seems that for this half-rate code,the performance

of a bit-level HD decoder is better than the corresponding symbol-level decoder (about1.5 dB

coding gain). We also compare the performance with that of the symbol-level HD-BM and the

HD-GS algorithms. For the(31, 15) code, bit-level HD-ML decoding has more than2 dB gain

over the BM decoder, whereas SD-ML decoding offers another2 dB gain over bit-level HD-ML

decoding. The SD-ML decoder has about4 dB gain over the BM decoder and2 dB gain over

the HD-ML decoder. Bounds on the performance of the maximum likelihood decoder provides a

benchmark to compare the performance of other suboptimum algorithms. To emphasize this, the

performance of a bit-level soft-decision decoder, developed by El-Khamy and McEliece [12],

acting on a specific binary image is also plotted. Only by comparing it to the SD-ML bound can

one conclude that this soft-decision algorithm operates within 1 dB of the optimum soft-decision

algorithm.

VIII. B INARY PARTITION WEIGHT ENUMERATOR OFMDS CODES

In this section, we study the partition weight enumerator ofthe binary image of an RS (MDS)

code. LetT be a partition of the coordinates of an MDS codeC defined overF2m. Let Tb be the

partition of the coordinates of the code’s binary imageCb implied by T when each symbol is

represented with its binary image. The number of the partitions inT andTb is the same but the

size of each partition ism times larger. This is illustrated by example in Figure 11. The binary

partition weight enumerator(PWE) gives the number of codewords in the binary image with a
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Fig. 10. Performance of the binary image of the(31, 15) RS code overF32 transmitted over AWGN channels. The symbol-level
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ML’ and ‘symbol HD-ML’ respectively. The TSB on the bit-level SD-MLerror probability is labeled ‘SD-ML’ and is compared

with the bit-level soft-decision algorithm of [12] labeled ‘SD-EM’.

specific combination of binary Hamming weights in the specified partitions. As we saw in the

previous section, the binary image is not unique, so we will resort again to anaveragedbinary

PWE.

Theorem 19: LetPT (X1,X2, ...,Xp) be the partition weight generating function (PWGF) of

an (n, k) code overF2m , andTb be the partitioning of the coordinates ofCb induced byT when

the symbols in each partition are represented by bits, then the average binary PWGF is

P̃
Tb

Cb(Z1,Z2, ...,Zp) = P
T
C (F (Z1), F (Z2), ..., F (Zp)),

whereF (Z) = 1
2m−1

(1 + Z)m − 1.
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Fig. 11. A codeword in the(7, 3, 5) RS code overF8 is shown with a(1, 2, 4) partition of its coordinates. For a specific

binary representation, the binary image is shown with the implied(3, 6, 12) partition of its coordinates. We emphasize that the

weight profile of the binary image is not easily derived from that on the symbol level.

Proof: Assuming a binomial distribution of the bits in a nonzero symbol, the probability

that the binary representation of a nonzero symbol has weight i is equal to the coefficient

of Z i in 1
2m−1

∑m
i=1

(

m
i

)

Z i. If the weight of thejth partition iswj, then the average binary

weight generator function of its binary image is
(

1
2m−1

∑m
i=1

(

m
i

)

Z i
j

)wj under the assumption

that all the non-zero symbols are independent and equally probable. Consider a codeword with

a weight profile(w1, w2, ..., wp), then the probability that the weight profile of its binary image

is (b1, b2, .., bp) is given by the coefficient ofZb1
1 Zb2

2 ...Z
bp
p in

∏p
j=1

(

1
2m−1

∑m
i=1

(

m
i

)

Z i
j

)wj . By

multiplying with the number of such codewords,AT (w1, w2, ..., wp), the result follows.

For systematic codes, the binary IOWE could be derived from the binary PWE as in (11)

(Unless otherwise stated, when speaking of binary weight enumerators of codes overF2m it is

understood that we mean the ensemble average binary weight enumerator.) For example, the

coefficient ofXwYh in P̃(XY ,Y , ...,Y) is the number of codewords with input binary weight

w in the first partition and a total average binary weighth. In the following corollary, we give

a closed form expression for the binary IOWE,Õ(wb, hb).

Corollary 20: LetOC(w, h) be the input-output weight enumerator of an(n, k, d) codeC,

defined overF2m corresponding to an(s, n − s) partition of its coordinates, then the average
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binary IOWE ofCb is given by

ÕCb(wb, hb) =
s
∑

w=0

n
∑

h=w

OC(w, h)

(2m − 1)h

(

h−w
∑

j=0

(−1)h−w−j

(

h− w

j

)(

jm

hb − wb

)

)(

w
∑

j=0

(−1)w−j

(

w

j

)(

jm

wb

)

)

for hb ≥ d.

Proof: For the given(s, n− s) partition, the split weight enumerator ofC is PC(X ,Y) =
∑s

w=0

∑n
h=w OC(w, h)XwYh−w. From the Theorem 19 and (9),̃OCb(wb, hb) is the coefficient of

XwbYhb in

ÕCb(X ,Y) =
1

(2m − 1)h

s
∑

w=0

n
∑

h=w

OC(w, h)((1 + YX )m − 1)w((1 + Y)m − 1)h−w. (65)

Since ((1 + YX )m − 1)w =
∑w

j=0

(

w
j

)

(−1)w−j(
∑mj

i=0

(

mj
i

)

X iY i) and ((1 + Y)m − 1)h−w =
∑h−w

j=0

(

h−w
j

)

(−1)h−w−j(
∑mj

i=0

(

mj
i

)

Y i), the result follows by substituting in (65).

The IOWE of the binary image will be useful in the analysis of the bit error probability of

MDS codes when their binary image is transmitted. In SectionIV (c.f. Theorem 8), we showed

that MDS codes have the multiplicity property. Now, we will show that a binary image of an

MDS code with a weight enumerator equal to that of the averagebinary weight enumerator, if

it exists, will also have the multiplicity property.

Theorem 21: LetC be an (n, k, d) MDS code overF2m with the multiplicity property and

Ẽ(hb) be the average binary weight enumerator ofCb. If Õ(wb, hb) is the average binary IOWE

of Cb, where the partition of the coordinates ofCb is induced by an(s, n − s) partition of the

coordinates ofC, then forhb ≥ d
∑ms

wb=1wb Õ(wb, hb)

ms
=
hb Ẽ(hb)

mn
.

Proof: We will begin by proving it for the special case ofs = 1. SinceC has propertyM,

thenO(1, h) = h
n
E(h). It follows from Corollary 20 that

Õ(wb, hb) =

(

m

wb

) n
∑

h=0

h

n

E(h)

(2m − 1)h

h−1
∑

j=0

(−1)h−1−j

(

h− 1

j

)(

jm

hb − wb

)

. (66)

By changing the order of the summations we have

m
∑

wb=1

wbÕ(wb, hb) =
n
∑

h=0

h

n

E(h)

(2m − 1)h

h−1
∑

j=0

(−1)h−1−j

(

h− 1

j

) m
∑

wb=1

wb

(

m

wb

)(

jm

hb − wb

)

. (67)
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By observing thatwb

(

m
wb

)

= m
(

m−1
wb−1

)

, it follows that the rightmost summation in (68) is equal

to m
∑

wb

(

m−1
wb−1

)(

mj
hb−1−(wb−1)

)

= m
(

m(j+1)−1
hb−1

)

. By doing a change of variablesα = j + 1 and

observing that
(

mα−1
hb−1

)

= hb

mα

(

mα
hb

)

and rearranging it follows that the total weight ofm coordinates

in the binary imageCb, corresponding to a single coordinate inC, is
m
∑

wb=1

wbÕ(wb, hb) =
1

n
hb

n
∑

h=1

E(h)

(2m − 1)h

h
∑

α=1

(−1)h−α

(

h

α

)(

mα

hb

)

=
hb

n
Ẽ(hb). (68)

If the input partition hass coordinates ofC, the result follows by summing the weights of the

individual coordinates.

This means that if the weight of a symbol coordinate is(h/n)E(h) in Ch, then the average

weight of its binary image is(hb/n)Ẽ(hb) in Cb
hb

. It will be interesting to determine whether

this will still be true for any binary representation. As we will see in the next section, the result

of Theorem 21 can simplify the analysis of the bit error probability of MDS codes.

IX. SYMBOL AND BIT ERRORPROBABILITIES

In section VII, we showed how one can analyze the codeword error probability of various

RS code decoders. In this section, we study the symbol and bit error probabilities of systematic

MDS codes. In general, systematic coding is preferred over non-systematic coding. It has also

been shown that maximum likelihood (ML) decoding of binary linear codes achieves the least

bit error probability when the code is systematic [38].

Given a symbol-level decoder (soft-decision or hard-decision decoder), the codeword error

error probability (CEP) at a certain signal to noise ratio (SNR) γ will be a function of the SNR

γ and the code weight enumeratorE(h). In the remaining of this paper, we will denote the CEP

at a signal to noise ratio (SNR)γ by Φc (E(h), γ). For linear codes, union upper-bounds on the

performance of symbol-based decoders are of the form

Φc (E(h), γ) ≤
n
∑

h=d

E(h)U(γ, h) (69)

for some functionU of the SNRγ and weighth.

Tighter upper bounds can be of the form

Φc (E(h), γ) ≤ min
α

{

α
∑

h=d

E(h)V(γ, h) + F(γ, α)

}

(70)
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for some functionsV andF of γ andh. For example, tight upper bounds on the performance

of bit-level and symbol-level hard-decision maximum likelihood decoders admit to the above

form and are given by [29, Lemma 1] and [33, Theorem 2] respectively. The codeword error

probability of the HD Berlekamp-Massey decoder is the probability that the received word lies

in the decoding sphere of a codeword other than the transmitted word. It is also determined by

the weight enumerator and has the form of the union bound as in(69);

Φc (E(h), γ) ≤
n
∑

h=d

E(h)
τ
∑

t=0

P h
t (γ), (71)

whereP h
t (γ) is the probability that a received word is exactly Hamming distancet from a

codeword of weighth andτ = ⌊(d− 1)/2⌋ is the Hamming decoding radius [28] [32].

Given an upper bound on the CEP of a symbol-based decoder, it iswell known that the symbol

error probability (SEP)Φs(γ) can be derived from the CEPΦc(γ) by substitutingE(h) with

Q(k, h) =
k
∑

w=1

w

k
O(w, h), (72)

(e.g., [32, (10-14)]). From Theorem 8, the common approximation

Q(k, h) ≈ h

n
E(h) (73)

is exact for MDS codes and

Φs(γ) = Φc (E(h), γ)
∣

∣

E(h):=Q(k,h) . (74)

In other words, if the CEP is given by (69) or (70), the SEP will be respectively bounded by

Φs(γ) ≤
n
∑

h=d

h

n
E(h)U(γ, h), (75)

Φs(γ) ≤ min
α

{

α
∑

h=d

h

n
E(h)V(γ, h) + F(γ, α)

}

. (76)

In case the binary image of an RS code is transmitted and the decoder is a bit-level decoder,

performance analysis of the decoder will utilize the binaryweight enumerator of the code. As

we discussed in Section VII, the ensemble average binary weight enumerators become handy

when analyzing the performance of the binary images of RS codes. As is the case of symbol
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based decoders, upper bound on the CEP of bit-level decoders admit the union bound forms

Φc

(

Ẽ(h), γ
)

≤
nm
∑

h=d

Ẽ(h)Υ(γ, h) (77)

Φc

(

Ẽ(h), γ
)

≤ min
α

{

α
∑

h=d

Ẽ(h)J (γ, h) + G(γ, α)

}

(78)

for some functionsΥ, J andG of the SNRγ and the weighth. For example, the union bounds

of SD and HD decoding of (61) and (64) are of the form of (77), whereas the Poltyrev tighter

version of these bounds follow the form of (78).

From Theorem 21, we know that for anyk (symbol) coordinates of the MDS code

Q̃(mk, h) =
mk
∑

w=1

w

mk
Õ(w, h) =

h

mn
Ẽ(h). (79)

It follows that the bit error probability (BEP) can be boundedby (e.g., [21], [39])

Φb(γ) = Φc

(

Ẽ(h), γ
) ∣

∣

∣Ẽ(h):=Q̃(mk,h) (80)

≤ min
α

{

α
∑

h=d

h

mn
Ẽ(h)J (γ, h) + G(γ, α)

}

(81)

≤
nm
∑

h=d

h

mn
Ẽ(h)Υ(γ, h). (82)

X. M ULTIUSER ERRORPROBABILITY

We consider the case when a systematic RS code is shared among different users or applica-

tions. The systematic symbols are shared among the different users where the coordinates of the

code are partitioned according to anT : (n1, n2, ..., np−1, n − k) partition. Theith partition of

sizeni is assigned to theith user and the last partition constitutes of the redundancysymbols.

Since the considered codes are linear, we assume that the allzero codeword is transmitted. If a

codeword of symbol weighth and of weightwj in the jth partition is erroneously decoded, a

fraction wj

nj
of the jth user’s symbols are received in error. It follows that thejth user’s symbol

error probability could be written as (cf. (87))

Φj
s(γ) = Φc

(

Qj(nj, h), γ
)

, (83)

where

Qj(nj, h) =

nj
∑

w=1

w

nj

Oj(w, h) (84)
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andOj(w, h) is the jth partition input output weight enumerator derived from the PWE as in

(11). The following theorem gives an important result regarding the multiuser error probability

of MDS (RS) codes:

Theorem 22: If a systematic linear MDS code is shared among different users, all users have

the same unconditional symbol error probability regardless of the sizes of the partitions assigned

to them.

Proof: The SEP of a certain userj, whose partition’s size isnj, is given by (83). It

is sufficient to show that for two different usersi and j with partitions of sizesni and nj

respectively, such thatni 6= nj, Qj(nj, h) = Qi(ni, h). From Theorem (8), it follows that for an

arbitrary partition of sizenj, Qj(nj, h) = h
n
E(h). Since this result does not depend on the size

of the partition nor on the orientation of the coordinates with respect to it, we are done.

Now, consider the case when the binary image of an RS code is transmitted and the decoder is

a bit-level hard-decision or soft-decision decoder. The systematic coordinates will be partitioned

among different users where the partitions on the bit level will follow from the partitions on the

symbol level (e.g. Fig. 11). In case of a bit-level decoder, the bit error probability of thejth

user can be given by

Φj
b(γ) = Φc

(

Q̃j(mnj, h), γ
)

, (85)

such that

Q̃j(mnj, h) =

mnj
∑

w=1

w

mnj

Õj(w, h), (86)

where Õj(w, h) is the average binary input output weight enumerator of thejth user and
w

mnj
Õj(w, h) is the fraction of thejth user’s bits received in error when a codeword of total

weighth and weightw in thejth partition is erroneously decoded given that the all zero codeword

was transmitted.

Theorem 23: For systematic MDS linear codes, the average unconditional bit error probability

of all users is the same regardless of the number of symbols ineach partition or the orientation

of the partition assigned to them.

Proof: Let usersi and j be assigned two different partitions ofC with different sizesni

andnj. Now consider the binary images of these partitions. Equations (79) and (85) imply that

both users have the same average bit error probability.
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Now that we have shown that the unconditional symbol and bit error probability are the same

for all partitions (users) regardless of their size, we can ask questions about the conditional error

probability. Using the results in this paper, one could answer interesting questions about the

conditional multiuser error probability. Since the code islinear, we will assume that the all-zero

codeword is transmitted. For example, the conditional CEP given that for any codeword no more

than a fractionp of the jth user’s symbols are ever received in error is given by2

Φc(γ) = Φc





⌊pnj⌋
∑

wj=0

Oj(wj, h), γ



 (87)

where a hard-decision symbol level decoder with a decoding radiusτ was assumed. We only

considered error events due to codewords whose weight in thejth partition is not greater thanpnj.

Recall that in the unconditional case
∑⌊pnj⌋

wj=0O
j(wj, h) is replaced byE(h) =

∑nj

wj= 0O
j(wj, h).

Define the following weight enumerator

Oi,j(wi, wj, h)
∆
= |{c ∈ C : (W (c[Ni]) = wi) ∧ (W (c[Nj]) = wj) ∧ (W(c) = h)}|. (88)

The conditional CEP given that a codeword error results in allith user’s symbols received

correctly while alljth user’s symbols received erroneously is given by

Φc(γ) = Φc

(

n
∑

h=d

Oi,j(0, nj, h), γ

)

(89)

where assuming that the all-zero codeword is transmitted weonly considered codewords with a

zero weight in theith partition and a full weight in thejth partition.

In general, for ap-partition of the coordinates, letP andQ be the set of users (partitions)

whose symbols are all received correctly and erroneously, respectively, in case of a codeword

error. LetO be the set of users with no condition on their error probability. The conditional

error probability is calculated by considering only the codewords which have a full weight for

the coordinates inQ and a zero weight for the coordinates inP. By considering only such

combinations in the sum of (5), the conditional PWGF is derived as

P(X1,X2, ...,Xp) =
∑

i∈∆

ni
∑

wi=0

A(w1, w2, ..., wp)Xw1

1 Xw2

2 ...Xwp

p

∣

∣

∣

∣

∣

∣

wi = 0, if i ∈ P;

wi = ni, if i ∈ Q.
. (90)

2Conditional functions will have have the same notation as the unconditional ones except for an underbar.
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Fig. 12. Conditional multiuser decoder error probability of the Berlekamp-Massey decoder of Example 4. The unconditional

CEP and SEP are labeled ‘CEP’ and ‘SEP’ respectively. The conditional SEP of the third user for cases 1, 2 and 3 are labeled

‘SEP|(0, 0)’, ‘SEP|(0, 1)’ and ‘SEP|(1, 1, )’ respectively.

The conditional symbol error probability of thejth user is

Φj
s(γ) = Φc

(

Qj(k, h), γ
)

, (91)

whereQj(k, h) =
∑nj

w=1
w
nj
Oj(w, h) andOj(w, h) is the conditional IOWE of thejth partition

and is derived fromP(X1,X2, ...,Xp) (see (10)). For example, if the first partition contains header

information, then the conditional symbol error probability of the ith user given that the header

is received correctly can be calculated by

Φj
s(γ) = Φc

(

nj
∑

w=1

w

nj

O1,j(0, w, h), γ

)

. (92)

Similarly, for bit-level decoding of the code’s binary image, Q̃j(mk, h) will be derived from

P̃(X1,X2, ...,Xp). If the users inP andQ have zero and one bit error probability respectively,

the conditional binary PWGF only takes into account such codewords that have a zero binary
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weight for the partitions inP and a full binary Hamming weight for the partitions inQ. The

conditional BEP of thejth user follows by the substitutioñE(h) := Q̃j(mk, h) in (80).

Example 4:Consider an systematic(15, 11, 5) RS code and a partitionT = (3, 3, 5, 4) of

its coordinates where the last partition has the redundancysymbols and each of the first three

partitions is assigned to a different user. The first partition may be assigned to be the header. Let

the RS code be transmitted over an AWGN channel and decoded by a hard-decision bounded

minimum distance (Berlekamp-Massey) decoder. From (71), (71), (87) and Theorem 22 it follows

that the CEP and SEP of any user is equal to the overall SEP and can be expressed as, respectively,

Φc(γ) =
15
∑

h=5

E(h)
τ
∑

t=0

P h
t (γ),

Φs(γ) =
15
∑

h=5

h

15
E(h)

τ
∑

t=0

P h
t ,

such thatE(h) is the weight enumerator as given by (13). The partition weight generating

function is given by

P(W ,X ,Y ,Z) =
3
∑

w1=0

3
∑

w2=0

5
∑

w3=0

4
∑

w4=0

AT (w1, w2, w3, w4)Ww1Xw2Yw3Zw4 ,

and the IOWGF of the third user isO3(X ,Y) = P(X ,X ,XY ,X ). We will now calculate the

conditional symbol error probability of the third user under different scenarios.

Case 1: The first two users have a zero error probability.Thus the PWGF conditioned on that

the first two partitions have zero weight is

P(0,0)(Y ,Z) =
5
∑

w3=0

4
∑

w4=0

AT (0, 0, w3, w4)Yw3Zw4 .

The conditional IOWGF of the3rd user is

O
3

(0,0)
(X ,Y) = P(0,0)(XY ,Y) =

∑

w

∑

h

O1,2,3(0, 0, w, h)XwYh,

It follows that the SEP of the3rd user conditioned on that the first two users have a zero error

probability is

Φ3
s(γ) =

n
∑

h=d

5
∑

w=1

w

5
O1,2,3(0, 0, w, j)

τ
∑

t=0

P h
t .
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Case 2: The first and second users have an SEP of zero and one respectively.The corresponding

conditional PWGF is

P(0,1)(X ,Y ,Z) =
5
∑

w3=0

4
∑

w4=0

AT (0, 3, w3, w4)X 3Yw3Zw4 .

The corresponding IOWGF of the3rd user is

O
3
(0,1)

(X ,Y) = P(0,1)(Y ,XY ,Y) =
∑

w

∑

h

O1,2,3(0, 3, w, h)XwYh.

To calculate the conditional SEP, we proceed as in the previous case.

Case 3: Both the first and second users have an SEP of one.The conditional SEP of the third

user is

Φ3
s(γ) =

n
∑

h=d

5
∑

w=1

w

5
O1,2,3(3, 3, w, j)

τ
∑

t=0

P h
t .

whereO1,2,3(3, 3, w, h) is the coefficient ofXwYh in O
3

(1,1)
(X ,Y) = P(1,1)(Y ,Y ,XY ,Y) and

P(1,1)(W ,X ,Y ,Z) =
5
∑

w3=0

4
∑

w4=0

AT (3, 3, w3, w4)W3X 3Yw3Zw4 .

For an AWGN channel and a Berlekamp-Massey decoder, the codeword error probability, symbol

error probability and the conditional symbol error probabilities for the third user for the three

cases are plotted in Fig. 12. It is observed that the conditional error probability of the third user

given that other users have an error probability of one (Case 3) is the lowest compared to the

other two cases. The reason is that in Case 3, one only considers errors due to the received word

falling closer to codewords at a much larger Hamming distance from the transmitted one, and

such an event happens with relatively lower probability. �

The same technique can be used to bound the performance of other symbol based decoders,

such as the hard-decision maximum likelihood decoder, under various scenarios. Next we con-

sider analyzing the multiuser error probability when the decoder is a bit level decoder.

Example 5:Consider the(15, 11, 5) code overF16 partitioned as in Example 4 and an SD

bit-level ML decoder is employed at the output of an AWGN channel. The unconditional CEP

and BEP are given by, respectively,

Φc

(

Ẽ(h), γ
)

≤ min
α

{

α
∑

h=5

Ẽ(h)J (γ, h) + G(γ, α)

}

Φb(γ) = min
α

{

α
∑

h=5

h

60
Ẽ(h)J (γ, h) + G(γ, α)

}

,
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Fig. 13. Conditional multiuser error probability of the bit-level soft-decision maximum-likelihood decoder of Example 5. The

conditional bit error probability of cases 1, 2 and 3 are labeled ‘BEP|(0, 0), ‘BEP|(0, 1)’ and ‘BEP|(1, 1)’. The bounds on the

unconditional CEP and BEP labeled ‘CEP TSB’ and ‘BEP TSB’ are compared with the corresponding simulations labeled ‘CEP

Sim’ and ‘BEP Sim’respectively.

whereJ (γ, h) andG(γ, α) will be determined by the Poltyrev tangential sphere bound [29]. We

will now discuss the conditional bit error probability for different cases (as in Example 4):

Case 1: The first two users have a zero error probability.The average binary IOWE of the third

user given the first two partitions have a zero weight is

Õ
3

(0,0)
(X ,Y) = P̃(0,0)(XY ,Y) =

60
∑

h=0

20
∑

w=0

Õ
1,2,3

(0, 0, w, h)XwYh,

such thatP̃(0,0)(X ,Y) = P(0,0)(F (X ), F (Y)), and F (X ) is as defined in Theorem 19. The

conditional BEP of the third user is given by

Φ3
b(γ) = min

α

{

α
∑

h=5

20
∑

w=1

w

20
Õ

1,2,3
(0, 0, w, h)J (γ, h) + G(γ, α)

}

.
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Case 2: The first and second users have a zero and one bit error probability respectively.Let

P̃(W ,X ,Y ,Z) = P(F (W), F (X ), F (Y), F (Z)) be the average binary PWGF then

P̃(0,1)(X ,Y ,Z) = Coeff
(

P̃(W ,X ,Y ,Z),W0X 12
)

X 12

and the conditional IOWE of the third user is

Õ
1,2,3

(0, 12, w, h) = Coeff
(

P̃(0,1)(Y ,XY ,Y),XwYh
)

.

The conditional BEP is then given by

Φ3
b(γ) = min

α

{

α
∑

h=5

20
∑

w=1

w

20
Õ

1,2,3
(0, 12, w, h)J (γ, h) + G(γ, α)

}

.

Case 3: The average BEP of the first two users is one.In this case, the conditional PWGF can

be calculated by

P̃(1,1)(W ,X ,Y ,Z) = Coeff
(

P̃(W ,X ,Y ,Z),W12X 12
)

W12X 12.

One can then proceed to calculate the conditional IOWE and BPE of the third user by

Õ
1,2,3

(12, 12, w, h) = Coeff
(

P̃(1,1)(Y ,Y ,XY ,Y),XwYh
)

Φ3
b(γ) = min

α

{

α
∑

h=5

20
∑

w=1

w

20
Õ

1,2,3
(12, 12, w, h)J (γ, h) + G(γ, α)

}

.

In Fig. 13, the TSB on the codeword and bit error probability are plotted and compared to

simulations of the ML decoder for a specific basis representation of the RS code. The conditional

BEP of the third user is plotted for cases1, 2 and3 . As in the previous example, it is observed

that the conditional error probability of specific users given that some users have a high error

probability decreases with the number of such users. �

Example 6:Consider an systematic(31, 15, 17) RS code overF32 and a partitionT =

(3, 6, 6, 16) of its coordinates where the last partition has the redundancy symbols and each

of the first three partitions is assigned to a different user.The first partition may be assigned to

be the header. Let the binary image of a RS code be transmitted over an AWGN channel and

decoded by a hard-decision symbol-based maximum likelihood decoder decoder. We used the

upper bound by El-Khamyet. al to bound the performance of the HD-ML decoder overF32

[33]. The CEP, SEP and conditional SEP are of the form of (70), (78) and (91). We consider

three cases:
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Fig. 14. Conditional multiuser error probability of the symbol-level hard-decision maximum-likelihood decoder of the(31, 15)

RS overF32 of Example 6. The unconditional CEP and SEP are plotted (Case 1). The conditional SEP of Cases 2 and 3 are

labeled SEP|(0, X) and SEP|(0, 0) respectively.

Case 1:The unconditional error probability of the third user.

Case 2:The symbol error probability of the third user given that thefirst user (header) is received

correctly.

Case 3:The symbol error probability of the third user given that thefirst two users have their

symbols received correctly.

The numerical results are shown in Fig. 14. We observe that the unconditional CEP and SEP are

very close. As more and more conditions are imposed, the conditional error probability of the

third user decreases.Case 2, is of special interest, since in some cases the header will contain

the routing information and it will be essential to estimatethe error probability in case the

information is routed correctly. �
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XI. CONCLUSION

An averaged binary weight enumerator for RS codes is derived and shown to closely estimate

an exact one for a specific basis representation. Moreover, it has been shown that as the code

length and the field size tend to infinity, the weight enumerator of the ensemble of binary images

of Reed-Solomon codes approach that of a random code with the same dimensions. Bounds on

the average binary minimum distance were derived. It was thus shown that on average, the

ensemble of binary images of RS codes asymptotically satisfythe GV bound. The question

remains open, if there exists a specific code in the ensemble that asymptotically satisfies the

GV bound. Aided with the ensemble weight enumerator, one canderive tight bounds on the

performance of bit-level maximum likelihood decoders. By comparing with simulations, it has

been shown, that at least for the(15, 11) RS code, the tangential sphere bound when combined

with the ensemble weight enumerator is tight. When proposingnew algorithms for decoding

RS codes, it is not only important to compare its performance with other algorithms in the

literature, but it is also more important to compare its performance with that of other maximum

likelihood decoders using the results in this paper. A closed form formula for the partition weight

enumerator of maximum distance separable (MDS) codes is derived. The average PWE is derived

for the binary image of MDS codes defined over a field of characteristic two. We show that for

MDS codes, all the coordinates have the same weight in the subcode composed of codewords

with equal weight. We prove that a code has this property iff its dual code has this property.

Consequently, it is shown that the first order Reed Muller codesand the extended Hamming

codes have this property. A common approximation used to evaluate the symbol and bit error

probabilities is thus shown to be exact for MDS codes. These results are employed to study

the error probability when a Reed-Solomon code is used in a network scenario and is shared

among different users. We show that MDS (e.g. RS) codes have many attractive features which

makes their use in networks attractive. It is proved that theunconditional error probability of

all the users will be the same regardless of the size of their partitions. As for the conditional

error probabilities, they can be a useful measure in determining the performance of a user, if its

performance depends on the correct transmission of a certain packet or header.
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