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Abstract

MDS (e.g. Reed-Solomon) codes have many desirable prepeshich make them the code of
choice in network scenarios and distributed coding schemasaverage binary weight enumerator
of Reed-Solomon (RS) codes is derived assuming a binomgtilalition of the bits in a non-zero
symbol. Lower bounds on the average binary minimum distasfcthe ensemble of binary images
of a Reed-Solomon code are shown. The ensemble of binaryesnafjthe RS code is shown to
be, on average, asymptotically good. The performance debi#l Reed-Solomon maximum likelihood
decoders is studied. Given an arbitrary partition of therdimates of a code, we introduce the partition
weight enumerator which enumerates the codewords with tainanveight profile in the partitions. A
closed form formula of the partition weight enumerator ofxinaum distance separable (MDS) codes
is derived. Using this result, some properties of MDS codesdéscussed. In particular, we show that
all coordinates have the same weight within the subcodesmdtant weight codewords. The results are
extended for the ensemble of binary images of MDS codes dkfimer finite fields of characteristic

two. The error probability of Reed-Solomon codes in multiusetworks is then studied.
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I. INTRODUCTION AND OQUTLINE

Reed-Solomon (RS) codes are the most popular maximum distapagable (MDS) codes.
For any linear(n, k,d) code (of lengthn, dimensionk and minimum distancel) over any
field, maximum distance separable (MDS) codes have the mamipossible minimum distance
d=n—k+1[3]. MDS codes have many other desirable properties whictletthem the code
of choice in many communication systems. MDS codes have riygepty that anyt codeword
coordinates can be considered as the information symbdassiystematic codeword and ahy
coordinates can be used to recover the information symbtdseover, punctured MDS codes
are also MDS codes. Such properties made MDS codes a nahwiaedn Automatic-Repeat-
Request (ARQ) communication systems (c.f. [4]). MDS codesadse used in the design of
multicast network codes [5]. Reed Solomon codes are one omtis important linear block
codes and have been deployed in a wide range of applicabpngl@ximum-likelihood decoding
of linear block codes is well-known to be NP-hard [7]. The Gawami-Sudan (GS) algorithm
was the first polynomial time hard-decision decoding athomifor Reed-Solomon codes capable
of correcting beyond half-the-minimum distance of the c{#le Moreover, the invention of the
GS algorithm has spurred a significant amount of researcimgiat better soft-decision decoding
algorithms for Reed-Solomon codes (c.f. [9], [10], [11], 2R 3]).

Suppose a Reed-Solomon (RS) code is defined over a finite fielthohcteristic two, then it is
a common practice to send its binary image over the chamméct, the binary image has a large
burst-error correction capability which is one of the ma#asons behind the ubiquitous use of
RS codes. The decoder can either be a bit-level decoder, wkiobdes the RS code as a binary
code, or a symbol level decoder, which treats the received a® a vector in the finite field. It is
often the case that hard-decision decoders, which do noé ms& of the reliability information
from the channel, are symbol based decoders. Such harsialeciecoders, as the Berlekamp-
Massey algorithm and the Guruswami-Sudan algorithm, Gsuglerate on the symbol level
to make use of the nice algebraic properties of RS codes.dgoftion decoders make use of
the channel reliability information. In case the code istsarer a binary input channel, then
the decoder is often a bit-level decoder. With the recenaades in soft-decision decoding of
RS codes, it was vital to benchmark the performance of suabritighs against the optimum

soft-decision maximum likelihood decoder.



A significant amount of research has been recently devotdthding tight bounds on the
performance of linear codes under maximume-likelihood déap [14]. The maximum-likelihood
performance of linear codes requires the knowledge of thightenumerator. Unfortunately,
knowing the weight enumerator of the binary images of RS cosleery hard. Some attempts
have been successful in giving the binary weight enumerfatoparticular realizations of RS
codes [15]. Other researchers considered enumeratingottevords by the number of symbols
of each kind in each codeword [16]. The average binary weeghimerators of a class of
generalized Reed-Solomon codes, derived from an original d®i® either by using a different
basis to expand each column in the RS generator matrix intanarybirepresentation or by
multiplying each column in the RS generator matrix by some-neno element in the field,
were also studied [17].

Consider a network scenario, where users in a certain cleatercommunicate in an error
free manner. These users would like to communicate withhemnctet of users in another cluster
over a noisy channel. If the users in the first cluster are mitéid power they will not be
able to reliably transmit their information to the users e tother cluster. One solution is for
the users to transmit their information to a local base @tatwhich will then group their data
symbols, encode them with a channel code and transmit thenaod to the other set of users.
(See Fig. 1.) In other words, each codeword will be partégbmmong more than one user or
application. After decoding at the receiving base stattbe, information will be routed to the
desired users. One other advantage of sharing a codewonagadgiifferent users is the expected
improvement in the code performance as its length incredsdsMoreover, the recent results
on the capacity of wireless networks suggest that netwoiks avsmaller number of users and
clustered networks are more likely to find acceptance [18jnt) the results in this paper, we
will be able to analyze the performance of different usersuoh a scenario.

This paper is organized as follows:

In Section Il, we introduce a generalized weight enumeratgrich we call the partition
weight enumerator (PWE). Given a partition of the coordisatea code, the PWE enumerates
the codewords with a certain weight profile in the partitiosir main result is a simple closed-
form expression for the PWE of an arbitrary MDS, e.g., Reea®oh, code (Section lil,
Theorem 6). This generalizes the results of Kasami et al. $20the split weight enumerator

of RS codes. The PWE is a very useful tool in proving some of the algebraic properties of



Information Redundancy

(0)00:000-0:0

- ((9))

Fig. 1. A multiuser scenario where users within the same cluster transnritirtf@mation to a local base station, which, in
turn, groups their symbols into one data word and transmits it, after channeding, over a noisy channel to the users in

another cluster.

MDS codes. We then proceed in Section IV to derive a strongmsstny property for MDS codes
(Theorem 8) which allows us to obtain improved bounds on gmab®I| error probability for
RS codes. We show that an approximation widely used to esithatsymbol error probability
of linear codes is exact for MDS codes. We take this oppantuioi discuss other codes which
also have this property.

One of the main motivations behind this paper was the folgwguestion:
How can one analyze the maximume-likelihood performancéheftiinary images of RS codes?
In Section V, we attempt to answer this question by studyimg weight enumerator of the
ensemble of binary images of Reed Solomon codes. In fact we #iett the ensemble weight
enumerator approaches that of a random code with the sanmensiion. It is also well known
that the minimum distance of a linear code provides a lot gfgint about its performance.
This motivated us to study the minimum distance of the enserob binary images of RS
codes (Section VI). We show that the ensemble has an asyiogdpigood minimum distance.
Given this result, one can search for good codes within tlserable of binary images of Reed
Solomon codes. We then attempt to answer the above questiection VII, where we analyze
the performance of soft and hard-decision maximum likelthdecoding of the binary images of
the RS code. We show that the bounds developed using the geesnin this paper are indeed
tight.

As we have mentioned, the ensemble average weight enumrgeddtthe binary images of RS



codes have been rendered useful in analyzing their perfazenale also study the case when
the binary images of an Reed-Solomon is partitioned amorigrdiit users or applications. In
Section VIII, we show that the ensemble also has a similamsgtry property which becomes
useful when analyzing its bit error probability.

As an application to the results in this paper, we study, ictiSe IX, the codeword, symbol
and bit error probabilities of various Reed-Solomon codeoders in a generalized setting. In
Section X, we prove that if systematic MDS (e.g. RS) codes aex un a multiuser setting,
the unconditional symbol or bit error probabilities of alietusers will be the same regardless
of the size of the partitions assigned to them. We also censitlvarious network scenarios
where the Reed-Solomon code is the channel code of choicelsé/@@ceed to show how one
can analyze the error probability of a certain user givenesgonditions on the performance of
other users. In Section Xl, we conclude the paper and giveesiosights about the results in

this paper.

II. WEIGHT ENUMERATORS

We begin by generalizing the notion of Hamming weight. Egtdenote the vectors of length
n over the finite field ofy elementsF,. A linear codeC of lengthn defined ovell, is a linear
subspace of;. Let N = {1,2,...,n} be the coordinate set ¢ SupposeV is partitioned into
p disjoint subsetsVy, ..., N, with |N;| = n;, fori = 1,...,p . We stress tha} ?_, n; = n. The
elements of the séY; C N are given byN; = {N;(1), N;(2), ..., N;(n;) }. Letv = (vq, vs, ..., v,)
be a vector inf”, then theith partition of v is the vectorv[N;] = (v, (1), Vn,(2), - UNi(ny) ) -

Note that the number of ways a setmofcoordinates could be partitioned inte, partitions

of size of p;, my partitions of sizep, andm, of size p,, i.e. the total number of partitions is

Yoy my,andn=>""_ m,p,), is
n!

[T (psh)mim,!”
wherez! is the factorial of: and the multinomial coefficient is normalized by the fadt@r_, m;!

(1)

as we do not distinguish between partitions of the same size.
Denoting an(n, ..., n,) partition by 7', the 7-weight profile of a vectow € F} is defined

as Wr(v) = (wy,...,w,), Wherew; is the Hamming weight ofv restricted toN;, i.e., the

Throughout this paper, the cardinality of a §ewill be denoted by|T|.



Fig. 2. The figure shows two different vectorsE@ and two different7 : (2, 3, 2) partitions are applied. The weight profile of

the vectors i9Vr (v) = (1, 3,0) where the zero and non-zero symbols are represented by white arkdchieles respectively.

weight of the vectow(NN;). (For an example see Fig. 2.) Given a catef lengthn, the weight
enumerator of” is
Ee(w) = [{ec € C: W(c) = w}, (2)
whereW(c) is the Hamming weight ot. The weight generating function (WGF) 6fis the
polynomial .
Ee(X) = Ee(h)X", 3
h=0

where the coefficient oft” is the number of codewords with weight
Ec(h) = Coeff (Ec(X), X"). (4)

(The subscrip€ may be dropped when there is no ambiguity about the code.)Wogeneralize
the notion of code weight enumerator. For @R, no, ..., n,) partition 7 of the n coordinates of

C, the T-weight enumerator of enumerates the codewords with a weight profile, . . ., w,)
AZ(wy, ..., w,) = [{c €C: Wr(c) = (wi,...,wp,)}.

The partition weight generating functioPWGF) is given by the multivariate polynomial

ni np
PT(Xy, o X)) = ) > AT (wy, o w,) XX (5)

w1=0 wp=0
For the special case of two partitiongy & 2), A7 (w;,w,) is termed thesplit weight

enumeratorin the literature [3]. Thenput-redundancy weight enumeratiRWE) R(w;, ws) IS



the number of codewords with input weight (weight of the mfation vector)y; and redundancy
weight we. For a systematic code, if is an (k,n — k) partition such that the first partition
constitutes of the coordinates of the information symbtiien R(w:,w,) = A7 (wy,w,). The
input-output weight enumeratdtOWE) O(w, h) enumerates the codewords of total Hamming
weight A and input weightw. Assuming that the first partition constitutes of the infatran

symbols, therO(w, h) = R(w, h — w). For an(k,n — k) partition 7, it is straight forward that

E(h) =Y AT(w,h—w)=>_ O(w,h). (6)

It is useful to know the IOWE and IRWE of a code when studying itselror probability (e.g.
[21]). The input-output weight generating functipf(X', )), and theinput-redundancy weight

generating functionR(X’,)), of an (n, k) code are defined to be respectively,

k n

OX,Y) = > > O(wh)x"Y", (7)
w;O h:?k

R(X,Y) = > > R(wy,wy) X Y. (8)

w1=0 w2=0
Since every non-zero symbol in the redundancy part of the @aohtributes to both its output

and redundancy weight®(X,Y) andO(X,)) are related by the following transformations
X

For a systematic code, let thgh partition constitute of information symbols, then tlit
IOWE enumerates the codewords with a Hamming weighin the jth partition and a total
weight h,

O’ (w,h) = [{c € C: (W (c[N;]) = w) A (W(e) =)} |, (10)

and is derived from the PWGF by

/(X Y) =PT(V, Y, XY, V) = > > O (w, h)x"Y" (11)

w=0 h=0
where the invariantst;s in PZ (X, Xs, ..., X,) are substituted by

{?Q:y, V i#j (12)

X, = XY, i=j.



[11. PARTITION WEIGHT ENUMERATOR OFMDS CODES

For an(n, k, d) MDS code ovefF,, it is well know that the minimum distance ds=n—k+1
[22] and that the weight distribution is given by [23, Theor@5.7]

wo = (1) (v 13)

=\
— (?)(q—l)i(—l)j<i;1)qijd, (14)

for weights: > d. In the next theorem, we show that for an arbitrary partittbthe coordinates
of an MDS code, and for any number of partitions, the partitveeight enumerator of MDS
codes admits a closed form formula.

Theorem 1: For ann, k,d) MDS codeC defined ovetf,, let 7 define ap-partition of the
coordinates of’ into p mutually exclusive subset;, Ns,..., N,,, such thatV; UN,...UN, = N
where N = {1,2,...,n} and |N;| = n;. Thep-partition weight enumerator is given by

(B)-CE )L ()

j2=0

_ Jp
jp=d*25:% Jz
Proof: Fori=1,2,.p, let R; be a subset ofV;. Define S(c) to be the support set of the

codewordc, i.e. the set of indices of the non-zero elements. Define
p
F(Ry, Roy o, Ry) S |c€Ci{S(e)NNi} = R; Vil =|ceC:{S(c)=|JR} (15
=1

to be the number of codewords which are exactly non-zero ersétsR;. From the definition
of the p-partition weight enumerator, it follows that

AT(wl,wg,...,wp) = Z Z Z f(Rl,RQ,...,Rp). (16)

ngNl RQQN2 Rpng
|R1|=w1 |R2|=w2 |Rp|=wp

Define the mutually exclusive subset,C N;, i = 1,2,..,p and let
9081, 82, S) = > Y Y f(Ri Re. o Ry) (17)
R1CS1 R2CS2  RpCS)
to be the number of codewords which are always zero on the¢etsS; (See Fig. 3.). It
follows from the MDS property of the code that if onty symbols of an(n, k) MDS code are



allowed to be non-zero, the — m zero symbols could be taken as information symbols, then

the dimension of the resulting subcodekis- n + m and

g{o1, 02, ..., = p
P TS > TP |8 > d,
Successively applying Bbius Inversion [23, Theorem 25.1] to (17), we get
f(Rh R27 ceey Rp) = Z u(Sly Rl) Z u(Sp’ Rp)g(Slv 527 ceey Sp)
S1CRy Sp,CRy
A p
:H (Z N(SHRZ)) g(‘Sl?SQa?Sp)a (19)
i=1 \S;CR;
where
(—DEISL S C R,
u(S, R) = . (20)
0, otherwise.
Substituting (19) in (16),
p—1
AT (wy, wo, ...y w,) = > (—plEEsGL8)
=1 |R1;|§Ni SiCR;
Ri|=w;

- : <(Z> w;) (f) (_1)ww'> Gp(B), (21)

J

such that3 = S°*~ |S;| and by invoking (18)

Go(B) = Y D (—1EITg(S,, 8, S,)

d—p-1
np) (wp> wp—z (wp) w —i i+B—d+1
= , + g
(U}p < ; ¢ zgﬁ

- () 5 (") -y (22)

P/ i=d—p
The last equality follows from the fact that”, (7“;)(—1)“’*3' = (1—1)* = 0. Substituting (19)
in (16), the theorem follows. [ |

For the special case of two partitions, the split weight eexator A, ,,, (11, n2) iS given in

the following corollary.
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Fig. 3. The code is always zero on the coordinates in the SetsS; for i = 1,2, ..., p.

Corollary 2: Let7 be an(ny,ns) partition of an(n, k, d) MDS codeC, then the split weight

enumerator otC is
n\ (n2) = (w o = (w2 i i
Ao = (00 (1) 35 ()0 3 () ammen -,

From Theorem 1, it follows that the PWE of MDS codes does noeddpmn the orientation
of the coordinates with respect to the partitions but onlytlo® partitions’ sizes and weights
(see (17)). It thus intuitive that the ratio &’ (wy, ws, ...,w,) to E(w) wherew = Y7 w; is
the probability that thev nonzero symbols are distributed among the partitions wiih@arofile
(w1, ws, ...,w,). Next we calculate this probability for the special casepef 2 and we show
that the partition weight enumerator admits to a simplesetbform formula.

Theorem 3: LetZ be an(ni,ny) partition for an (n, k,d) MDS coden = n; + ns, then
() (i)

(’UJ1 jlwg) '

Proof: From Corollary 2, the split weight enumerator is

AT (1), ) — (Z) (Z) 3 (“’.1)<—1>W1—j 3 (?)(—Dwriw”j—dﬂ ~1). (23)

7=0 J i=d—j

AT(wl, U)g) = E(w1 + UJ2>

Doing a change of variables, = i + j, we get

T )1 [l ol ey

Jj=0 a=max(d,j)

By changing the order of summation and summing over the sagierre

w1tw2 min(c,wi)
(w1, wa) w1 )\, > (g )(—1) > i Na

a=d 7=0

() e oner ()

a=wy+1 7=0
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By doing the change of variablgs= o — w, in the second summation

w1 +ws2
AT(wl,wQ) — (Zl) (ZQ) Z (qafdﬂ . 1)(_1)w1+w27a (w1 l—wQ)
1 2

a=d

(@) Ee w5 ()0 5-)

Since 5 — j is always positive it follows that the second term in the tighnd side is always

zero and by lettinge = wy + wy

e = () (22) 32 () v - (24)

By comparing with (13), the result follows. |
Corollary 4: The IOWE of a systematic MDS cod&,uw, h), for h > d, is given by

() G
()

()BT

J %

By observing (6) and defining (w) to be

ww =3 (V) 3 (Ve e

=0 \J i=d—j
we have an interesting identity:
k
k\ (n—k
26
0% () (o) &

k
k n—=k
;w(w) (w) <h B w) = >
where (;) = 1 (£) °8) andw(0) = L () (=)~ (g~ - ).
Corollary 5: For an(n, k,d) MDS codeC, the number of codewords which are exactly nonzero

O(w,h) = R(w,h—w)=E(h)

<

at a fixed subset of coordinates of cardinalityand are zero at the remaininf coordinates is

Proof: Let 7 be the implied(h,n — h) partition, then the required number of codewords
is A7 (h,0). The result follows by applying Theorem 3. [ |
This result illustrates how the partition weight enumeraibMDS codes is independent of
the orientation of the partitions. Since there #t¢:) codewords of weight and there ard})
distinct ways to choose the zero coordinates, then in such a case one expects that #rat th

are EE(’S codewords for any choice of the coordinates.
h
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By following the same lines of proof, the result of Theorem B ba generalized to an arbitrary
number of partitions as in the following theorem:
Theorem 6: For ann, k,d) MDS codeC with an (ny,ns, ...,n,) partition of its coordinates

the p-partition weight enumerator is given by

() ) (o)
G

AT (wy, wa, ..., wy) = E(w)

wherew =3 w; and E(w) = |[{c € C : W(e) = w}|.

We give numerical examples of PWEs using Theorem 1 and The6rdvor these examples,
the PWGFs were also verified numerically by generating(#8,5) RS code.

Example 1: The PWGF for the1, 1, 2, 3) partition of the coordinates of th&, 3,5) RS code

over Fy is
PV, X,),2Z) =14 21VXV?Z + 42VXYZ* + 21VY? 2% + 21X)* 22 + 63V X Y* 22
+TVXZ? + 14VYZ? + 14XV Z? + 2VXYZ° + 7Y* 2% + 21v)° 23
+21XV? 723 + 21TV XY 23,
It could be checked that the sum of the coefficients is thd tmianber of codewords?. For

this example, one can also verify the PWGF numerically. O

Example 2:The (3,2, 2) 3-partition enumerator of thér,5,3) RS code overry is
P(X, Y, Z) =1+ TX° + 42X%Y + T0X%Y + 21X Y* + 105X%Y? + 2661 °)?
+42X%Z + T0X°Z + 84XV Z + 420X*V Z + 1064X° Y Z + 14V Z
+ 210X Y%7 + 1596 X2 Y% Z + 3668 X3 Y? Z + 21X 2% + 10512 Z*
+266X3 2% + 14V 2% + 210X Y Z? + 1596 X?Y 2% 4 3668X13) Z*
+ 35222 + 798X Y2 2% + 5502X2 Y Z2 + 12873Xx3)% 22
It can also be verified tha®(1,1,1) = 8. O
Theorem 6 implies that the distribution of the(w) non-zero symbols within the codewords

of the same Hamming weight is uniform among the partitions. This issue will be addrdsse

in more detail in the following section.
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IV. A RELATIONSHIP BETWEENCOORDINATE WEIGHT AND THE CODEWORD WEIGHT

In this section, we will show that for MDS codes, one can dethe coordinate weight from
the codeword weight. We will discuss whether other lineatesoalso have this property.

DefineC;, to be the subcode af with codewords of Hamming weiglit;
Ch 2 {ceC:W(c)=h}. (27)

The following lemma calculates the total weight of any caoate in the set,,.
Lemma 7: For arnn, k,d) MDS codeC the total Hamming weight of any coordinate, summed
over the subcod€,, is equal to2E(h).

Proof: Let 7 be an(1,n — 1) partition of C, where the coordinate of choice forms the
partition of size one. By Theorem 3, it follows that for any lsugartition, the number of
codewords ofC which are non-zero in this coordinate and have a total wdighte. a weight
profile (1,h — 1), is
(ir) h

—~FE(h) = —E(h). (28)
(i) n

By observing thatd7 (1, — 1) is the total weight of the chosen coordinate over codewarnds i

AT(1,h—1) =

C;, and that the choice of that coordinate was arbitrary, we areed [ |

This means that the codewords of the subcGgewhen arranged as the rows of an array,
result in a design where the Hamming weight of each row iand the Hamming weight of
each column is*E(h). Furthermore, the Hamming distance between any two rows lisaat
d=n—k -+ 1. We are now ready to prove an important property of MDS codes:

Theorem 8: For ann, k,d) MDS codeC, the ratio of the total weight of any coordinates
of C;, to the total weight of’,, is *. If the s coordinates are ‘input’ coordinates, then

S w O(w, h) — h E(h)

S n

for any Hamming weight.

Proof: By Lemma 7, the total weight of any coordinate @f is (h/n)E(h). The total
weight of anys coordinates ofC,, is the sum of the weights of the individual coordinates,
s(h/n)E(h). By observing that the weight of the coordinates can be also expressed in terms
of the IOWE by}’ _, wO(w, h) andhE(h) is the total weight ofC;, the theorem follows.m

As a side result, we have proven this identity (c.f. (26)):
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Corollary 9: Let¥(w) be defined as in (25) then

s—1 n—s s—1 n—s
zw:\ll(w)(w_ 1) <h—w) B \11(0)%: (w— 1> (h—w)'
Proof: For an7 : (s,n — s) partition of the coordinates, it follows from Theorem 8 that
S L 2AT(w,h—w) = 2E(h) = (7-])¥(0). Also by Corollary 2,5 | 2AT (w,h — w) =

w=1 s h—1
S (G2 (722) Y (w). The proof follows from the identity—1) = >, (32)) (7-2). u

Definition 1: An (n, k) codeC (not necessary MDS) is said to have the multiplicity propert
M, ifforany 7 : (s,n—s) partition,>"" _, A7 (w, h—w) = 2E(h) for all Hamming weights
h.

We will refer to the partition composed of thecoordinates as the input partition. By Theorem
8, all MDS codes have properiy1. In general not all linear codes have propefty as seen in
the following counter-example:

Example 3:The (5, 3) linear code defined by

10011
G=|101001
00101

is composed of th& codeword€)0000, 10011, 01001,11010,00101, 10110,01100,11111. Let the
input partition be composed of the firdtcoordinates. Fos = k = 3, let 3(h) = ) wO(w, h);
and¢(h) = 2hE(h), then from the following table it is clear that it is not trueat this code

has propertyM.
h: 01 2 3 45

Bh)y: 00 4 5 0 3.
Eh): 0 0 36 54 0 3
0]

It is to be noted that all cyclic codes have propefty. This is partially justified by the fact
that any cyclic shift of a codeword of weightis also a codeword of weigtit with i /n of the
coordinates holding non-zero elements [24]. However, tigisher implies Theorem 8 nor is it
implied by Theorem 8. For example, an extended RS code is an 8608 but not a cyclic code
while an(7,4) binary Hamming code is cyclic but not MDS. Also, if a code skdis property

M, it is not necessary that the code is either cyclic or MDS. &ample, the first order Reed
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Muller codes as well as their dual codes, the extended Hagewdes, have property1 but
are neither cyclic nor MDS. Next, we discuss some codes wghnultiplicity property.

Theorem 10: The first order Reed Muller codes have the migitiplproperty M.

Proof: The weight enumerator of the first order Reed Muller codesmjtle2™, R(1,m),
is EOW) =1+ (2™ —2)W?™" + W?™ and their minimum distance &"~!. Let Hy» be the
Hadamard matrix of orde2™ and let M be the binary matrix that results from stackifig~
on top —H,» and replacing each-1 by 0 and each-1 by 1. ( A Hadamard matriXd of order
n is ann x n matrix with entries+1 and —1 such thattiH? = nJ and [ is the identity matrix.
[23, Ch. 18].) The codewords dR(1,m) are exactly the rows ofi/ [23, Ch. 18]. It follows
that each codeword of weigl®™~! has a unique codeword of the same weight which is its
binary complement. Thus each coordinate will be equally ané zero in half the number of
such codewords. Since the remaining codewords are theeraland the all-one codewords, it
follows thatR(1,m) has the multiplicity property. [ |

We now prove here that if a linear code has prope¥tythen its dual code also has property
M. By a straightforward manipulation of the McWilliams iddigs [3, Ch. 5, Eq. 52] one can
show the following relationship between the PWEs of a codeiendual code [25]:

Theorem 11: LeC be an(n,k) linear code overF, and C* be its dual code. IfT is
an (nl,n2) partition of their coordinatesA(«, 3) and A*(a, 3) are the PWEs of and C*
respectively, themi(a, 3) and At (a, 3) are related by

At(a,B) = % 22 Zl A(w, v)Ko(w,n1)Cs(v, n2),

v=0 w=0
such that the Krawtchouk polynomial i§s(v,~) = Zf:o (=) C) (=1 (g = 1)~ for g =
0,1,....,7.

Define A;(«, 3) and A} («, 8) to be the PWEs fo€ andC+ respectively when afil,n — 1)
partition is applied to their coordinates such that the pestition of cardinality one is composed
of the ith coordinate.

Theorem 12: Arn, k) linear code ovett, has the multiplicity property iff its dual code has
the multiplicity property.

Proof: Let C be an(n, k) linear code oveff, with property M and an(1,n — 1) PWE
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Ai(a, 3). From Theorem 11 the PWE of the dual cagte is

n—1 1

AF(1,8) = E1| Z Z Aij(w,v)Ky(w, 1)Kg(v,n — 1). (29)

v=0 w=0
SinceC has propertyM, then4;(1,v) = L E¢(v+1) andA;(0,v) = Ec(v)—A4;(1,0—-1) = (1—
2)Ec(v). By substituting in (29), it follows thatl;" (1, 5) = A;(1, 8) for anyi,j € {1,2,...,n}
and > | AH(1,8) = nA4;-(1,8) for anyi. Counting the total weight of the codewords @r
with Hamming weighth by two different ways, we ge} ., 4;-(1,3) = (B3+ 1)Ee (B4 1). It
follows that A} (1, 3) = £ E,. (8 + 1) andC* has propertyM.
For the converse, assume tltatoes not satisfy property but C+ does. From the previous
argument(C1)+ has propertyM. Since for linear codeéC+)* = C, we reach a contradiction.
|
Since the dual codes of MDS codes are also MDS codes, thi# stsengthens Theorem 8.
This theorem somehow strengthens the result of Theoremc@ #ive dual codes of MDS codes
are again MDS codes. The dual codes of cyclic codes are aldiz cpdes. One can also use
this theorem to show that certain codes have the multipligibperty.
Corollary 13: The extended Hamming codes have propérty
Proof: An extended Hamming code of leng®#i is the dual of the first order RM code
R(1,m) [3], which by Theorem 10 has properiyt. [ |
Extended Hamming codes also have transitive automorphisopg [26] which gives another

proof to Corollary 13. Some product codes also have the nfigltipproperty [26], [27].

V. AVERAGE BINARY IMAGE OF REED SOLOMON CODES

The binary image® of an (n, k) codeC over Fy is obtained by representing each symbol by
an m-dimensional binary vector in terms of a basis of the field[Zhe weight enumerator of
C® will vary according to the basis used. In general, it is alaodho know the weight enumerator
of the binary image of a certain Reed Solomon code obtaineddpeaific basis representation
(e.g. [15], [16]). For performance analysis, one could agerthe performance over all possible
binary representations ¢f. By assuming that the all such representations are equailyapie,
it follows that the distribution of the bits in a non-zero dyoh follows a binomial distribution

and the probability of having ones in a non-zero symbol isi— (""). The generating function
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of the averageweight enumerator of the binary image of a non-zero symbol is

F(Z)—Z2m1_1( )zz_%, (30)

where the power of: denotes the binary weight and the all zero vector is exclgiede the

binary weight of a non-zero symbol is at least one. Supposelaveord hasw non-zero symbols,
and the distribution of the ones and zeros in each symboldspendent from other symbols,
then the possible binary weiglit, of this codeword ranges from to mw. Since there aré (w)
codewords with symbol Hamming weight then theaverage binaryweight generating function

can be derived by

Eeo (X) = E(b)X? (31)
b=0
= Ec(X) |xmra) (32)
" E(h
B % (2m (_ )1)h L+ =1)". (33)

A closed form formula for the average binary weight enunweré@8WE) is

E(b) = Coeft (f@cb(X),Xb) (34)
_ wzn; — wz < )(j;") b>d. (35)

These results apply to any maximum distance separable afded overl,, whereq = 2™
and not necessarily an RS code. Widely used RS (MDS) codes hev#ealengthn = 2™ — 1.
In that case the BWE derived in (34) agrees with the average BWEoss of GRS codes
[17]. In other words two ensembles have the same weight eraiore the first ensemble is
the ensemble of all possible binary images of a specific RS, dbéesecond ensemble is the
binary image (with a specific basis representation) of theeeible of generalized RS codes
derived from the original RS code by multiplying each columrthie generator matrix by some
non-zero element in the field. It is easy to see tiat= 1 and thatZ(b) = 0 for 0 < b < d. By
substituting forE(w), for b > d, the binary weight enumerator (BWE) is given by

-t 52) (VG (7 [ £, )

) : (36)
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Ensemble Average Binary Weight Enumerator for the (7,5) RS Code
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Fig. 4. True BWE versus the averaged BWE for the (7,5) RS code lewer

Although it is easy to evaluate the above formula, the t(eﬁfr) may diverge numerically for

large 5. Using the Stirling approximation fo@”b”) [3], £(b) could be approximated as

o~y (4) () :ij(—w ("1 j%ﬂ FU), @)

where
(=D ()225 ) > b/m
F(i) = : (38)
(~1) I (527 = b/m
and A\(j) = m(jH (¢p;) —d —v) — %log2 (2mjmay ;(1 — iy ;) for o, ; = b/jm and g = 2™.
These bounds could be further simplified (and thus loosebgd)bserving that fon < ¢ — 1,

q w q q—1 q q—1
1< (L) <L) <im (L) =e (39)
qg—1 qg—1 g—oo \ q — 1
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and substituting in (37).

In Fig. 4, the averaged BWE and the true BWE for a specific basigseptation found by
computer search are plotted for tfie 5) RS code oveifs. The average weight enumerator of
(36) is labeled "Average” while the approximation of (37)labeled ‘Approximate Average’. It
is observed that a good approximation of the average binarghtsenumerator foh > d is the
normalized binomial distribution which corresponds to ad@m code with the same dimension

overlF,
E(h) a0 g~ (h) (”2") . (40)

This observation can be somehow justified by the centrat lindorem, where the binary weight

of a codeword is a random variable which is the sumnoindependent random variables

corresponding to the binary weights of the symbols. Fordargthe distribution of the binary

weight is expected to converge to that of random codes. Theniog theorem shows that the

average BWE can be upper bounded bg(—lé_(—l>(n_k) multiple of the above approximation.
Theorem 14: The average binary weight enumerator is uppendted by

mn

E(h) < (g- 1)~ H (")
Proof: An upper bound on the symbol weight enumerator ofark, d) MDS code defined
overF, is [28, Eq. 12]
B < (1) a- 0o vz (41)

Substituting in (34) it follows that fob > d

B0 < a1 3 (1) [ > o () (j;")] . @2)

w=d j=[bfm] J

By doing a change of variables = mj and changing the order of summations

w0 < 280 (0) () )
= (¢ g(—l)—% (Z‘) w:é{%a?d)(_nw <Z) (@;‘;n)

3o

< oSy ;) 3 0 () ()

a=b w=%



20

- Ensemble Average Binary Weight Enumerator of the (31,15) RS Code
10 T T T T T T T
Average
20 | - O Normalized Binomial| _|
- Upper Bound

Weight Enumerator

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Relative Binary Weight

Fig. 5. For the(31,15) RS code oveffs,, the ensemble average weight enumerator of (34) is compared witaridem code
ensemble (40) and the upper bound of Theorem 14. They are lab®ledage’, 'Normalized Binomial' and ‘Upper Bound’

respectively.

From the identity(;") () = (7)(,,_,) it follows that S (EDECY(E) = (=1)™6,,, where

n
m m—p m

dn.m 1S the Kronecker delta function. It follows that

B0 < -3 (5)os

a=b

= (¢—1)*" (mbn>

which completes the proof. [ |

In Fig. 5, we plot the ensemble average weight enumeratoB4f énd compare it with the
weight enumerator of a random code with the same dimensiOh We also compare it with
the simple upper bound of Theorem 14. It is observed that gpemubound of Theorem 14 is
fairly tight and that a good approximation for the ensembégit enumerator is that of random

codes. In fact, as length of the code (and the size of the fiielkg) tend to infinity

(n—k)

~ q (n—Fk mn
Eh) < [— (n—k) 43
h) = (q— 1) ! (h) “3)
< e (”;") (44)
e 2mn(H2()\)fl+R)’ (45)

V2rmnA(1 — A)
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whereb = Amn, R = k/n is the code rate and»(\) is the binary entropy function. The last
inequality follows from the Stirling’s inequality [3, p. 3). Let the asymptotic weight enumerator
exponent of a codé€, of length N and weight enumerataf., to be defined as

lim 1082 (Fc(AN)) (46)

N—oo N

A

=N

It follows that the asymptotic weight enumerator expondnthe ensemble of binary images
of Reed-Solomon codes is
log, (E(Amn))
(A) = lim

n—oo mn

< lim log,(e) — %logQ(mn) — %log2(27r)\(1 - )

n—oo mn
m—0o0

= Hy(\) —(1—R). (47)

[1]:

+ Hy(\)—1+R

In other words, as the code length and the finite field size temdfinity, the weight enumerator
of the ensemble of binary images of an RS code approachesfthatamdom code.
The error correcting capability of a code relies a lot on thaeimum distance of the code,

which will be analyzed in the next section.

VI. THE BINARY MINIMUM DISTANCE OF THEENSEMBLE OFBINARY IMAGES OF

REED-SOLOMON CODES

The error correcting capability of a code relies a lot on theimum distance of the code.
We will now consider the minimum distance of the ensembleiofty images of a certain Reed
Solomon code. The average minimum distance of the binargéna the RS code could be
defined to be the smallest weightwhose average BWE??(b) is greater than or equal to one

(note thatF(b) is a real number). Let, be the average BMD, then

dy 2 inf{b: E(b) > 1}. (48)

The numberd, could be found exactly by numerical search. However, it wilo be useful to
find a lower bound om,. It is straight forward to note that the binary minimum dirsta (BMD)

is at least as large as the symbol minimum distadice

dy>n—k+ 1. (49)



22

In the following theorems, we will give some lower bounds be faverage binary minimum
distance of the ensemble of binary images.
Theorem 15: The minimum distance of the ensemble of binagdmof ann, k, d) RS code

over Fym is lower bounded by

: . (mn m _ 1\n—k
dbzll)rzlg{b'<b)2(2 1) }

Proof: From the upper bound of, of Theorem 14, and the definition df, the theorem
follows. |
By taking only the term corresponding jo= w in the alternating sign summation in (42),
one can show that an upper bobound on the minimum distanckexdr@m 16 will not be tighter
than that of Theorem 15. und on the ensemble weight enunnasato

E) < (¢ — 1)F" En: (Z) (wf) (50)

w=d

Theorem 16: A lower bound af, is

. . . n wm m _ 1\n—k
dbzgg{b.g(w)( ) ) > (2™ — 1) }
Proof: By taking only the term corresponding jo= w in the alternating sign summation
in (42), it follows that

E®) < (¢- 1>’“”Xn: CD (wbm>

The theorem follows from the definition af,. [ |
Since the upper bound on the weight enumerator of (50) isigioter than the bound of Theorem
14, it is expected that the lower bound on the minimum distanic Theorem 16 will not be
tighter than that of Theorem 15.

Since the binary minimum distance of the ensemble is at &sakirge as the symbol minimum
distance (cf. 49), it is interesting to determine when theaby minimum distance is equal to
the symbol minimum distance which is linear in the ré&teof the code.

Lemma 17: The average binary minimum distance of an MDS ceeeRy.. is equal to its
symbol minimum distance for all rates greater than or equalRt = 1 — % whered, is the

largest integerd’ such that

L o, (<2m 1) (;)) > logy(2" — 1) — logy(m). (51)
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Relative Minimum Distance Vs Rate for Binary Images of RS Codes

05 T T T T T T T T T
* GV Bound
\ —*- n=15
0.45 \ n=31 H
N n=63
0.4

0.05

Fig. 6. Relative binary minimum distance for the ensemble of binary imaf&eed Solomon codes, of length§, 31 and
63 over finite fields of sized46, 32 and 64 respectively, plotted versus the code rate and compared with the Gillesttamov

bound.

Proof: The number of codewords in an MDS code with symbol weight n — k + 1
is E(d) = (¢ — 1)(3;). The binary image could be of binary weiglitonly if the codeword is
of symbol weightd and the binary representation of each non-zero symbol higsome non-
zero bit. This happens with probabili%)d, wherem = log,(q). So the average number of

codewords with binary weight is

B(d) = B(d) (Qmm_ 1)d —(g-1) (Z) (lzgj<§))d. (52)

From the definition of the average binary minimum distanbe,lemma follows. [ |

Asymptotically, it could be shown thak, is the smallest rate such that

Hy(1—-R,)
A S VA —

(1 — Ro) - IOgQ(n) 10g2(10g2 (n))’ (53)
wheren ~ ¢ and

Hy(z) = —xlogy(x) — (1 — x) logy(1 — x) (54)
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is the binary entropy function. This implies that the rdtg, at which the symbol minimum
distance is equal to the ensemble binary minimum distamrelstto one as the length of the
code tends to infinity.

The Gilbert-Varshamov (GV) bound is defined by [3],

lim {R(5) — (1 — Hy(8))} >0 for 0 <4 < % (55)

whereé = d,/(mn) is the ratio of the binary minimum distance to the total léngitthe code and
R(9) is rate of the code with a relative minimum distariceRetter showed that for sufficiently
large code lengths, most of the codes in the binary image efetisemble of generalized RS
codes lie close to the GV bound by showing that the number déwords with weights lying
below the GV bound in all generalized RS codes of the sameHemuyt rate are less than half
the number of such generalized RS codes [17]. Next, we shovatederesult for the ensemble
of binary images of an RS code, with a binary weight enumer&i@.

We will now determine a bound on the asymptotic relative tyrmainimum distance (as the

length tends to infinity) of the ensemble of binary imaggs,
b 2 inf{=(\) > 0}. (56)

From the asymptotic analysis of (47), we showed that

2(\) < Hy(A\) — (1 - R). (57)
It thus follows that
Ooo > f {H5(A) > (1 = R)}. (58)
One can then deduce that
H3(0s) — (1 = R(0s)) > 0. (59)

In other words, we have proved the following theorem,

Theorem 18: The ensemble of binary images of an Reed Soladerasymptotically satisfies
the Gilbert Varshamov bound.

This is not very surprising since we have shown that the ebkem@verage behaves like a
binary random code. Note that this is for the average binagge of the RS code and not for a

specific valid binary image. Since this theorem is for theeemtsle average, it might imply that
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Fig. 7. The relative binary minimum distance for the ensemble of binargésnaf Reed Solomon codes, of lendth over
Fi¢ plotted versus the code rate. The numerical minimum distance (48) is dalABMD’ and compared with the lower
bounds of Theorem 15 and (49) which are labeled ‘Lower Bound’‘emar LB’ respectively. The Gilbert-Varshamov bound
is plotted and labeled ‘GV Bound'.

some codes in the ensemble may have a minimum distance astically satisfying the GV
bound. However, we do not know of a specific code in the enseithialt satisfies the bound.

In Fig. 6, we show the relative average binary minimum distafor binary images of Reed
Solomon codes, calculated numerically by (48), for différeode lengths. It is observed that as
the length and the size of the finite field increases, theivelatinimum distance decreases. From
Theorem 18, the relative binary minimum distance should-@ggh the GV bound as the length
tends to infinity. In Fig. 7 and Fig. 8, we study the relativeerage binary minimum distance

for code lengths: = 15 andn = 31 respectively. We compare it with the Gilbert-Varshamov
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Relative Minimum Distance of Binary Images of RS Codes, n=31

05 T T T T
—— GV Bound
0.45 —— RABMD ]
Lower Bound
— — —Linear LB
0.4 '
0.35f
0.3
c
S
~c 0.25
g
©
0.2f
0.15F
0.1f
0.05F
0
0 0.2 0.4 0.6 0.8 1

Rate

Fig. 8. The relative binary minimum distance for the ensemble of binargésaf Reed Solomon codes, of length over
F3o plotted versus the code rate. The numerical minimum distance (48) is datfedBMD’ and compared with the lower
bounds of Theorem 15 and (49) which are labeled ‘Lower Bound’‘bimetar LB’ respectively. The Gilbert-Varshamov bound
is plotted and labeled ‘GV Bound'.

bound and the lower bounds of Theorem 15 and the linear boti@lOd We observe that the
lower bound of Theorem 15 is pretty tight and it provides apt@way to evaluate the minimum
distance of the ensemble. Moreover it is always lower bodrmethe GV bound. By comparing
with the linear lower bound of (49), it is noticed that for= 15 andk > 8, the average BMD is
equal to the symbol minimum distancé, as expected from Lemma 17. As the rate decreases,
this linear lower bound becomes very loose and the averageybminimum distance exceeds

the symbol minimum distance.
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VIl. PERFORMANCE OF THEMAXIMUM LIKELIHOOD DECODERS

Let ¢ be the binary image of a codeword in the, k,d) RS codeC. The binary phase shift
keying (BPSK) modulated image @fis x = M(c) = 1 — 2¢. This will be transmitted over
a standard binary input additive white Gaussian noise (AW@hgnnel. The received vector
isy = x + z, wherez is an AWGN vector. Since the considered codes are linear, sais
to assume that the all zero codeword (in fact its binary imagéransmitted. Hard-decision is
done to the received bits to obtain the vecfowherey; = %ﬂm and the HD-ML decoder’s

output is the codeworé such that

¢ = arg 1r]ré1cnb d(g,v) (60)

whered(u, v) is the (binary) Hamming distance betweerandv. This is equivalent to trans-
mitting the codeword: through a binary symmetric channel (BSC) with cross over griba
p = Q(v/2Ry) where~ is the bit signal to noise ratio anfl is the code rate.

As discussed before, bounds on the error probability oflirewdes require the knowledge of
the weight enumerator. For a specific binary image, it is venyl to know the weight enumerator.
It is also hard to agree on the use of a specific binary image spéculate which binary image
has been used. So the question we really need to answer ixpleeted performance if any
binary image of a specific RS code is used. Our approach is tsidemthe binary code of a
weight enumerator equal to the ensemble average weight eraton

The performance of the hard-decision maximum likelihood{ML) decoder can be upper
bounded with the well known union bound by resorting to therage weight enumerator of the

ensemble

Plemm) <3 B0 S (V)= 1)
w=[2]

b=d, —rt
where P(Ey 1) denotes the codeword error probability of the HD-ML decodéternatively,
one could use the ensemble average weight enumerator glitietibounds. The best well known
upper bound on the performance of a HD-ML decoding of lineadtes on binary symmetric
channels is the Poltyrev bound [29].
The soft-decision maximum likelihood decoder solves tHe¥ang optimization problem,

c= arggleicri|!y—/\/l(v)|l2 (62)
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where||z|| is the Euclidean norm of. Assuming that the all-zero codeword is BPSK modulated
and transmitted over a memoryless AWGN channel, the prababilat a certain codeword of
binary weightb is chosen at the decoder instead of the transmitted allaedtleword is [30, Eq.
8.1-49] P, = Q (v/2vRb) , where~ is the signal to noise ratio (SNR) per bit aftl= k/n.

Then a heuristic union lower bound on the codeword error ghoity of the soft-decision
maximum-likelihood decoder (specifically true at high SNRsbhe probability that a codeword

of minimum weightd, is erroneously decoded,

P(Esnr) 2 E(dy)Q (\/ QVRdb> : (63)

A union upper bound on the codeword error probability is the of all possible errors,

P(Esmr) < Z E ( 27Rb) (64)

b>dy
The union bound is loose at low SNRs. Poltyrev described aetatre sphere bound (TSB)
on the error probability of binary block codes BPSK moduldateAWGN channels [29]. This is
a very tight upper bound on the ML error probability. We usmitonjunction with the average
binary weight enumerator to find a tight upper bound on thergarobability of ML decoding of
RS codes. Divsalar also introduced in [31] a simple tight lmb(that involves no integrations)
on the error probability of binary block codes, as well as mparison of other existing bounds.
The Berlekamp-Massey (BM) decoder is a symbol-based hardidecdecoder which can
correct a number of symbol errors upto half the minimum dis¢aof the coderz), = L”T*’“j.
The error plus failure probability of the BM decoder has beeil wtudied [28], [32] and can
be simply given by
P(Epn) =1 — i ( ! ) (1= )5,
=0 J
where s is the probability that a symbol is correctly received= (1 —Q (v/27R))™. The
Guruswami-Sudan decoder is also a symbol-based HD decatleaib correct more than half the
minimum distance of the code;s = [n—+/nk—1]. The performance of a hard-decision ‘sphere’
decoder that corrects any numbermof 75,, symbol errors as well that of the corresponding
maximum likelihood decoder overary symmetric channels have been recently analyzed [33],
[34].
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o ML performance of the binary image of the (15,11) RS code over AWGN channel
10 i ¥ T T T T T T E|
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Fig. 9. Performance bounds of the binary image of(thg 11) RS code oveF1s when transmitted over a binary input AWGN
channel: The analytic performance of the symbol-level hard-decBentekamp-Massey and Guruswami-Sudan decoders are
shown and are labeled by ‘HD-BM’ and ‘HD-GS’ respectively. These in turn compared to the bit-level HD ML decoder
labeled ‘HD-ML'. The union upper bound (64), lower bound (63) dnel tangential sphere bound on the soft-decision ML error
probability are labeled ‘SD-ML Union UB’, ‘SD-ML Union LB’ and ‘SD-MLTSB’ respectively. The simulated performance
of an SD ML decoder is labeled ‘SD-ML Simulation’.

We evaluate the average performance of RS codes when ity/bmage is BPSK modulated
and transmitted over an AWGN channel. In Fig. 9, we considepecific binary image of
the (15,11) RS code overF,s. Soft-decision maximum likelihood decoding was simulated
using the BCJR algorithm [35] on the trellis associated with bimary image of the RS code
[36]. By comparing this with the average TSB, we observe thatteahnique for bounding
the performance of the soft-decision ML decoder providgbttiupper bounds on the actual
performance of a specific binary image. It is clear that at 8MRs the (averaged) TSB give

a close approximation of the ML error probability. By comparithis bound with the union
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upper and lower bounds of (64) and (63), we observe that tH& d@ncides with the union
bounds at high SNRs. As from (63), the union lower bound is axttarized by the minimum
distance term. Indeed, the SNR at which the performanceefitaximum likelihood decoder
is dominated by the minimum distance term was recently stlly Fossorier and was termed
the critical point for ML decoding [37]. The decoding radius of the GS decodehéssame as
that of the BM decoder for thél5,11) code, which is of relatively high rate. However, their
performance is very close to that of the HD-ML decoder.

In Fig. 10, we consider the performance of the binary imag#hef31, 15) RS code oveffys
when BPSK modulated and transmitted over an AWGN channel. Wegpawe the performance
of a bit-level HD-ML decoder with that of a symbol-level HD{Mdecoder by deploying the
bounds of [29] and [34] respectively. The symbol-level disrooperates by first grouping
bits to symbols inF,» after hard-decision. It seems that for this half-rate calke,performance
of a bit-level HD decoder is better than the correspondingtsyl-level decoder (about5 dB
coding gain). We also compare the performance with that efsgmbol-level HD-BM and the
HD-GS algorithms. For thé31, 15) code, bit-level HD-ML decoding has more thardB gain
over the BM decoder, whereas SD-ML decoding offers anathé® gain over bit-level HD-ML
decoding. The SD-ML decoder has abdutiB gain over the BM decoder artidB gain over
the HD-ML decoder. Bounds on the performance of the maximuglitiood decoder provides a
benchmark to compare the performance of other suboptimgoriims. To emphasize this, the
performance of a bit-level soft-decision decoder, dewetbpy El-Khamy and McEliece [12],
acting on a specific binary image is also plotted. Only by canmg it to the SD-ML bound can
one conclude that this soft-decision algorithm operatékiwil dB of the optimum soft-decision

algorithm.

VIIl. B INARY PARTITION WEIGHT ENUMERATOR OFMDS CODES

In this section, we study the partition weight enumeratothefbinary image of an RS (MDS)
code. Let7 be a partition of the coordinates of an MDS catldefined ovelF,y.. Let 7, be the
partition of the coordinates of the code’s binary imatjeimplied by 7 when each symbol is
represented with its binary image. The number of the parigtin”Z and7, is the same but the
size of each partition is times larger. This is illustrated by example in Figure 11e bmary

partition weight enumerato(PWE) gives the number of codewords in the binary image with a
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Maximum Likelihood Decoding of (31,15) RS Code
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Fig. 10. Performance of the binary image of {34, 15) RS code oveFs, transmitted over AWGN channels. The symbol-level
HD-BM and the HD-GS algorithms are compared. Bit-level and symballbard-decision decoders are labeled ‘binary HD-
ML and ‘symbol HD-ML' respectively. The TSB on the bit-level SD-Merror probability is labeled ‘SD-ML' and is compared

with the bit-level soft-decision algorithm of [12] labeled ‘SD-EM'.

specific combination of binary Hamming weights in the spedifpartitions. As we saw in the
previous section, the binary image is not unique, so we wgbrt again to amaveragedbinary
PWE.

Theorem 19: LeP? (X, X, ..., &,) be the partition weight generating function (PWGF) of
an (n, k) code overf,., and7, be the partitioning of the coordinates 6f induced byZ when

the symbols in each partition are represented by bits, thenaverage binary PWGF is

Po(21, 2s. . 2,) = BE(F(21), F(22), ..., F(Z,)),

where F(2) = = (1+ Z)™ — 1.

2m—1
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(1,2,4) partition of the (7,3,5) RS code over GF(2°)

anepref 5’\‘l.’
Weight Profile (1,1,3)
©) ©XE) (€ XCENG)
“r.

Data Redundancy
A Binary Image: (3,6,12) partition
Weight Profile (2,2,8) 6 ‘
fmooooooq§EED
Data Redundancy

Fig. 11. A codeword in th€7,3,5) RS code oveifs is shown with a(1,2,4) partition of its coordinates. For a specific
binary representation, the binary image is shown with the impl#e@, 12) partition of its coordinates. We emphasize that the

weight profile of the binary image is not easily derived from that on thmatsy level.

Proof: Assuming a binomial distribution of the bits in a nonzero b the probability

that the binary representation of a nonzero symbol has weigh equal to the coefficient

of Zin == >, (7)Z" If the weight of thejth partition isw;, then the average binary
weight generator function of its binary image (g=— >, (")Z)" under the assumption
that all the non-zero symbols are independent and equatlyatate. Consider a codeword with
a weight profile(w;, w,, ..., w,), then the probability that the weight profile of its binaryage
is (b1, by, .., b,) is given by the coefficient o2} 2%*...2," in TT"_, (2 S0, (7)29)"™. By
multiplying with the number of such codewordd? (w;, ws, ..., w,), the result follows. [ |

For systematic codes, the binary IOWE could be derived froenktimary PWE as in (11)
(Unless otherwise stated, when speaking of binary weightnemators of codes ové it is
understood that we mean the ensemble average binary weaightezator.) For example, the
coefficient of YY" in I@(Xy,y, ...,)) is the number of codewords with input binary weight
w in the first partition and a total average binary weightin the following corollary, we give
a closed form expression for the binary IOWE(w, hy).

Corollary 20: LetO¢(w,h) be the input-output weight enumerator of &m k,d) codeC,

defined ovel,. corresponding to ar(s,n — s) partition of its coordinates, then the average
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binary IOWE ofC® is given by

Ocs (wy, hy) =
23 g (S ()60 (Ze () 6)
for hy > d.

Proof: For the given(s,n — s) partition, the split weight enumerator 6fis Pc(X,)) =
S o Oc(w, h)X*Y'—*. From the Theorem 19 and (s (ws, hy) is the coefficient of
XwoYho in

O (X, Y) = COEny ZZOC w, h)((L+YX)™ = 1)"((L+Y)" = 1) (65)

w=0 h=w
Since (1 + YX)™ — 1) = 30, () (=) (X (V)XY and (1 + )" — 1) =
Sy (M) (=) (S, (M) Y7, the result follows by substituting in (65). u

The IOWE of the binary image will be useful in the analysis o thit error probability of
MDS codes when their binary image is transmitted. In Sedib(c.f. Theorem 8), we showed
that MDS codes have the multiplicity property. Now, we willosv that a binary image of an
MDS code with a weight enumerator equal to that of the avelbagary weight enumerator, if
it exists, will also have the multiplicity property.

Theorem 21: LeC be an(n,k,d) MDS code oveffy~ with the multiplicity property and
E(h) be the average binary weight enumeratorCf If O(w;, hs) is the average binary IOWE
of C°, where the partition of the coordinates 6f is induced by an(s,n — s) partition of the
coordinates ofC, then forh, > d

Sy wy O(wy, b)) hyy E(hy)

ms mn
Proof: We will begin by proving it for the special case o 1. SinceC has propertyM,

thenO(1,h) = 2E(h). It follows from Corollary 20 that

Oy, hy) — (ZZ) Z = hz hei- J( j 1) (hbjznwb>. (66)

h=0

By changing the order of the summations we have

wp=1 h=0 =0 wy=1
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By observing thatub(gb) = m(m l) it follows that the rightmost summation in (68) is equal

Whp

tom Y, (73) Gt ") = m(""171). By doing a change of variables = j + 1 and

T (m“) and rearranging it follows that the total weightrafcoordinates

mo

observing tha{’,*" ") =
in the binary image’,, corresponding to a smgle coordlnatednls

zm:wbé(wbahb) = —h Z _1 hz ( )(ngb&)

wp=1

=@ﬂm (68)

If the input partition hass coordinates of’, the result follows by summing the weights of the
individual coordinates. [ |

This means that if the weight of a symbol coordinaté/ign)E(h) in Cy, then the average
weight of its binary image igh,/n)E(h) in Cp.- It will be interesting to determine whether
this will still be true for any binary representation. As wdlwee in the next section, the result
of Theorem 21 can simplify the analysis of the bit error ptoliy of MDS codes.

IX. SYMBOL AND BIT ERRORPROBABILITIES

In section VII, we showed how one can analyze the codeworor gmobability of various
RS code decoders. In this section, we study the symbol andrbit grobabilities of systematic
MDS codes. In general, systematic coding is preferred overgystematic coding. It has also
been shown that maximum likelihood (ML) decoding of binainehr codes achieves the least
bit error probability when the code is systematic [38].

Given a symbol-level decoder (soft-decision or hard-dexisiecoder), the codeword error
error probability (CEP) at a certain signal to noise ratio BN will be a function of the SNR
~ and the code weight enumeratb(h). In the remaining of this paper, we will denote the CEP
at a signal to noise ratio (SNR) by ®. (E(h),~). For linear codes, union upper-bounds on the

performance of symbol-based decoders are of the form
h),v) <Y EMmU(y, h) (69)

for some functiori/ of the SNR~ and weighth.

Tighter upper bounds can be of the form

®. (E(h),7) < min {ZE ) + Flv, )} (70)
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for some functions) and F of v and h. For example, tight upper bounds on the performance
of bit-level and symbol-level hard-decision maximum likelod decoders admit to the above
form and are given by [29, Lemma 1] and [33, Theorem 2] resgegt The codeword error
probability of the HD Berlekamp-Massey decoder is the prdigtihat the received word lies

in the decoding sphere of a codeword other than the traresinitord. It is also determined by

the weight enumerator and has the form of the union bound é89in
. (E(h),7) <) E(h) Y Py, (71)
h=d t=0

where P!'(v) is the probability that a received word is exactly Hammingtalicet from a

codeword of weight: and = |(d — 1)/2] is the Hamming decoding radius [28] [32].
Given an upper bound on the CEP of a symbol-based decodewadtliknown that the symbol

error probability (SEP)p,(v) can be derived from the CE®.() by substitutingZ (k) with

k
Q(k, h) = Z% O(w, h), (72)
w=1
(e.g., [32, (10-14)]). From Theorem 8, the common approkiona
Qk,h) ~ %E(h) (73)
is exact for MDS codes and
() = Pe(E(h),7) |Bmyi=oun - (74)

In other words, if the CEP is given by (69) or (70), the SEP wdl fespectively bounded by

2.0) < Y CEMUh) ©
®.(7) < min {Z%E(h)V(%h) + f(%a)}- (76)
h=d

In case the binary image of an RS code is transmitted and theddecs a bit-level decoder,
performance analysis of the decoder will utilize the binesgight enumerator of the code. As
we discussed in Section VII, the ensemble average binarghve&numerators become handy

when analyzing the performance of the binary images of RS<ofélg is the case of symbol
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based decoders, upper bound on the CEP of bit-level decoders #he union bound forms

o (E(),7) < S EMT(,0) (77)
o, (E(h).7) < main{ZE(h)J(%h)+g(7,a)} (78)

for some functionsr’, 7 andg of the SNR~ and the weight.. For example, the union bounds
of SD and HD decoding of (61) and (64) are of the form of (77)evdas the Poltyrev tighter
version of these bounds follow the form of (78).

From Theorem 21, we know that for ay(symbol) coordinates of the MDS code

mk

Qmk,h) =Y %O(w, h) = %E(h). (79)

It follows that the bit error probability (BEP) can be bound®d(e.g., [21], [39])

Dp(7) = @, (E(h)77> ’E(h)::@(mk,h) (80)
< min {Z %E(h)ﬂ% h) + G(, a)} (81)
h=d
< Z%E(b)r(%h). (82)
h=d

X. MULTIUSER ERRORPROBABILITY

We consider the case when a systematic RS code is shared anffergnt users or applica-
tions. The systematic symbols are shared among the ditfeszms where the coordinates of the
code are partitioned according to dn: (n, ny,...,n,_1,n — k) partition. Theith partition of
sizen; is assigned to theth user and the last partition constitutes of the redundayaybols.
Since the considered codes are linear, we assume that theralcodeword is transmitted. If a
codeword of symbol weight and of weightw; in the jth partition is erroneously decoded, a
fraction Z’—j of the jth user’s symbols are received in error. It follows that jkie user's symbol

error probability could be written as (cf. (87))

®l(7) = (Q(ny, h),7), (83)

where
@ (ng,h) =Y =0 (w, h) (84)
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and O’ (w, h) is the jth partition input output weight enumerator derived frone fRWE as in
(11). The following theorem gives an important result relyag the multiuser error probability
of MDS (RS) codes:

Theorem 22: If a systematic linear MDS code is shared amoffigrelnt users, all users have
the same unconditional symbol error probability regardles the sizes of the partitions assigned
to them.

Proof: The SEP of a certain user, whose partition’s size is:;, is given by (83). It
is sufficient to show that for two different usefsand j with partitions of sizesn; and n;
respectively, such that; # n;, Q’(n;,h) = Q'(n;, h). From Theorem (8), it follows that for an
arbitrary partition of sizey;, Q7(n;, h) = LE(h). Since this result does not depend on the size
of the partition nor on the orientation of the coordinatethwespect to it, we are done. ®

Now, consider the case when the binary image of an RS codensntitted and the decoder is
a bit-level hard-decision or soft-decision decoder. Theeayatic coordinates will be partitioned
among different users where the partitions on the bit levélfallow from the partitions on the
symbol level (e.g. Fig. 11). In case of a bit-level decodee bit error probability of theith

user can be given by

such that o,
~ . w o~
Qg ) =3 0w, ), (86)

where Oj(w,h) Is the average binary input output weight enumerator of ftie user and
m%jéj(w,h) is the fraction of thejth user’s bits received in error when a codeword of total
weighth and weightw in the jth partition is erroneously decoded given that the all zexdegvord
was transmitted.

Theorem 23: For systematic MDS linear codes, the averagenditional bit error probability
of all users is the same regardless of the number of symbaagh partition or the orientation
of the partition assigned to them.

Proof: Let usersi andj be assigned two different partitions 6fwith different sizesn;

andn;. Now consider the binary images of these partitions. Equat{(79) and (85) imply that

both users have the same average bit error probability. [ |
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Now that we have shown that the unconditional symbol andrbitr @robability are the same
for all partitions (users) regardless of their size, we csinquestions about the conditional error
probability. Using the results in this paper, one could arsmteresting questions about the
conditional multiuser error probability. Since the coddingar, we will assume that the all-zero
codeword is transmitted. For example, the conditional CEBrgthat for any codeword no more
than a fractionp of the jth user's symbols are ever received in error is giver? by

Lpn; ]

(I)c(7) = &, Z Oj (wj7 h), Y (87)

w;=0
where a hard-decision symbol level decoder with a decodagius - was assumed. We only
considered error events due to codewords whose weight ijthhgartition is not greater thgm;.
Recall that in the unconditional ca@g’j’ﬁé O’ (wy, h) is replaced byE(h) = 3"0" _ ; O/ (w;, h).

Define the following weight enumerator
O (wi, wy, h) = [{e € C: (W (e[Ni]) = wi) A (W (e[N}]) = w;) A (W(e) = )} (88)
The conditional CEP given that a codeword error results inthlluser's symbols received
correctly while alljth user’s symbols received erroneously is given by

Dc(7) = @, <Z 0™(0,n;, h), v) (89)

h=d
where assuming that the all-zero codeword is transmittedniye considered codewords with a

zero weight in theith partition and a full weight in theth partition.

In general, for gp-partition of the coordinates, 6P and Q be the set of users (partitions)
whose symbols are all received correctly and erroneousspetctively, in case of a codeword
error. LetO be the set of users with no condition on their error probgbillhe conditional
error probability is calculated by considering only the eadrds which have a full weight for
the coordinates inQ and a zero weight for the coordinates ™ By considering only such
combinations in the sum of (5), the conditional PWGF is detias
w; =0, ifieP;

P(X), Xy, ) =D Y Alwy,wa, . wy) X X2 X (90)

€A w;=0

2Conditional functions will have have the same notation as the unconditioreal except for an underbar.
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BM-Decoder Error Probability of (15,11) RS code over AWGN channel
10 T T T T T T T T

Error Probability
[
oI
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—CEP

107l | —— SEP, SEP 3rd user
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—>— SEP|(0,1)

—&— SEP|(1,1)
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1 2 3 4 5 6 7 8 9 10

SNR (dB)

Fig. 12. Conditional multiuser decoder error probability of the Berlekéhagsey decoder of Example 4. The unconditional
CEP and SEP are labeled ‘CEP’ and ‘SEP’ respectively. The condit®FR of the third user for cases 1, 2 and 3 are labeled
‘SEP|(0,0)’, ‘SEP|(0,1)" and ‘SER(1, 1, )’ respectively.

The conditional symbol error probability of thegh user is

() = 0. (Q(k,h). 7). (91)

whereQ’(k,h) = >0, nﬂjO_f'(w,h) and O’(w, h) is the conditional IOWE of thgth partition

and is derived fronP (X, A5, ..., X,) (see (10)). For example, if the first partition contains fezad
information, then the conditional symbol error probabilif the ith user given that the header

is received correctly can be calculated by

Pi(y) = @ (Z Lovi(0,w, hm) . (92)

1

w=1

Similarly, for bit-level decoding of the code’s binary ima@j(mk, h) will be derived from

P(Xy, Ay, ..., X,). If the users inP and Q have zero and one bit error probability respectively,

the conditional binary PWGF only takes into account such wodés that have a zero binary
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weight for the partitions irfP and a full binary Hamming weight for the partitions @. The
conditional BEP of thejth user follows by the substitutioR (k) := Q’(mk, h) in (80).

Example 4:Consider an systematigdb5, 11,5) RS code and a partitiod = (3,3,5,4) of
its coordinates where the last partition has the redundagnybols and each of the first three
partitions is assigned to a different user. The first partithay be assigned to be the header. Let
the RS code be transmitted over an AWGN channel and decoded hydadacision bounded
minimum distance (Berlekamp-Massey) decoder. From (71), (87) and Theorem 22 it follows

that the CEP and SEP of any user is equal to the overall SEP arzbaxpressed as, respectively,

Oo(y) = ZE(h)ZPth(v)

qDS(V) = Z Zf)th7

such thatE(h) is the weight enumerator as given by (13). The partition Wweigenerating

function is given by

3 3 5 4
POV, XV, 2) = > ) ) ) AT (wr, wa, ws, wy) W XY™ 24,

0 wo=0 w3=0 wa=0
and the IOWGF of the third user 83(X,)) = P(X, X, XY, X). We will now calculate the
conditional symbol error probability of the third user undkfferent scenarios.
Case 1. The first two users have a zero error probabilliyjus the PWGF conditioned on that
the first two partitions have zero weight is

Poo Y, 2) Z Z A7(0,0, w3, wy) Y3 24

w3=0 wyg=0

The conditional IOWGF of th&rd user is

0% ) (X, P) = By (XY, ¥) = > 0"%(0,0,w, h) XY,

h
It follows that the SEP of thé&rd user conditioned on that the first two users have a zera erro

probability is

ZZ —04%%(0,0, w, ) ZPh

h=d w=1
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Case 2: The first and second users have an SEP of zero and ometiesfy. The corresponding
conditional PWGF is
5 4
Pony(X, Y, 2)=> " > AT(0,3,ws, w) XY 2",

w3=0 wg=0

The corresponding IOWGF of th&rd user is
©(01(X V) =Py (Y, XY, Y) = 22012303wh)ﬁ(“’yh

To calculate the conditional SEP, we proceed as in the pusviase.
Case 3: Both the first and second users have an SEP ofTdrmconditional SEP of the third

user is

ZZ —0"%3(3,3,w, §) ZPh

h=d w=1

where0"*3(3, 3, w, h) is the coefficient oft)" in @?M (X,Y) =Py (Y, Y,XY,)) and

5
PoyW.X.Y.2)= ) Z AT (3,3, ws, w ) WA XTY s 201,

w3=0 wg=0

For an AWGN channel and a Berlekamp-Massey decoder, the codenor probability, symbol
error probability and the conditional symbol error proliéies for the third user for the three
cases are plotted in Fig. 12. It is observed that the comditierror probability of the third user
given that other users have an error probability of one (Cade the lowest compared to the
other two cases. The reason is that in Case 3, one only cosgders due to the received word
falling closer to codewords at a much larger Hamming distainom the transmitted one, and
such an event happens with relatively lower probability. O
The same technique can be used to bound the performanceeasfsytmbol based decoders,
such as the hard-decision maximum likelihood decoder, unaeous scenarios. Next we con-
sider analyzing the multiuser error probability when theatker is a bit level decoder.
Example 5:Consider the(15,11,5) code overF;s partitioned as in Example 4 and an SD
bit-level ML decoder is employed at the output of an AWGN chanithe unconditional CEP

and BEP are given by, respectively,

®, (E(h),fo < mm{ZE h) + G(v, )}

Py(y) = min{z ()%E(h)ﬂ(% h) + Q(%a)},

a
h=5
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Multiuser Performance for SD ML decoding of (15,11) RS code over AWGN
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Fig. 13. Conditional multiuser error probability of the bit-level soft-deaismaximum-likelihood decoder of Example 5. The
conditional bit error probability of cases 1, 2 and 3 are labeled BEB), ‘BEP|(0,1)" and ‘BEP|(1,1)’. The bounds on the
unconditional CEP and BEP labeled ‘CEP TSB’ and ‘BEP TSB’ are coatpaith the corresponding simulations labeled ‘CEP
Sim’ and ‘BEP Sim'respectively.

whereJ (v, h) andG (v, «) will be determined by the Poltyrev tangential sphere bowa@j. [We
will now discuss the conditional bit error probability foifférent cases (as in Example 4):
Case 1: The first two users have a zero error probabilltye average binary IOWE of the third

user given the first two partitions have a zero weight is

00 (X V) =B (XY, V) = ZZO ,w,h)X*Y",

h=0 w=0
such thatE(QO)(X,y) = P (F(X), F(Y)), and F(X) is as defined in Theorem 19. The
conditional BEP of the third user is given by

@3 mm iz O OOwh)J( h) + G(v, @)

h5w1
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Case 2: The first and second users have a zero and one bit erotapility respectivelylLet
POW, X, Y, Z) =P(F(W),F(X),F(Y), F(2)) be the average binary PWGF then

E(O,l)(-)(>y,z) = Coeff (I?’(W7;\{,y7g)’ W0X12> put
and the conditional IOWE of the third user is
Q1,2,3(0,12,w,h) Coeff( 0V, XV, V), wah>

The conditional BEP is then given by

mln{ZZ%O (0,12,w,h) T (v, h) + Q(’y,a)}.

h=5 w=1
Case 3: The average BEP of the first two users is ¢mehis case, the conditional PWGF can

be calculated by
E(M)(W, X, Y, Z) = Coeff (]f”()/\/7 XV, 2), W12X12) Wizy2.

One can then proceed to calculate the conditional IOWE and BREeahird user by

0"*°(12,12,w,h) = coeff( V.V, XD, D), xwyh)

mm{zz O 12 12w, h) T (7, )+Q(7,a)}.

h=5 w=1
In Fig. 13, the TSB on the codeword and bit error probabilitg plotted and compared to

simulations of the ML decoder for a specific basis represiemaf the RS code. The conditional
BEP of the third user is plotted for caseé® and3 . As in the previous example, it is observed
that the conditional error probability of specific usersegithat some users have a high error
probability decreases with the number of such users. O
Example 6:Consider an systemati¢31,15,17) RS code overF;, and a partition7 =
(3,6,6,16) of its coordinates where the last partition has the reducydaymbols and each
of the first three partitions is assigned to a different ushe first partition may be assigned to
be the header. Let the binary image of a RS code be transmidam AWGN channel and
decoded by a hard-decision symbol-based maximum liketihdecoder decoder. We used the
upper bound by El-Khamyt. al to bound the performance of the HD-ML decoder oWgs
[33]. The CEP, SEP and conditional SEP are of the form of (718) é@nd (91). We consider

three cases:



44

Multiuser HD-ML performance of the (31,15) RS code

10 ‘= — T T T
107 + :
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Fig. 14. Conditional multiuser error probability of the symbol-level hdedision maximume-likelihood decoder of tfi&1, 15)
RS overFs, of Example 6. The unconditional CEP and SEP are plotted (Case 1).drtuitional SEP of Cases 2 and 3 are
labeled SER0, X) and SER0,0) respectively.

Case 1:The unconditional error probability of the third user.

Case 2:The symbol error probability of the third user given that tingt user (header) is received
correctly.

Case 3:The symbol error probability of the third user given that fhvet two users have their
symbols received correctly.

The numerical results are shown in Fig. 14. We observe tlatititonditional CEP and SEP are
very close. As more and more conditions are imposed, theittomal error probability of the
third user decrease€ase 2 is of special interest, since in some cases the header ovithin
the routing information and it will be essential to estim#te error probability in case the

information is routed correctly. O
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XI. CONCLUSION

An averaged binary weight enumerator for RS codes is deriaddshown to closely estimate
an exact one for a specific basis representation. Moreavhgsi been shown that as the code
length and the field size tend to infinity, the weight enunwrat the ensemble of binary images
of Reed-Solomon codes approach that of a random code withathe gimensions. Bounds on
the average binary minimum distance were derived. It was sghown that on average, the
ensemble of binary images of RS codes asymptotically satisfyGV bound. The question
remains open, if there exists a specific code in the enserhbleasymptotically satisfies the
GV bound. Aided with the ensemble weight enumerator, one d=ive tight bounds on the
performance of bit-level maximum likelihood decoders. Byngaring with simulations, it has
been shown, that at least for ti&5, 11) RS code, the tangential sphere bound when combined
with the ensemble weight enumerator is tight. When proposieqy algorithms for decoding
RS codes, it is not only important to compare its performandé wther algorithms in the
literature, but it is also more important to compare its parfance with that of other maximum
likelihood decoders using the results in this paper. A ddsem formula for the partition weight
enumerator of maximum distance separable (MDS) codes isedeiThe average PWE is derived
for the binary image of MDS codes defined over a field of charastic two. We show that for
MDS codes, all the coordinates have the same weight in theosiegbcomposed of codewords
with equal weight. We prove that a code has this propertytsffdual code has this property.
Consequently, it is shown that the first order Reed Muller catles the extended Hamming
codes have this property. A common approximation used ttuateathe symbol and bit error
probabilities is thus shown to be exact for MDS codes. Thesalts are employed to study
the error probability when a Reed-Solomon code is used in &anktscenario and is shared
among different users. We show that MDS (e.g. RS) codes hawy at&ractive features which
makes their use in networks attractive. It is proved thatuheonditional error probability of
all the users will be the same regardless of the size of tleriitions. As for the conditional
error probabilities, they can be a useful measure in detenigithe performance of a user, if its

performance depends on the correct transmission of a icqutaiket or header.
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