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Abstract— A closed form formula of the partition weight
enumerator of maximum distance separable (MDS) codes is
derived for an arbitrary number of partitions. Using this re sult,
some properties of MDS codes are discussed. The results are
extended for the average binary image of MDS codes in finite
fields of characteristic two. As an application, we study the
multiuser error probability of Reed Solomon codes.

I. I NTRODUCTION AND SUMMARY

In this paper, we introduce a generalized weight enumerator,
which we call the partition weight enumerator (PWE). Our
main result is a simple closed-form expression for the PWE
of an arbitrary MDS, e.g., Reed-Solomon (RS), code (Theorem
3). This generalizes the results of Kasami et al. [1] on the split
weight enumerator of RS codes.

We then derive weight enumerators for the average binary
image of MDS (Reed-Solomon) codes defined over finite fields
of characteristic two (Section IV).

We also derive a strong symmetry property for MDS codes
(Theorem 10) which allows us to obtain improved bounds on
the decoder error probability for RS codes (Section VI).

Finally, we discuss possible applications of the PWE, in-
cluding the analysis of the performance of RS codes in a
multiuser setting (Section VII).

II. PRELIMINARIES

We begin by generalizing the notion of Hamming weight.
Let Vn(Fq) denote the vectors of lengthn over the finite
field of q elementsFq. Suppose the coordinate setN =
{1, 2, . . . , n} is partitioned intop disjoint subsetsN1, . . . , Np,
with |Ni| = ni, for i = 1, . . . , p. Denoting this partition by
T , the T -weight profile of a vectorv ∈ Vn(Fq) is defined
asWT (v) = (w1, . . . , wp), wherewi is the Hamming weight
of v restricted toNi. Now we generalize the notion of code
weight enumerator. Given a codeC of length n, and an
(n1, n2, ..., np) partitionT of the n coordinates ofC, theT -
weight enumerator ofC is the set of numbers

AT (w1, . . . , wp) = |{c ∈ C : WT (c) = (w1, . . . , wp)}|.

The weight enumerator ofC is

EC(w) = |{c ∈ C : W(c) = w}|, (1)

whereW(c) is the Hamming weight ofc. The weight gen-
erating function (WGF) ofC is the polynomialEC(X ) =
∑n

h=0 EC(h)X h. (The subscriptC may be dropped when there
is no ambiguity about the code.) For an(n, k, d) MDS code
over Fq, the minimum distance isd = n − k + 1 [2] and the
weight distribution is given by [3, Th. 25.7] for weightsi ≥ d,

E(i) =

(

n

i

) i
∑

j=d

(

i

j

)

(−1)i−j(qj−d+1 − 1). (2)

The partition weight generating function(PWGF) is

P
T
C (X1, ...,Xp) =

n1
∑

w1=0

...

np
∑

wp=0

AT (w1, ..., wp)X
w1

1 ...Xwp

p . (3)

For the special case ofp = 2, AT (w1, w2) is termed thesplit
weight enumeratorin the literature [4]. Theinput-redundancy
weight enumerator(IRWE), R(w1, w2), is the number of
codewords with input weight (weight of the information vec-
tor) w1 and redundancy weightw2. For a systematic code,
if T is an (k, n − k) partition such that the first partition
constitutes of the coordinates of the information symbols,
then R(w1, w2) = AT (w1, w2). The input-output weight
enumerator(IOWE) O(w, h) enumerates the codewords of
total Hamming weighth and input weightw. Assuming that
the first partition constitutes of the information symbols,then
O(w, h) = R(w, h − w). For an(k, n − k) partition T , it is
straight forward that

E(h) =

k
∑

w=0

AT (w, h − w) =

k
∑

w=0

O(w, h). (4)

The IOWE and IRWE are used in the literature to study the
bit error probabilities of codes (e.g. [5]).

For a systematic code, let thejth partition constitute of
information symbols, then thejth IOWE,

Oj(w, h) = |{c ∈ C : (W(Nj) = w) ∧ (W(c) = h)}|, (5)

is the coefficient of XwYh in Oj(X ,Y) =
PT

C
(Y,Y, .,XY , .,Y) where theXis in (3) are substituted by

Xi ⇒ Y if i 6= j andXi ⇒ XY if i = j.



III. PARTITION WEIGHT ENUMERATOR OFMDS CODES

Theorem 1:For a p-partition T , the PWE of an(n, k, d)
MDS codeC over Fq, AT (w1, w2, ..., wp), is given by
(

n1

w1

)

....

(

np

wp

) w1
∑

j1=0

(

w1

j1

)

(−1)w1−j1

w2
∑

j2=0

(

w2

j2

)

(−1)w2−j2

....

wp
∑

jp=d−
∑p−1

z=1
jz

(

wp

jp

)

(−1)wp−jp(qk−n+
∑ p

z=1
jz − 1).

Sketch of Proof:Let Ri be a subset ofNi for i = 1, 2, ..p.
Define S(c) to be the support set of the codewordc and

f(R1, .., Rp)
∆
= |c : {S(c) ∩ Ni} = Ri, ∀ i|. Let Si ⊆ Ni,

then from the MDS property ofC, we have

g(S1, ..., Sp)
∆
=

∑

R1⊆S1

...
∑

Rp⊆Sp

f(R1, ..., Rp)

=

{

1,
∑p

i=1 |Si| < d;

q1−d+
∑ p

i=1
|Si|, n ≥

∑p
i=1 |Si| ≥ d.

(6)

Successively applying Möbius Inversion [3, Th. 25.1], and
observing that the PWE is equal to

AT (w1, ..., wp) =

p
∏

i=1





∑

Ri⊆Ni,|Ri|=wi



 f(R1, ..., Rp),

the result follows.
Lemma 2:Let T be an (n1, n2) partition, then

AT (w1, w2) = E(w1 + w2)
(n1

w1
)(n2

w2
)

( n

w1+w2
)
.

Sketch of Proof:From Th. 1, the split weight enumerator is

AT (w1, w2) =

(

n1

w1

)(

n2

w2

) w1
∑

j=0

(

w1

j

)

(−1)w1−j

w2
∑

i=d−j

(

w2

i

)

(−1)w2−i(qi+j−d+1 − 1). (7)

By changing the order of the summations, doing a change of
variables and comparing with (2), we are done.

The PWE of MDS codes does not depend on the orientation
of the coordinates with respect to the partitions but only on
the partitions’ sizes and weights (see (6)). Thus the ratio of
AT (w1, w2, ..., wp) to E (

∑p
i=1 wi) is the probability that the

nonzero symbols are distributed among the partitions with a
T -profile (w1, w2, ..., wp), i.e.,

Theorem 3:For an (n, k, d) MDS codeC the p-partition
weight enumerator is given by

AT (w1, w2, ..., wp) = E(w)

(

n1

w1

)(

n2

w2

)

....
(

np

wp

)

(

n
w

) ,

wherew =
∑p

i=1 wi andE(w) = |{c ∈ C : W(c) = w}|.
The proof of Th. 3 also follows by generalizing the proof

of Lem. 2 to any number of partitions.
Corollary 4: The IOWE of a systematic MDS code, is

O(w, h) = E(h)
(k

w)(n−k

h−w)
(n

h)
for h ≥ d.

Since
∑

w O(w, h) = E(h) and
(

n
h

)

=
∑k

w=0

(

k
w

)(

n−k
h−w

)

,
we have proved this interesting identity (using (2) and (7))

k
∑

w=0

(

k

w

)(

n − k

h − w

)

Ψ(w) = Ψ(0)
k

∑

w=0

(

k

w

)(

n − k

h − w

)

, (8)

whereg(h, w, i)
∆
=

(

h−w
i

)

(−1)h−w−i and

Ψ(w)
∆
=

w
∑

j=0

(

w

j

)

(−1)w−j

h−w
∑

i=d−j

g(h, w, i)(qi+j−d+1 − 1).

Corollary 5: For an MDS code of lengthn, the number of
codewords which are zero at a fixed subset of coordinates of
cardinalityn−h and are nonzero in the remainingh positions
is E(h)

(n

h)
.

Proof: Let T be the implied(h, n − h) partition, then the
required number of codewords isAT (h, 0) (See Lem. 2.)

Example 6:The PWGF for the(1, 1, 2, 3) partition of the
coordinates of the(7, 3, 5) RS code overF8 is

P(V ,X ,Y,Z) = 1 + 21VXY2Z +42VXYZ2 +
21VY2Z2 + 21XY2Z2 + 63VXY2Z2 +7VXZ3 + 14VYZ3

+14XYZ3+42VXYZ3 +7Y2Z3+21VY2Z3+21XY2Z3+
217VXY2Z3.

It could be checked that the sum of the coefficients is83.

IV. AVERAGE BINARY PARTITION WEIGHT ENUMERATOR

OF MDS CODES

The binary imageCb of an (n, k) code C over F2m is
obtained by representing each symbol by anm-dimensional
binary vector in terms of a basis of the field [2]. The weight
enumerator ofCb will vary according to the basis used. For
performance analysis, one could average the performance over
all possible binary representations ofC. Assuming that the
distribution of the bits in the non-zero symbol follows a
binomial distribution, theaverage binaryWGF, ẼCb(X ) =
∑nm

h=0 Ẽ(h)X h, could be shown to be [6], [7],

ẼCb(X ) =

n
∑

h=0

E(h)

(2m − 1)h
((1 + X )m − 1)

h
. (9)

In [6], it was shown that the average binary weight enumerator
approaches that of a normalized binomial distribution for all
weights greater than the average binary minimum distance,d̃b,
of the code

Ẽ(h) ≈ q−(n−k)

(

mn

h

)

; h ≥ d̃b. (10)

Consequently, lower bounds on the average binary minimum
distance were derived [6].

The average binaryPWGF gives the average number of
codewords with a specific profile of Hamming weights in the
binary images of the specified partitions.

Theorem 7:Let PT
C

(X1, ...,Xp) be the PWGF of an(n, k)
codeC overF2m , andTb be the partition of the coordinates of
C

b induced byT when the symbols are represented by bits.
Given thatF (Z) = 1

2m−1 ((1+Z)m−1), the averaged PWGF
of Cb is P̃

Tb

Cb(Z1, ...,Zp) = PT
C

(F (Z1), ..., F (Zp)).



Sketch of Proof:Assuming a binomial distribution of the
bits in a nonzero symbol, the binary WGF of a partition

of symbol weightwj is
(

1
2m−1

∑m

i=1

(

m
i

)

Zi
j

)wj

. If the T -

profile of a codeword is(w1, w2, ..., wj), then its WGF is
∏p

j=1(F (Z))wj . By multiplying with the number of such
codewords,AT (w1, w2, ..., wp), the result follows.

Theaverage binaryIOWE Õ(wb, hb) enumerates the code-
words with an input weightwb and an output weightshb in
the average binary image.

Corollary 8: Let T be an(s, n − s) partition of the coor-
dinates ofC andOC(w, h) be the corresponding IOWE, then
the averaged IOWE ofCb for the partitionTb is given by

ÕCb(wb, hb) =
s

∑

w=0

n
∑

h=w

OC(w, h)

(2m − 1)h





h−w
∑

j=0

(−1)h−w−j

(

h − w

j

)(

jm

hb − wb

))





w
∑

j=0

(−1)w−j

(

w

j

)(

jm

wb

)



 . (11)

The proof follows by some algebra [8].

V. A RELATIONSHIP BETWEENCOORDINATE WEIGHT AND

THE CODEWORD WEIGHT.

DefineCh
∆
= {c ∈ C : W(c) = h}. We prove an important

property of MDS codes in the following lemma.
Lemma 9:For an(n, k, d) MDS codeC, the total Hamming

weight of any coordinate, summed over all codewords inCh,
is equal tohE(h)

n
, whereCh is the set of codewords ofC with

Hamming weighth.
Sketch of Proof:Let T be an(1, n−1) partition, the required

number of codewords isAT (1, h − 1). (See Lem. 2.)
Since the PWE does not depend on the orientation of the

coordinates, we have the following theorem,
Theorem 10:For an(n, k, d) MDS codeC, the ratio of the

total weight of anys coordinates ofCh to the total weight
of Ch is s

n
. If the s coordinates are ‘input’ coordinates, then

∑s

w=1 wO(w, h) = s
n
hE(h) for all Hamming weightsh.

As a side result, we have proven this identity (c.f. (8))
s

∑

w=1

(

s − 1

w − 1

)(

n − s

h − w

)

Ψ(w) = Ψ(0)

s
∑

w=1

(

s − 1

w − 1

)(

n − s

h − w

)

.

Definition 11: An (n, k) code C (not necessary MDS) is
said to have propertyA, if it satisfies Th. 10 for alls andh.

Observe that Th. 10 is not true for all linear codes. For
example, the(5, 3) binary code defined by the generator matrix

G =





1 0 0 1 1
0 1 0 0 1
0 0 1 0 1





is composed of the8 codewords,{00000, 10011, 01001,
11010, 00101, 10110, 01100, and11111}, and doesn’t have
propertyA. (Let the input partition be composed of the first
3 coordinates.)

It is to be noted that all cyclic codes have propertyA. This is
partially justified by the fact that any cyclic shift of a codeword

of weight h is also a codeword of weighth with h/n of the
coordinates holding non-zero elements. However, this neither
implies Th. 10 nor is it implied by Th. 10. ( An extended RS
code is an MDS code but not a cyclic code while an(7, 4)
binary Hamming code is cyclic but not MDS.) Also, if a code
satisfies propertyA, it is not necessary that the code is cyclic
or MDS. For example, the first order Reed Muller codes [3]
as well as their duals, the extended Hamming codes [4], have
propertyA but are neither cyclic nor MDS;

Theorem 12:The first order Reed Muller codes have prop-
erty A.

Proof: By construction from Hadamard matrices [8].
In fact, we prove here that if a linear code has property

A then its dual has propertyA. This result also strengthens
Th. 10. We will start by the MacWilliams identity relating the
PWE of a code with that of the dual code.

Theorem 13:Let C be an(n, k) linear code overFq and
C⊥ be its dual code. IfT is an (n1, n2) partition of their
coordinates,A(α, β) and A⊥(α, β) are the PWEs ofC and
C⊥ respectively, thenA(α, β) andA⊥(α, β) are related by

A⊥(α, β) =
1

|C|

n2
∑

v=0

n1
∑

w=0

A(w, v)Kα(w, n1)Kβ(v, n2),

such that the Krawtchouk polynomial isKβ(v, γ) =
∑β

j=0

(

γ−v
β−j

)(

v
j

)

(−1)j(q − 1)β−j for β = 0, 1, ..., γ.
Proof: By a straight forward manipulation of the

Macwilliams identity for the split weight enumerator [4, Ch.
5, Eq. 52], [9]. .

Define Aj(α, β) and A⊥
j (α, β) to be the PWEs ofC and

C⊥ respectively for an(1, n−1) partition of their coordinates
such that the first partition is composed of thejth symbol.

Theorem 14:An (n, k) linear code overFq has propertyA
iff its dual has propertyA.

Sketch of Proof:From Th. 13, the PWE ofC⊥ is

A⊥
i (1, β) =

1

|C|

n−1
∑

v=0

1
∑

w=0

Ai(w, v)K1(w, 1)Kβ(v, n − 1).

(12)
Since C has propertyA, then Ai(1, v) and Ai(0, v) don’t
depend on the choice of the coordinatei. Counting the total
weight of the codewords inC⊥

β+1 by two different ways,
we get

∑n

i=1 A⊥
i (1, β) = (β + 1)EC⊥(β + 1) (c.f Lem. 9).

The converse follows from that ifC⊥ has propertyA then
(C⊥)⊥ = C has propertyA.

Corollary 15: The extended Hamming codes have property
A.

A similar property holds for the binary image of MDS codes
defined overF2m .

Theorem 16:Let C be an MDS code overF2m with prop-
erty A. If Õ(w, h) is the IOWE ofCb, where the partition of
the coordinates ofCb is induced by an(s, n − s) partition of
the coordinates ofC, then

∑ms

wb=1 wbÕ(wb, hb) = s
n
hbẼ(hb).

Sketch of Proof:Let s = 1. SinceC has propertyA, then
O(1, h) = h

n
E(h). One can show that

∑m

wb=1 wbÕ(wb, hb) =
hb

n
Ẽ(hb) (See Cor. 8) by some algebraic manipulations.



VI. SYMBOL AND BIT ERROR PROBABILITIES OF RS
CODES

In this section, we discuss the application of the PWE
in determining the symbol or bit error probability when
systematic RS codes are used for transmission. (Maximum
likelihood (ML) decoding of binary linear codes achieves the
least bit error probability when the code is systematic [10].)

The codeword error probability (CEP) is the probability that
the received word lies in the decoding sphere of a codeword
other than the transmitted word. The CEP for an(n, k, d) RS
code is determined by the weight enumerator of the code and
the signal to noise ratioγ and is given by [11] [12, Eq. 10-
9:20]

ΦC(γ) =

n
∑

h=d

E(h)

τ
∑

t=0

P h
t (γ), (13)

whereP h
t (γ) is the probability that a received word is exactly

Hamming distancet from a codeword of weighth and τ =
⌊(d − 1)/2⌋ is the Hamming decoding radius.

It is well known that the symbol error probability (SEP)
ΦS(γ) is derived fromΦC(γ) by substitutingE(h) with Oh =
∑k

w=1
w
k
O(w, h), (e.g., [12, Eq. 10-14]). From Th. 10, the

common approximationOh ≈ h
n
E(h) is exact and

ΦS(γ) = ΦC(γ)
∣

∣

E(h)⇒Oh
=

n
∑

h=d

h

n
E(h)

τ
∑

t=0

P h
t (γ).

In case the binary image of an RS code is transmitted,
tight bounds on the CEP of the optimum ML decoder are
obtained by using the average binary weight enumerator in
conjunction with well-known bounds [6]. In case of hard-
decision ML decoding of binary linear codes over an additive
white Gaussian noise (AWGN) channel, the Poltyrev bound
for binary symmetric channels [13] is a tight upper bound.
Tight bounds on the CEP of soft-decision ML decoding of
binary linear block codes over AWGN channels are known
(e.g., [13], [14]). The bounds on the CEP are often of the
form ΦC(γ) =

∑nm

h=d Ẽ(h)F (γ, h). It follows that the bit
error probability (BEP) is (e.g., [5], [15])

ΦB(γ) = ΦC(γ)
∣

∣

∣Ẽ(h)⇒Õh
=

nm
∑

h=d

ÕhF (γ, h). (14)

From Th. 16,Õh =
∑mk

w=1
w

mk
Õ(w, h) = h

mn
Ẽ(h).

VII. M ULTIUSER ERROR PROBABILITY

We consider the case when a systematic RS codeword is
shared among more than user or application, where theith
partition of sizeni is assigned to theith user and the last
partition constitutes of the redundancy symbols. It follows that
the jth user’s SEP and BEP are, respectively,

Φj
S(γ) = ΦC(γ)

∣

∣

∣E(h)⇒O
j

h

, (15)

Φj
B(γ) = ΦC(γ)

∣

∣

∣Ẽ(h)⇒Õ
j

h

, (16)

whereOj
h =

∑nj

w=1
w
nj

Oj(w, h), Õj
h =

∑njm

w=1
w

mnj
Õj(w, h)

andOj(w, h) is given by (5).
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Fig. 1. Multiuser error probability of the BM decoder.

Theorem 17:For a systematic linear MDS code, the uncon-
ditional SEP (BEP) of all the users is the same regardless of
the size of the partition assigned to each of them.

Proof Idea:For any two usersi andj, Oj
h = Oi

h = h
n
E(h),

regardless ofni andnj . For the average binary case, we also
haveÕj

h = Õi
h = h

mn
Ẽ(h).

Using the results in this paper, one could answer interesting
questions about the conditional multiuser error probability.
Since the code is linear, we will assume that the all-zero
codeword is transmitted. For example, the conditional CEP
given that no more than a fractionp of the jth user’s symbols
are received in error for any transmitted codeword is given by
1

ΦC(γ) =

n
∑

h=d

⌊pnj⌋
∑

wj=0

Oj(wj , h)

τ
∑

t=0

P h
t . (17)

(Recall thatE(h) =
∑nj

wj=0 Oj(wj , h).) Let O(0, nj ; h)
∆
=

|{c ∈ C : (W(c) = h) ∧ (W(Pi) = 0) ∧ (W(Pj) = nj)}|.
The conditional CEP given that a codeword error results in
all ith user’s symbols received correctly while alljth user’s
symbols received erroneously is given by

ΦC(γ) =
n

∑

h=d

O(0, nj , h)
τ

∑

t=0

P h
t . (18)

In general for ap-partition of the coordinates, letΩ andΥ
be the set of users (partitions) whose symbols are all received
correctly and erroneously, respectively, in case of a codeword
error. Let∆ be the set of users with no condition on their error
probability. The conditional error probability is calculated by
considering only the codewords which have a full weight for
the coordinates inΥ and a zero weight for the coordinates in
Ω. By considering only such combinations in the sum of (3),
the conditional PWGFP(X1,X2, ...,Xp) is derived.

1Conditional functions will have have the same notation as the uncondi-
tional ones except for an underbar.
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The conditional SEP of thejth user is

Φj
S(γ) = ΦC(γ)

∣

∣

∣E(h)⇒O
j

h

, (19)

where Oj
h =

∑nj

w=1
w
nj

Oj(w, h) and Oj(w, h) is the con-
ditional IOWE of the jth partition and is derived from
P(X1,X2, ...,Xp) (see (5)).

Similarly, for bit-level decoding of the code’s binary image,
Õj

h will be derived fromP̃(X1,X2, ...,Xp). This conditional
binary PWGF only takes into account such codewords that
have a zero weight for the partitions inΩ and a full binary
Hamming weight for the partitions inΥ.The conditional BEP
of thejth user follows by the substitutioñE(h) ⇒ Õj

h in (16).

Example 18:Consider an systematic(15, 11) RS code and
a partitionT = (3, 3, 5, 4) of its coordinates where the last
partition has the redundancy symbols and each of the first three
partitions is assigned to a different user. Let the RS code (in
fact its binary image) be transmitted over an AWGN channel
and decoded by the Berlekamp-Massey (BM) decoder. In Fig.
1, the unconditional CEP and SEP (which by Th. 17 is equal
to the SEP of the3rd user) are plotted. The conditional SEP of
the3rd user is plotted for three cases; a codeword error results
in user1 and 2 having a SEP of i) zero (labeled (0, 0)), ii)
zero and one respectively (0, 1), iii) one (1, 1). In Fig. 2, we
consider the case when the decoder is the soft-decision ML
decoder. Using the averaged binary PWE derived in this paper
and the Poltyrev tangential sphere bound [13], we calculate
the averaged conditional BEP of the third user given the three
cases; BEP of the first and second users are (0,0), (0,1) and
(1,1) respectively in case of a codeword error. The bounds on
the unconditional CEP and BEP are also plotted and are shown
to be tight by comparing with the simulations (for a specific
basis representation), ‘CEP Sim’ and ‘BEP Sim’ respectively.

It is observed, in Fig. 1 and Fig. 2, that the conditional
SEP or BEP of a specific user decreases as the number of
users receiving erroneous symbols, in case of a codeword error,

increases.

VIII. C ONCLUSION

In this paper, a closed form formula for the partition weight
enumerator of maximum distance separable (MDS) codes is
derived. The average PWE is derived for the binary image
of MDS codes defined over a field of characteristic two. We
show that for MDS codes, all the coordinates have the same
weight in the subcode composed of codewords with equal
weight. We prove that a code has this property iff its dual
code has this property. Consequently, it is shown that the
first order Reed Muller codes and the extended Hamming
codes have this property. A common approximation used to
evaluate the symbol and bit error probabilities is shown to be
exact for MDS codes. These results are employed to study the
error probability when a Reed Solomon code is shared among
different users and the decoder is either a bounded minimum
distance decoder or a maximum likelihood decoder.
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