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Abstract

A sphere decoder searches for the closest lattice poininaétcertain search radius. The search
radius provides a tradeoff between performance and coiityléx this work, we focus on analyzing the
performance of sphere decoding of block codes. The perfocmaf soft-decision sphere decoding of
linear block codes on AWGN channels and a variety of modulasichemes is studied. Hard-decision
sphere decoding on binary apeary symmetric channels is analyzed. We show how sphereddegof
Reed Solomon codes can out perform popular decoding digmsisuch as the hard decision Guruswami-
Sudan algorithm and algebraic soft decision decoding. Areupound on the performance of maximum
likelihood decoding of Reed Solomon codes oyeary symmetric channels is derived and used in the
analysis. We then discuss sphere decoding of general blmdscor lattices with arbitrary modulation

schemes. The tradeoff between the performance and comyptéxa sphere decoder is also discussed.

I. INTRODUCTION

Maximum likelihood (ML) decoding of linear block codes isdwn to be NP-hard [1]. A
decoder that utilizes the soft output from the channel diyeis called asoft-decision(SD)
decoder. On the other hand, if hard decisions are made ortke/ed bits before decoding, then

such a decoder is callechard-decision(HD) decoder. The optimum decoder is the corresponding
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HD or SD maximum likelihood (ML) decoder. Berlekamp’s tangg@nbound is a tighter than
the union bound for additive white Gaussian noise (AWGN) cieds [2]. Poltyrev derived tight
upper bounds on the performance of maximum likelihood dexgpdf linear block codes over
AWGN channels and binary symmetric (BSC) channels. Bounds klaségpical pairs decoding
were derived by Ajiet. al[3]. Other bounds such as the Divsalar simple bound and thatims
on the Gallager bounds are tight for AWGN and fading channgs[p]. For a broad survey
on bounds on the maximum likelihood decoding of linear codeg [6].

Fincke and Pohst (FP) [7] described a sphere decoder dgorvithich finds the closest lattice
point without actually searching all the lattice points. asf variation of it was given by Schnorr
and Euchner [8]. Other efficient closest point search dlgms exist (for a survey see [9]).
The sphere decoder algorithm was proposed for decodingdatbdes [10] and for detection in
multiple antenna wireless systems [11], [12]. Vikalo andssihi proposed HD and SD sphere
decoders for joint detection and decoding of linear bloateso[13] [14]. On the other hand, one
can think of a sphere decoder in a broader sense as any higdhat returns the closest lattice
point to the received word if it exists within a predeterndrsearch radius. By this definition of
a sphere decoder, the Berlekamp-Massey algorithm can bédeoss as a sphere decoder for
Reed Solomon (RS) codes with a search radius equal to half thienomn distance of the code.
Similarly, the algorithm recently proposed by Guruswamd &udan for decoding RS codes is
an algebraic sphere decoder whose search radius can betlagehalf the minimum distance
of the code [15].

There has a been significant amount of research dedicatdut tdesign of sphere decoders
with smaller complexities, complexity analysis of spheeeaters and the application of sphere
decoders to various settings and communication systemsevés, little research focused on
the performance analysis of sphere decoders. This papede@n a framework for the analysis
of the performance of sphere decoding of block codes overiatyeof channels with various
modulation schemes.

In this paper, we study the performance of soft decision igptecoding of linear block codes
on channels with additive white Gaussian noise and varioodutation schemes as BPSK, M-
PSK and QAM [16]. This is done in sections Il and Il respeelyv Bounds on the performance
of hard decision sphere decoding on BSC are derived in set¥ioifhe application of these

bounds to the binary image of Reed Solomon codes is also igat=d. We then, in section



V derive bounds on the maximum likelihood performance;@lry linear codes, such as Reed
Solomon codes, ovej-ary symmetric channels. This bound becomes handy wheryzngl
the performance of sphere decoding of Reed Solomon codegamy symmetric channels.
Furthermore, we show, in section Ill, how one can analyzepgrormance of a soft decision
sphere decoder of a general block code with a general maalulstheme. In many settings, we
support our analytic bounds by comparing them to numericalilgtions. The tradeoff between

performance and complexity is discussed in (VI). Finallg gonclude our work in section VII.

II. UPPER BOUNDS ON THE PERFORMANCE OF SOFT DECISICBPHEREDECODING OF

BPSKAND M-PSKMODULATED BLOCK CODES.

In this section, we consider a sphere decoder when the ntaxtula binary or M-ary phase
shift keying (PSK) [16]. Each transmitted codeword in theledas the same energy when
mapped to the PSK constellation. For the case of MPSK maddualatomplex sphere decoding

algorithms which solve the closest point search problemevdeveloped in [17].

A. Preliminaries

We will introduce some notation, so the bounds derived hexeeadily applicable for both M-
ary and binary phase shift keying (PSK) modulation. We assthatC is an(n, k) linear code.
Each codeword of length will be mapped to a word a#/-PSK symbols. The number of channel
symbols will be denoted by.. If the codeC is binary and of length, thenn, = [n/log,(M)].
For BPSK,n. = n. Note that the original code need not be binary. For exammbeReed
Solomon (RS) code defined oves~ could be mapped directly to ati*-ary PSK constellation
by a one-to-one mapping from the symbolskis. to the2™ points in the PSK constellation.

For PSK signaling, the code will have the property that alllegords are of equal energy
and lie on a sphere of radiugn. from the origin of space. Let,; denote the dimension of
the considered space (noise). For the case of BPSK modul#ierdimension of the Hamming
space is the same as the number of channel symbols fhits)n.. On the other hand, for MPSK
signaling, M > 2, each complex channel symbol has a real and an imaginaryawenp Thus
the noise hag n. independent components and the dimension of the spacg=s2 n..

Assuming that a codeword € C is transmitted over a binary input AWGN channel, the

received word isy = x + z, wherex = M(c) and M(c) is the mapping of the codeworel



under PSK modulation, i.e., for BPSK modulatig#(c) 2 1 —2¢. The additive white Gaussian
noise (AWGN) is denoted by = [z]¢, with varianceo?. Let G,, be the number of codewords
which (after mapping) are at an Euclidian distaagefrom each other. Note that for the case of
BPSK modulation and a binary codethe space is a Hamming space and the Euclidean distance
is directly related to the Hamming distanég,= 2./w, wherew is the Hamming distance. QPSK
modulation and Gray encoding also result in a Hamming spa8gdy 6., = v2w, wherew is

the (binary) Hamming distance between the codewords. Rgplgiity in the following analysis,

we will assume that the modulated code is linear and the sigagdHamming space.

B. Analysis of Soft Decision Sphere Decoding

A soft-decision sphere decoder with an Euclidean radislenoted by SSO9), solves the

following optimization problem,

A : B 2
¢=argmin ||y — M(v)| 1)
subjectto  |ly — M(v)|* < D?,

where||z|| is the Euclidean norm ct. Such decoders includist-decoderghat list all codewords
whose modulated image is within an Euclidean distaildeom the received vectay and choose
the closest one. If no such codeword exists, a decofdiiigre is signaled. A decodingrror is
signaled if the decoded codeword is not the transmitted worte
Let £y denote the event of error or failure of SSD)( then the error plus failure probability,
P(&p)tis
P(&Ep) = P(Ep|émr)P(Emr) + P(Ep|Syr)P(Sumr), 2

where &,,;, and S,,;, denote the events of an ML error and an ML success respsactivet
¢ = |ly — M(c)||, then an ML error results if there exists another codeword C such that
ly — M(&)]|| < e. Since limiting the decoding radius #© will not do better than ML decoding,
then P(Ep|Ey) = 1. By observing thatP(S,,.) < 1, it follows that an upper bound on the
decoding performance is

P(Ep) < P(Emr) + P(Ep|Sur). 3)

Through out this papet?(X) will denote the probability that the everf occurs.



Let 2p be the Euclidean sphere of radids centered around the transmitted codeword in the
ng dimensional space. The probability that the added whites&an noise will not lie in the
sphereQ2p, is

P(z ¢ Qp) = P (xn, > D*) =1 —T\,(ny/2,D*/257) (4)

n

wherey, = > | 27 is a Chi-squared distributed random variable witlilegrees of freedom.
Let I'(x) denote the Gamma function, then the cumulative distrilbutimction (CDF) ofy, is

given by the regularized Gamma functidn [18],

w pv/2—1g—t/2 .
PR g > 0;
T, (v/2,w/2) = { e : (5)

0, w < 0.

Lemma 1:A lower bound onP(&p) is P(Ep) > P(z ¢ Qp).

Proof: The sphere decoder error plus failure probability could bigten as
P(Ep) = P(&plz € Qp)P(z € Qp) + P(Ep|z ¢ Qp)P(z ¢ Qp)

> P(Eplz ¢ Qp)P(z ¢ Qp)

= P(z ¢ Qp),

where the last inequality is becaus¥&p|z ¢ 2p) = 1 which follows from the definition of
the sphere decoder (1). [ |
Define P(€,,) to be an upper bound on the SD-ML decoder error probabitigntwe have
the following lemma,
Lemma 2: P(Ep) < P(Emz) + P(z ¢ Qp).

Proof: Given an ML success;p will only be due to failures of the SSIDY) decoder, i.e.,
P(Ep|Sur) = P(|ly — M(c)|| > D) = P(z ¢ Qp),

where the last equality follows from the linearity of the eoahd without loss of generality one
could assume that the all zero codeword was transmitted. Byititen, P(E,;,) < P(SML). By
substituting in(3) we are done. u
Lemma 2 provides a way to bound the performance of sphereddegof linear block codes
on a variety of channels where additive white Gaussian neis&dded and for a variety of
modulation schemes. For example, it can be used in conpumetith the Divsalar bound [4]

to give an upper bound on the performance of sphere decodinmear block codes over



independent Rayleigh fading channels.Af€y,.) is the union upper bound on the codeword
error probability [16, Ch.8] for BPSK modulation on an AWGN chah) then
P(€p) <Y GuQ(v/27Rw) + P(z & Qp), (6)
w>1
whereG,, is the number of codewords with (binary) Hamming weighty is the bit signal to
noise ratio (SNR) and is the rate of the code.

Lemma 1 implies that one could obtain a tighter upper boundP¢fi,) by tightening the
bound on the ML error probability?(£,.,). Shannon’s sphere packing bound [19] is a lower
bound on the error probability where Shannon showed tha¥dhenoi region of a codeword can
be bounded by a right circular,-dimensional cone with the codeword on its axis. Poltyrev’s
tangential sphere bound (TSB) is one of the tightest boundtherML performance of soft
decision decoding of linear codes on AWGN channels with BPSKIBISK modulation [20],
[21] and is calculated by,

P(EML) Sm@iH{P(SML,Z S Vg)—FP(Z ¢‘/9)}, (7)

whereV, is anng-dimensional right circular cone with a half anglevhose central line passes
through the transmitted codeword and whose apex is at andeaal distance/n. from the
transmitted codeword. Let the minimum of the optimizatisalgpem in (7) be achieved &t= ¢,
then by Lem. 2 we have the following upper bound (which istighhan (6) in case of BPSK)

P(&p) < P(Emr,z € Vy) + P(z ¢ Vy) + P(z ¢ Qp). (8)

For the TSB, the optimum angle is related to the radiug/7, (see Fig. 1 or Fig. 2) by
tan(¢) = /rys/n., such that, is the root of this equation [21]

/ Op(10) T B \/7_1{‘("(17_2)
g]Gb(’/’o)/; Sin (ﬁ)dﬁ = F(TJT_I) (9)

when solved forr,, wheref,(r,) 2 cos! (%) and
7"0(1*55/47%)

Gy(ro) = (10)

Gy, 024 <r,(1—06%/4n.);
0, otherwise.
Let z; be the component of the noise along the central axis of the @ath a probability

distribution function (PDFW (z;) = \/;76_Z12/202 and z, be the noise component orthogonal




to z;. Define 8., (w) 2 Zic_i andr,, (¢) 2 NG <1 — j%) then the ML error probability

Lo .
given that the noise is in the conel is [20]

721 (¢)
> Gilry) N ()T,

6b>0 ﬂzl (b)

o ) 2 2
P(SML,Z & V¢) == / N(Zl) (nd2 , 70,21(25())_2 29

) dzg| dz;.
(11)

C. A Tight Upper Bound

We observe that instead of directly substituting the TSBff¢r P(€y,.) in Lem. 2 as we
did in (8), one can find an upper bound which is tighter thank)noticing that the events
{z ¢ Vy} and{z ¢ Qp} are not in general mutually exclusive.

Lemma 3: P(&p) is upper bounded by

P((C:D)Sp(gML,ZEV¢)+P(Z¢QD)+P({Z¢V¢}Q{Z€QD}).

Proof: Using Bayes’ rule and defining the regidi6, D) = {VoNnQp} we get
P(&p) < mein{P(ED|z € AN0,D))P(z e A0,D)) + P(Eplz ¢ A(0,D))P(z ¢ A(0,D))}.(12)

From the definition ofA(¢, D), it follows that P(Ep,z € A(0,D)) = P(Eyp,z € A0, D)) <
P(Enr,z € Vi), where the last inequality follows from thét(d, D) C Vj. Using P(Eplz ¢
A(0, D)) <1, it follows that

P(€p) < min{P(Eur,z € Vp) + P(z ¢ A0, D))}

< P(Emp,zeVy)+P(z¢ {VsnNQp}). (13)

The last inequality is due to the observation thatloes not necessarily minimize (13). By de
Morgan’s law,{V, N Qp}° = {Qp} U {{V,}*NQp}, {.}¢is the complement of.}. n
We consider two cases;
Case A: The spherf, lies totally inside the con&,. (See Fig. 1).This case is equivalent
to the eventA 2 {D < D}, where

Dy = \/n.sin(¢), (14)



and will be called the critical decoding radius. It followsat P ({z ¢ V,} N {z € Qp}|A) =0,
which could be substituted in Lem. 2. Furthermore, siA¢e, D) = Qp, it follows from (12)

that a tighter upper bound is
P(gD‘A) SP((C;ML,Z € QD)+P(Z ¢ QD) (15)

The joint probability of the added noise falling inside a sphof Euclidean radiu® and an

ML error could be expressed as

D 1 D2_ 2
PEwr.z€)= Y. G / N(z)T, ("d %) dz,. (16)
%
0<% <D 2

2 7 202

Let ¢ be the half angle at which the coig is tangential to the sphefep, » = sin™*(D/\/n)
(see Fig. 1), then another tight upper bound is

P(Ep|A) < P(Eyip, 2z € V) + Pz ¢ Qp). (17)

Theoretically, it is clear that the bound of (15) is tightban that of (17), but numerically
they are almost equivalent, since the integration over ¢igéon {2, (" V,,} is negligible. Note
that P(Exrr, 2 € V,,) is easily calculated using equation (11) whese(y) = +/r,/n. and
rzl(gp):\/r_@<1—j%c). O

Case B: The spher@), intersects the con&j. (see Fig. 2) We have two cases depending on

the position of the apex of the cone. The first is when the apgkeocone does not lie in the
sphere,/n.sin(¢) < D < /n. (see Fig. 2a) and the second is when the apex lies in the sphere
D > \/n. (see Fig. 2b). In both cases the following analysis holds.the origin,O, of then,-
dimensional space be at the transmitted codeword whiclsesthe center of2,. Since the cone
and the sphere are symmetrical around the central axis, @jegpron a two dimensional plane

as in Fig. 2. The radial component of the noise (along the aixtbe cone) isz;. The altitudes
ya(¢) andy,(¢) at which the (double) cone intersects the sphere are fousdlstituting the line
equation? = P +U(P,—P1), whereP = (z,y), P, = (0, /n.) andP, = (2y/n. tan(¢), —y/nc)

into the quadratic equation of the sphere. It follows that(¢) = \/n.(1 —2U.s(¢, D)), where

4dn, £ \/167%2 — 16n.sec?(0)(n. — D?)
8n.sec(0) '

It is easy to check that ab = /n., w, = 0 andy, is at the apex o¥/. If D > ,/n. then the

Uap(0,D) =

intersection aty, is in the lower nappe of the cone. It is also observed taand 2, do not



intersect Qp C Vy) if 16n? < 16n.sec®(¢)(n. — D?) or equivalentlyD < ,/n.sin(¢) which is
Case A.
DefineB to be the evenB 2 {D > \/ncsin(¢)}, f.-1(t) to be the PDF ofy,_1 = >, 22,

andw? = D? — 27 (see Fig. 2). From Lem. 3, the error probability is upper limchby
P(ED‘B) < P(gML, A V¢) + P(Z ¢ QD) + P({Z ¢ V¢} N {Z S QDHB) , (18)

where by Fig. 2

A w2,
Pz V(=) = [ A / ey, (19)
Ya (@ Tgl ¢

The tight upper bound is summarized in this theorem,

Theorem 4:The performance of soft decision sphere decoding with aridaan decoding
radiusD of a linear code with (Euclidean) weight spectrdmon an AWGN channel with noise
varianceo? and (binary or M-ary) PSK modulation is upper bounded by:

( D o—23/202 ng—1 D?*—22
Z0<%<D G f%b Nor=ail ( o T ) dz,
+1 — T, (na/2, D*/25?), D < \/n.sin(¢);
[e'e) Tz ng— Tg (d))fzg
P(Ep) £ [T N (1) [0 Ghlra) [0 N ()T (252, B2 ) dzy | sy
+1 —T,(ng/2, D?/20?)

ng— wzl ng— Tgl (¢) .
\ 4 yib(((f)) (F’r‘ ( + L 202) -1, < + L L )) N (z1)dz D > \/n.sin(¢),
where¢ is the half angle of the cong, and is given by (9). &

Following the proof of Lemma 3, the error plus failure proftibof SSD(D) is upper bounded
by
P(€p) < P(Ep,z € M9, D)) + P(z ¢ Mo, D)). (20)

From the previous arguments @ases AandB, the following theorem provides a slightly tighter
upper bound than that of the previous theorem.
Theorem 5:The performance of SSIY) for BPSK or MPSK modulation is upper bounded
by
P(Eyp,z € Qp)+ P(z ¢ Qp), D < \/n.sin(9);
P(Ep) <8 P(Eyp,z € AM(¢, D))+ P(z ¢ Qp)+
P({z ¢V, n{zeQp}), D > \/n.sin(¢)
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Observe that the difference from Theorem 4 is that the tB(&, ., z € A(¢, D)) was upper
bounded byP(Eyr, z € V(¢)) in Theorem 4. Consider a codeword at a distafgethen the
half angle of the cone bisecting this distancé,is= sin~"(4,,/2,/n.) (c.f. Fig. 2). This cone will
intersect the spher@y, at altitudesr, (w) andz,(w) given byz,,(w) = /nc(1 =2 Uqp(0w, D)).

Now define the integrals

) 202

Ty, w,21) 2 N (21) [y N )T (252,572 ) do, (21)

To(w) = [ T(w,,,w, 21)dz + fyib(((f)) Z(r,,(¢),w, z1)dz +fy:ib(;1§) T(w.,,w, z1)dz;. (22)

ZTa(w)
Taking the union over all codewords with non-zero Euclideanghts such tha#,, < ¢ , it
follows that for D > /n.sin(¢),

P(Eyp,z € M¢, D)) = Y Gi(rg)Ta(w). (23)

6p>0
D. A Note on Reed-Solomon Codes

Consider the case when the binary image of an Reed-Solomon (®8) defined oveF,n,
is transmitted over an AWGN channel and the decoder is eithéDar SD sphere decoder.
Tight upper bounds on the performance of HD and SD maximueiliikod decoding of the
binary images of RS codes were developed by El-Khamy and Mc&lj22] by averaging over
all possible binary representations of the RS code. We ussahe technique here to analyze
the performance of the sphere decoders, where the avenagey veight enumerator of the RS

code (see [22]) is used as the weight spectrwijrof the binary linear code.

E. Numerical Results

In Fig. 3, we show how the bounds derived for M-ary modulatgtesical codes are tight. The
simulation curves and the analytical bounds will be labddgdsim’ and ‘bnd’ respectively. A
codeword in thg24,12) Golay code is mapped intt2 QPSK symbols and transmitted over an
AWGN channel. As observed, the simulated performance of theddtoder and the SD sphere
decoder [13] are tightly bounded by the bounds given in thgisn. The critical decoding radius
in the 2 x 12 dimensional space i®, = 2.667.

In Fig. 4, the performance of SD sphere decoding of the biimaage of the(15,11) RS code,

BPSK modulated over an AWGN channel, is investigated. The Mifop@mance is simulated
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by means of the MAP decoder, and it is observed that the asdrdfl. bound is tight [22].
We simulated the performance of SD sphere decoding when eébedihg radius was and

3.5 respectively. Our analytical bounds almost overlapped whte simulations. The critical
decoding radius isD, = 4.588. A decoder with an Euclidean decoding radius fohas a
near ML performance at an SNR 6fdB. For reference purposes, we plot the performance of
the hard-decision Berlekamp-Massey (BM) decoder and thébed@esoft decision decoder by
Koetter and Vardy [23]. It is worth noting that algebraic tsdécoding can also achieve near
ML performance [24], [25].

IIl. SPHEREDECODING OFLATTICES

In this section, we consider the case of soft decision sptieceding of a general lattice or
codeC. In contrast to the case of section Il the code is not comstrhio be a linear code and
the transmitted codewords are not constrained to have a émedyy . The channel symbols of
a transmitted codeword are also not required to have the smewgy. Defing5, (i) to be the
number of mapped codewords with an Euclidean distapcieom theith codeword. Given that
¢; is transmitted, let the error probability of SSD(D) be uppeunded byFP;(Ep). By taking
the expectation over all codewords,

PED) < 157 3 PiED). (24)

c;eC
Now, if we assume thak;(Ep) is of the union bound formP;(Ep) = >, Gw(z’)Pi(“’) (€p), where
Pi(w) (€p) is the probability of a sphere decoder error due to incoyettcoding a codeword
at a distance),, when ¢; is transmitted. The error probability of SSD) can thus be upper
bounded byP(Ep) < > -, GuP™ (Ep), Where P™)(Ep) is the probability that the sphere
decoder erroneously decodes a codeword at a distgné®m the transmitted codeword and
Gy = % > Guli), (25)
cieC

is the average number of codewords which are at an Euclidéstanded,, from another
codeword. For an arbitrary finite code or latti€eusing arguments from the previous sections,

the error probability SSDOP) can be upper bounded by

P(SD) S l‘grlli% {P(EML,Z € QD/) + P(Z Q_f QD/)}, (26)
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where P(z ¢ Qp) is given by (4) and

P&y, z €Qp) = Z /

0<% <D

The Hughes upper bound on the ML error probability?i&€,,,,) < minp P(¥(D)) [26], where

nd—l D? — 22

722/20 I ( -

27‘(‘0’2 2 20

)dz. (27)

(D) 2 P(Eyy.z € Qp) + Pz ¢ Qp). (28)

The radiusD, that minimizes this error probability is the root of the etijoia [27]

2. G /stm )~ zde_fr(nd ), (29)

0<®® <D ( 2 )

wheref,, 4 = cos™'(4,,/2D). From (26), the upper bound on the sphere decoding erroepititly
is given by

P(Ep) < (D), D < D,; .
¥(D,), D =D,

Furthermore, the optimum radius, does not depend on the channel and can be the radius
of choice for near maximum likelihood decoding. The boundefigped here is universal in the
sense that also applies for the case of a linear code withl empeagy codewords. However, it
is to be noted that the Hughes bound on ML decoding is notdigiian the Poltyrev tangential
sphere bound [28].

For the case of\/-PSK modulation of a linear code, the constellation may msult in a
Hamming space if\/ > 4. In such a case the ensemble average weight enumerataan be
used with the bounds of Sec. Il to analyze the performandee @ame technique can also be
used with the results in next sections.)

Example 6:Assume an(15,3) RS code overFjs and assume a one-to-one mapping from
the symbols ofFs to the points of anl6-QAM modulation [16], whose average energy per
symbol is10. The ensemble weight enumeratGy, was numerically computed to evaluate the
bounds. The radius that minimizes the bound on the ML errobgiility is D, = 12.9. In Fig.

5, we confirm that the bounds on the sphere decoder error lptibpagree with the simulations
for the case ofD = 10. We also compare the simulated performance of ML error hitiba
P(Eyvr, z € Qp) to that of the analytic performance in both cases. At low SNfRsrobability
is low as the probability of the received word falling insithe sphere is relatively low. As more

received words fall inside the sphere, the ML error probighimhcreases as the SNR increases. At
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a certain SNR, the probability of the ML error starts decnegslue to the improved reliability

of the received word.

IV. PERFORMANCE OFSPHEREDECODING ONBINARY SYMMETRIC CHANNELS

In this section, an upper bound on the performance of the-tiectsion sphere decoder, when
the code is transmitted over the BSC, is derived. Transmititgnary codeword over a binary
input AWGN channel followed by hard decisions is equivalentransmitting it on a BSC with
a cross over probability = Q(v/2R~) where~ is the bit signal to noise ratio. In case of M-PSK
signaling with gray encodingy ~ .. wherep, = 2Q (v/2kvsin ) [16].

Let y be the received word when the codewards transmitted over an BSC channel. The

HD sphere decoder with radius, HSD(n), finds the codeword, if it exists, such that

¢=argmin  d(y,v) (30)

subject to d(y,v) <m+1,

where d (y,v) is the Hamming distance betwegnand v. Let ( = d(y, ¢), then, from the
linearity of the code, the probability that the received ava outside a Hamming sphere (ball)

of radiusm — 1 centered around the transmitted codeword is

n

P(¢=m)=)" (?)pt(l —p)" (31)

t=m

Poltyrev [20] derived a tight bound on the performance of k&ML decoder based on,

m

The minimum of the above equation is7at, wherem,, is the smallest integer. such that [20]

2m “ b\ [n—0b n

>y ()= @)
b=1 r=[%]

We now turn our attention to the HD sphere decoder with antraryi decoding radius. Let

P(%,,), be the error plus failure probability of the hard decisiphere decoder, HSD( — 1),
then P(%,,) could be written as

P(Xn) = P(Xm, ¢ <m) + P(Xn|¢ 2 m)P(¢ = m)

= P(Eymr, ¢ <m)+ P(¢ > m), (34)
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where we used the fact th&t(X,,|¢ > m) = 1 and the observation that given thak m, the
conditional error probability of the HSP{ — 1) and the HD-ML decoders are the same. The
last term in the above equation is a lower bound on the fajuobability of the HSDf — 1)
decoder. Similar to soft decision case, we have the follgwamma,

Lemma 7:A lower bound on the performance of a hard decision sphered#ggcHSD{n — 1),
over a BSC with parameteris P(%,,) > > (7)p'(1 —p)" .

To develop a tight upper bound dn(%,,), we consider two cases:

Case I: The decoding radius. > m,. Equation (34) could be written as

P(X|m >m,) = P(Enr, ¢ < my) + P(Enr,mo < ¢ <m)+ P(C >m).
It follows that P(3,,|m > m,) < P(Emr, ¢ < m,) + P(¢ > m,). We observe that the upper
bound reduces to that of the HD-ML case (32). By recalling thatminimum of (32) is achieved
at m,, the bound of (34) is looser than (7) when> m,. The intuition behind this is that the
performance of a sphere decoder with a decoding radiyis- 1 or greater approaches that of
the ML decoder.

Case II: The decoding radius: < m,. Noticing that the spheré( < m} C {{ < m,},
P(%,,m < m,) is indeed given by (34).

Thus, we have proved the following theorem,

Theorem 8:The performance of a hard-decision sphere decoder with @ddeg radiusn — 1
when used for decoding a linear code with a weight spectfiynover an BSC channel with a

cross-over probability is upper bounded by

Py < P(Emr, ¢ <mo) + P(C>my), m>m,;
T PEmn,C<m)+P(C>m), m<m,

(39)

wherem, is radius that minimizes (32) and is the solution of (33)¢ > m) is given by (31) and

the joint probability of an HD-ML error and(y, ¢) < m is upper bounded by the union bound
[20), P(Exre, € < m) < 350 Gy Ty [(pr (1 =0 0 () (= )]

A. Numerical Examples

In this subsection, the bounds developed for SD and HD spiereding are evaluated and
compared with the performance of the corresponding sphemedirs, [13] and [14] respectively.
In Fig. 6, we compare the analytical bounds to simulationspifere decoding of afl5, 7)

BCH code BPSK modulated and transmitted over an AWGN channel.nTihenum distance
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of the BCH code is5. The critical decoding Euclidian radius of the soft deaisabecoder is
D, = 3.17 while the critical Hamming decoding radius of the hard deciglecoder isn, = 3.
We observe that the simulated performance is tightly uppemded by the analytical bounds
of theorems 4 and 8 for soft and hard decision sphere decaésyectively. The larger the

decoding radius the nearer the performance is to maximuetilixod decoding.

V. PERFORMANCE OFSPHEREDECODING ONQ-ARY SYMMETRIC CHANNELS

Now consider an(n, k,d) RS code and a hard-decision sphere decoder which can cerrect
symbol errors, where the symbols arefip The Berlekamp-Massey algorithm is a well known
polynomial time algorithm that can correctly decode wordsch are at a (symbol) Hamming
distance ofrgy = [”%’“j from the transmitted codeword. The error probability of hded
distance decoding of RS codes is well studied (cf. [29]). Ri#geBuruswami and Sudan [15]
developed a list decoding algorithm that can correct upto= [n—+/nk—1] symbol errors. To

analyze this case, we first derive a bound on the performaittee @orresponding ML decoder.

A. Bound on the Maximum Likelihood decdoding of linear blookles ong-ary symmetric

channels.

We will assume arin, k, d) linear code over, transmitted over g-ary symmetric channel.
The probability that a symbol is correctly received will bendted bys, while the probability
that it is received as another symbol will pe= (1 —s)/(¢ — 1). Transmitting ag-ary code over
an AWGN channel followed by hard-decision can be modeled assinitting it over ag-ary
symmetric channel. Assume that= 2™, the channel alphabet sizeds b < m, and each-ary
symbol is mapped ten/b channel symbols. Let. be the probability that a channel symbol is
incorrectly decoded, then= (1 — p.)™/*. For example, if the channel is a BPSK channel with
a bit signal to noise ration, ¢ = 2™ and the binary image of the RS code is transmitted, then
a g-ary symbol is correctly received if all the bits in its binary image are correctly received,
e (1-Q (25"

Let ¢ be the Hamming distance between the transmitted codewartharreceived-ary word.

Then, similar to the binary case, the ML error probabilityydse upper bounded as follows,

P(SML) Smin{P(EML,C <m)+P(C Z m)} (36)

m
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Assuming that the code is linear, the probability that theeneed g-ary word lies outside a

Hamming sphere (ball) of radius — 1 centered around the transmitted word is

n

n
PEzm =3 (0o 37)
The above equation will also provide a lower bound on thequarance of the sphere decoder.
The first term in (36) is upper bounded in the following lemma.
Lemma 9:For an (n, k,d) linear code overF,, with a weight enumerato&,,, transmitted

over ag-ary symmetric channel with parametersindp,

2(m—1) m—1 w—o ]
P((C:ML,C < m) < Z Gw Z Z (n'a'( w: )'pn(l —p— S)asw—n—a (38)

w—1m—«
=d a=0 p=[u-a "
m—1—-n—«a N — w 5 s
Z (1—39)"s .
p=0 b

Proof: We will assume that the all-zero codeword is transmittedvonsider a codeword
c with Hamming weightw and assume the received wordhas a Hamming weight:' — 1.
Consider thev nonzero symbols i and the corresponding coordinatesrinLet » and ¢ have
the same symbols in of these coordinates. Let of thesew coordinates in- be neither zero
nor match those i, andw — n — o of the remaining coordinates be zero. Since the Hamming
weight of r is m’ — 1, there must ben’ — 1 — n — a non-zero symbols in the remaining— w
coordinates and the remaining symbols will be zero. The gdvdity of receiving such a word
is W_’n_a)!p”(l —p =) () (= g)m —lmn—agn—w—(m'=1-n-a) |n sych a case,
the Hamming distance betweenandc is w +m' — 1 — 2n — a. An ML error result if this
is less than the weight of, i.e., if n > [“Z2]. By summing over all possible combinations
of n and o and applying the union bound for all codewords that can bé&iwia Hamming
distancem’ from », the error probability is upper bounded @3}%_1) G Zgigl Z::}a%w
<W_’n_a)!p”(1 —p— 5)¥gwTI (m/fl__ﬁ_a)(l — s)ﬁs"—w—(m'—l—"‘“)>. Applying the union
bound for all received words with Hamming weights less thanm’ < m, the result follows.

u
We are now ready to prove the following theorem,

Theorem 10:The ML error probability of ann, k, d) g-ary linear code on g-ary symmetric
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channel is upper bounded by

2(mo—1) mo—1 w—a

P(Ey) < Z G Z Z (lalw n_a)lpn(l_p_s)asw_n_a

|'1,U Ot'l

X (5 e (oo

£=0
wheremo is the smallest integer such that

ZG Z(i:i)a g (qi1)nn!a!(wl—0!n—a)!(mn—_¢7@i&)2(:1) (39)

=521
Proof: The upper bound follows by substituting (38) and (37) in (3Bbserve that the

first term in (39) is increasing im while the second is decreasingim. Optimizing over the
radiusm, the minimum is achieved at the first integersuch that
22(771 Gy Za 0277 [=a (Wwp (1 —p— S)Oésw—n—a(m"__nlﬁa)(l — S)m—n—a
shmwmmEnte) > (M) (1 — s)ms"~™. This reduces to the condition of (39). |

It is worth noting that the optimum radiug, which minimizes the bound on the ML error

probability only depends on the weight enumerator of theecadd the size of its finite field.
Since the optimum radius does not depend on the SNR, it is f@lig-ary symmetric channels
at any SNR. Similar to the binary case [20], we establish bedogonnection betweem, and
the covering radius of the code.

Lemma 11:The covering radius of a linear code &) is lower bounded byn, — 1 , where
m, IS given by Th. 10.

Proof: DefineL(m) to be the left hand side term in (39) anglto be the all zero codeword.
Similar to the proof of Lem. 9, one can show thgt— 1)"L(m) = [{r € F} : d(r,c,) =
m & d(r,c;) <m; ¢ € C\e}| Also, (g—1)™(") = {r € F : d(r,c,) = m}].
Since(q — 1) ' L(my — 1) < (¢—1)™'(,," ), it follows that there exit words € F' such
that mineee d(r, ¢) = m, — 1 and this minimum is achieved whenis the all zero codeword
c,. By recalling that the covering radius is [30). = maxyery mineec d(r, c), it follows that
R.>m,—1. [

B. Hard Decision Sphere decdoding of linear block codeg-@my symmetric channels.

Here, we consider the case when the decodergsigy hard decision sphere decoder. As for

the binary case, the HSb — 1) can correctly decode a codeword if the numbeg-ai’y symbol
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errors ism — 1 or less. Thus Th. 8 will give the bound on the error plus falprobability of
the sphere decoder. However, in this caBé; > m), P(Eyr,( < m) andm, are given by
(37), (38) and (39) respectively.

C. Numerical Examples

In Fig. 7, we show bounds on the performance of HD decodingnefriear half raté31, 15)
RS code overfs, when its binary image is transmitted over an AWGN channebfedid by
hard-decisions. The optimum binary decoding radiuis8isThus the closer the decoding radius is
to 18, the better the performance of the sphere decoder. The HRMMbder has more thadB
coding gain over the Berlekamp Massey (BM) decoder, which carect8 symbol errors. It is
observed that the average performance of an HD sphere dewstiea (binary Hamming) radius
8, closely upper bounds that of the HD-BM decoder that can cob8reymbol errors. The HD-GS
decoder can correct one more symbol error than the BM decdterperformance of the GS
algorithm is analyzed by modeling it a§-ary HD sphere decoder of radidsConsequently, one
can observe that a hard-decision sphere decoder with aylileaoding radius of(0 outperforms
the symbol based GS decoder.

In Fig. 8, the binary image of th@ 5, 3) RS code is BPSK modulated over an AWGN channel.
For 16-ary hard decisions, the channel is modeled as an QSC. Therparice bound of the
hard ML (H-ML) decoder is shown ( Th. 10) and is the same as ab l86radius 9. The
bounds of (37) and (38) are also shown and labeled (@3 and £(9) respectively. As seen, the
three bounds (‘bnd’) are in close agreement with the simanatsim’), for such a hypothetical
sphere decoder. The error probability of the GS decoder raithus8 is simulated and agrees
with the bound of Th. 8. For reference proposes, we show teeage error probability of the
soft decision bit level ML (S-ML) decoder (cf [22]) which hadout4 dB gain over the symbol
H-ML decoder.

VI. A NOTE ON COMPLEXITY

In Fig. 9, the empirical complexity exponents of SSD of tf#d, 12) Golay code BPSK
modulated over an AWGN channel are shown. It is clear that flarger decoding radius there
is a price paid in terms of the complexity. We also show the gemity of the SSD whose radius

changes such that with a probability 09 the transmitted word is inside the sphere centered
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around the received one. At a slighter increase in averageplexity one can achieve ML
decoding, by gradually increasing the decoding radiud antrord is found. The corresponding
complexity is shown asr?0.90 + cumulative’. The variation of the radius versus the SNR is

shown in Fig. 10. The expected complexity of sphere decodiaig thoroughly analyzed in [31].

VIlI. CONCLUSIONS

Bounds on the error plus failure probability of hard-deaisamd soft-decision sphere decoding
of block codes were derived. By comparing with the simulaiohthe corresponding decoders,
we demonstrate that our bounds are tight. The ML performaficedes ong-ary symmetric
channels is analyzed. The performance of sphere decodiiRpefl Solomon codes and their
binary images was analyzed. Moreover, the bounds are eslyemseful in predicting the per-
formance of the sphere decoders at the tail of error prabalihen simulations are prohibitive.
The bounds allows one to pick the radius of the sphere dedbdérbest fits the performance,

throughput and complexity requirements of the system.
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Fig. 2. Case B:The spherep intersects the con¥,; the apex of the con® lies outside the sphe@p (\/ncsin(¢) <
D < /nc). In caseD > ,/n., the apex of the con#&}, lies inside the spherp.
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Sphere Decoding of (24,12) Golay Code, QPSK modulation over AWGN
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Fig. 3. Bounds on the performance of soft-decision sphere decaditite (24, 12) Golay code when QPSK modulated over
an AWGN channel.
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Soft Decision Sphere Decoding of (15,11) RS Code
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Fig. 4. Bounds on the performance of SSD of a binary image of(ile11) Reed Solomon code BPSK modulated on an
AWGN channel.
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OSSD Bounds for 16-QAM modulated (15,3) RS codes, SSD(10)
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Fig. 5. The(15,3) RS code is 16-QAM modulated and transmitted over an AWGN channel. jineres decoder is a soft
decision sphere decoder with an Euclidean radiu¥he bounds are compared to simulations for a sphere decoding ML err

and the error plus failure probability.
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Fig. 6. Bounds on the codeword error rate of soft-decision and #heciion sphere decoding of tig5, 7) BCH code BPSK
modulated over an AWGN channel. The simulations (labeled by ‘sim’) ahglyigipper bounded by the analytic bounds (labeled
by ‘bnd’) .
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Hard Decision Sphere Decoding of (31,15) RS code
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Fig. 7. Bounds on the performance of hard-decision sphere deroflithe (31,15) RS code BPSK on an AWGN channel.



28

(I)Derformance of 16—ary HSD(9) of (15,3) RS codes, BPSK on AWGN
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Fig. 8. The(15,3) RS code is BPSK modulated and transmitted over an AWGN channel. Fo6thgy hard-decision decoder,
the channel is an QSC. The bounds are compared to simulations foeeesgdcoding ML error, sphere decoding failure, and

their sum (error plus failure probability) The optimum radius for the ML fbis 9. The GS radius is.
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Complexity exponents —— various scenarious
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Fig. 9. Complexity exponent for SSD of the4, 12) Golay code.
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Fig. 10. Statistical Decoding Radius vs Fixed Decoding Radius fof2Hel12) Golay code.



