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Abstract

A sphere decoder searches for the closest lattice point within a certain search radius. The search

radius provides a tradeoff between performance and complexity. In this work, we focus on analyzing the

performance of sphere decoding of block codes. The performance of soft-decision sphere decoding of

linear block codes on AWGN channels and a variety of modulation schemes is studied. Hard-decision

sphere decoding on binary andq-ary symmetric channels is analyzed. We show how sphere decoding of

Reed Solomon codes can out perform popular decoding algorithms such as the hard decision Guruswami-

Sudan algorithm and algebraic soft decision decoding. An upper bound on the performance of maximum

likelihood decoding of Reed Solomon codes overq-ary symmetric channels is derived and used in the

analysis. We then discuss sphere decoding of general block codes or lattices with arbitrary modulation

schemes. The tradeoff between the performance and complexity of a sphere decoder is also discussed.

I. I NTRODUCTION

Maximum likelihood (ML) decoding of linear block codes is known to be NP-hard [1]. A

decoder that utilizes the soft output from the channel directly is called asoft-decision(SD)

decoder. On the other hand, if hard decisions are made on the received bits before decoding, then

such a decoder is called ahard-decision(HD) decoder. The optimum decoder is the corresponding
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New Zealand .
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HD or SD maximum likelihood (ML) decoder. Berlekamp’s tangential bound is a tighter than

the union bound for additive white Gaussian noise (AWGN) channels [2]. Poltyrev derived tight

upper bounds on the performance of maximum likelihood decoding of linear block codes over

AWGN channels and binary symmetric (BSC) channels. Bounds basedon typical pairs decoding

were derived by Ajiet. al [3]. Other bounds such as the Divsalar simple bound and the variations

on the Gallager bounds are tight for AWGN and fading channels [4], [5]. For a broad survey

on bounds on the maximum likelihood decoding of linear codes, see [6].

Fincke and Pohst (FP) [7] described a sphere decoder algorithm which finds the closest lattice

point without actually searching all the lattice points. A fast variation of it was given by Schnorr

and Euchner [8]. Other efficient closest point search algorithms exist (for a survey see [9]).

The sphere decoder algorithm was proposed for decoding lattice codes [10] and for detection in

multiple antenna wireless systems [11], [12]. Vikalo and Hassibi proposed HD and SD sphere

decoders for joint detection and decoding of linear block codes [13] [14]. On the other hand, one

can think of a sphere decoder in a broader sense as any algorithm that returns the closest lattice

point to the received word if it exists within a predetermined search radius. By this definition of

a sphere decoder, the Berlekamp-Massey algorithm can be considered as a sphere decoder for

Reed Solomon (RS) codes with a search radius equal to half the minimum distance of the code.

Similarly, the algorithm recently proposed by Guruswami and Sudan for decoding RS codes is

an algebraic sphere decoder whose search radius can be larger than half the minimum distance

of the code [15].

There has a been significant amount of research dedicated to the design of sphere decoders

with smaller complexities, complexity analysis of sphere decoders and the application of sphere

decoders to various settings and communication systems. However, little research focused on

the performance analysis of sphere decoders. This paper sets down a framework for the analysis

of the performance of sphere decoding of block codes over a variety of channels with various

modulation schemes.

In this paper, we study the performance of soft decision sphere decoding of linear block codes

on channels with additive white Gaussian noise and various modulation schemes as BPSK, M-

PSK and QAM [16]. This is done in sections II and III respectively. Bounds on the performance

of hard decision sphere decoding on BSC are derived in sectionIV. The application of these

bounds to the binary image of Reed Solomon codes is also investigated. We then, in section
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V derive bounds on the maximum likelihood performance ofq-ary linear codes, such as Reed

Solomon codes, overq-ary symmetric channels. This bound becomes handy when analyzing

the performance of sphere decoding of Reed Solomon codes onq-ary symmetric channels.

Furthermore, we show, in section III, how one can analyze theperformance of a soft decision

sphere decoder of a general block code with a general modulation scheme. In many settings, we

support our analytic bounds by comparing them to numerical simulations. The tradeoff between

performance and complexity is discussed in (VI). Finally, we conclude our work in section VII.

II. U PPER BOUNDS ON THE PERFORMANCE OF SOFT DECISIONSPHEREDECODING OF

BPSK AND M-PSK MODULATED BLOCK CODES.

In this section, we consider a sphere decoder when the modulation is binary or M-ary phase

shift keying (PSK) [16]. Each transmitted codeword in the code has the same energy when

mapped to the PSK constellation. For the case of MPSK modulation, complex sphere decoding

algorithms which solve the closest point search problem were developed in [17].

A. Preliminaries

We will introduce some notation, so the bounds derived here are readily applicable for both M-

ary and binary phase shift keying (PSK) modulation. We assume thatC is an(n, k) linear code.

Each codeword of lengthn will be mapped to a word ofM -PSK symbols. The number of channel

symbols will be denoted bync. If the codeC is binary and of lengthn, thennc = ⌈n/ log2(M)⌉.
For BPSK, nc = n. Note that the original code need not be binary. For example,an Reed

Solomon (RS) code defined overF2m could be mapped directly to an2m-ary PSK constellation

by a one-to-one mapping from the symbols inF2m to the2m points in the PSK constellation.

For PSK signaling, the code will have the property that all codewords are of equal energy

and lie on a sphere of radius
√

nc from the origin of space. Letnd denote the dimension of

the considered space (noise). For the case of BPSK modulation, the dimension of the Hamming

space is the same as the number of channel symbols (bits)nd = nc. On the other hand, for MPSK

signaling,M > 2, each complex channel symbol has a real and an imaginary component. Thus

the noise has2 nc independent components and the dimension of the space isnd = 2 nc.

Assuming that a codewordc ∈ C is transmitted over a binary input AWGN channel, the

received word isy = x + z, wherex = M(c) andM(c) is the mapping of the codewordc
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under PSK modulation, i.e., for BPSK modulationM(c)
∆
= 1−2c. The additive white Gaussian

noise (AWGN) is denoted byz = [zi]
nd
i=1 with varianceσ2. Let Gw be the number of codewords

which (after mapping) are at an Euclidian distanceδw from each other. Note that for the case of

BPSK modulation and a binary codeC, the space is a Hamming space and the Euclidean distance

is directly related to the Hamming distance,δw = 2
√

w, wherew is the Hamming distance. QPSK

modulation and Gray encoding also result in a Hamming space [16] by δw =
√

2w, wherew is

the (binary) Hamming distance between the codewords. For simplicity in the following analysis,

we will assume that the modulated code is linear and the spaceis a Hamming space.

B. Analysis of Soft Decision Sphere Decoding

A soft-decision sphere decoder with an Euclidean radiusD, denoted by SSD(D), solves the

following optimization problem,

ĉ = arg min
v∈C

‖y −M(v)‖2 (1)

subject to ‖y −M(v)‖2 ≤ D2,

where‖x‖ is the Euclidean norm ofx. Such decoders includelist-decodersthat list all codewords

whose modulated image is within an Euclidean distanceD from the received vectory and choose

the closest one. If no such codeword exists, a decodingfailure is signaled. A decodingerror is

signaled if the decoded codeword is not the transmitted codeword.

Let ED denote the event of error or failure of SSD(D), then the error plus failure probability,

P (ED) 1 is

P (ED) = P (ED|EML)P (EML) + P (ED|SML)P (SML), (2)

whereEML and SML denote the events of an ML error and an ML success respectively. Let

ǫ = ‖y − M(c)‖, then an ML error results if there exists another codewordĉ ∈ C such that

‖y−M(ĉ)‖ ≤ ǫ. Since limiting the decoding radius toD will not do better than ML decoding,

then P (ED|EML) = 1. By observing thatP (SML) ≤ 1, it follows that an upper bound on the

decoding performance is

P (ED) ≤ P (EML) + P (ED|SML). (3)

1Through out this paper,P (X) will denote the probability that the eventX occurs.
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Let ΩD be the Euclidean sphere of radiusD centered around the transmitted codeword in the

nd dimensional space. The probability that the added white Gaussian noise will not lie in the

sphereΩD is

P (z /∈ ΩD) = P
(

χnd
> D2

)

= 1 − Γr(nd/2, D
2/2σ2) (4)

whereχn =
∑n

i=1 z2
i is a Chi-squared distributed random variable withn degrees of freedom.

Let Γ(x) denote the Gamma function, then the cumulative distribution function (CDF) ofχv is

given by the regularized Gamma functionΓr [18],

Γr(v/2, w/2) =







∫ w

0
tv/2−1e−t/2

2v/2Γ(v/2)
dt, w ≥ 0;

0, w < 0.
. (5)

Lemma 1:A lower bound onP (ED) is P (ED) ≥ P (z /∈ ΩD).

Proof: The sphere decoder error plus failure probability could be written as

P (ED) = P (ED|z ∈ ΩD)P (z ∈ ΩD) + P (ED|z /∈ ΩD)P (z /∈ ΩD)

≥ P (ED|z /∈ ΩD)P (z /∈ ΩD)

= P (z /∈ ΩD),

where the last inequality is becauseP (ED|z /∈ ΩD) = 1 which follows from the definition of

the sphere decoder (1).

Define P̄ (EML) to be an upper bound on the SD-ML decoder error probability, then we have

the following lemma,

Lemma 2:P (ED) ≤ P̄ (EML) + P (z /∈ ΩD).

Proof: Given an ML success,ED will only be due to failures of the SSD(D) decoder, i.e.,

P (ED|SML) = P (‖y −M(c)‖ > D) = P (z /∈ ΩD),

where the last equality follows from the linearity of the code and without loss of generality one

could assume that the all zero codeword was transmitted. By definition, P (EML) ≤ P̄ (EML). By

substituting in(3) we are done.

Lemma 2 provides a way to bound the performance of sphere decoding of linear block codes

on a variety of channels where additive white Gaussian noiseis added and for a variety of

modulation schemes. For example, it can be used in conjunction with the Divsalar bound [4]

to give an upper bound on the performance of sphere decoding of linear block codes over
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independent Rayleigh fading channels. IfP̄ (EML) is the union upper bound on the codeword

error probability [16, Ch.8] for BPSK modulation on an AWGN channel, then

P (ED) ≤
∑

w≥1

GwQ(
√

2γRw) + P (z /∈ ΩD), (6)

whereGw is the number of codewords with (binary) Hamming weightw, γ is the bit signal to

noise ratio (SNR) andR is the rate of the code.

Lemma 1 implies that one could obtain a tighter upper bound onP (ED) by tightening the

bound on the ML error probability,̄P (EML). Shannon’s sphere packing bound [19] is a lower

bound on the error probability where Shannon showed that theVoronoi region of a codeword can

be bounded by a right circularnd-dimensional cone with the codeword on its axis. Poltyrev’s

tangential sphere bound (TSB) is one of the tightest bounds onthe ML performance of soft

decision decoding of linear codes on AWGN channels with BPSK orMPSK modulation [20],

[21] and is calculated by,

P (EML) ≤ min
θ

{P (EML,z ∈ Vθ) + P (z /∈ Vθ)} , (7)

whereVθ is annd-dimensional right circular cone with a half angleθ whose central line passes

through the transmitted codeword and whose apex is at an Euclidean distance
√

nc from the

transmitted codeword. Let the minimum of the optimization problem in (7) be achieved atθ = φ,

then by Lem. 2 we have the following upper bound (which is tighter than (6) in case of BPSK)

P (ED) ≤ P (EML,z ∈ Vφ) + P (z /∈ Vφ) + P (z /∈ ΩD). (8)

For the TSB, the optimum angleφ is related to the radius
√

rφ (see Fig. 1 or Fig. 2) by

tan(φ) =
√

rφ/nc, such thatrφ is the root of this equation [21]

∑

δb>0

G′
b(ro)

∫ θb(ro)

0

sinnd−3(ϑ)dϑ =

√
πΓ(nd−2

2
)

Γ(nd−1
2

)
(9)

when solved forro, whereθb(ro)
∆
= cos−1

(

δb/2√
ro(1−δ2

b /4nc)

)

and

G′
b(ro) =







Gb, δ2
b/4 < ro(1 − δ2

b/4nc);

0, otherwise.
(10)

Let z1 be the component of the noise along the central axis of the cone with a probability

distribution function (PDF)N (z1) = 1√
2πσ2

e−z1
2/2σ2

andz2 be the noise component orthogonal
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to z1. Define βz1
(w)

∆
=

√
nc−z1

q

4nc
δ2w

−1
and rz1

(φ)
∆
=

√
rφ

(

1 − z1√
nc

)

, then the ML error probability

given that the noisez is in the coneVφ is [20]

P (EML,z ∈ Vφ) =

∫ ∞

−∞
N (z1)

[

∑

δb>0

G′
b(rφ)

∫ rz1 (φ)

βz1 (b)

N (z2)Γr

(

nd − 2

2
,
r2
z1

(φ) − z2
2

2σ2

)

dz2

]

dz1.

(11)

C. A Tight Upper Bound

We observe that instead of directly substituting the TSB of (7) for P̄ (EML) in Lem. 2 as we

did in (8), one can find an upper bound which is tighter than (8)by noticing that the events

{z /∈ Vθ} and{z /∈ ΩD} are not in general mutually exclusive.

Lemma 3:P (ED) is upper bounded by

P (ED) ≤ P (EML,z ∈ Vφ) + P (z /∈ ΩD) + P ({z /∈ Vφ} ∩ {z ∈ ΩD}) .

Proof: Using Bayes’ rule and defining the regionΛ(θ,D)
∆
= {Vθ ∩ ΩD} we get

P (ED) ≤ min
θ
{P (ED|z ∈ Λ(θ,D))P (z ∈ Λ(θ,D)) + P (ED|z /∈ Λ(θ,D))P (z /∈ Λ(θ,D))}. (12)

From the definition ofΛ(θ,D), it follows that P (ED,z ∈ Λ(θ,D)) = P (EML,z ∈ Λ(θ,D)) ≤
P (EML,z ∈ Vθ), where the last inequality follows from thatΛ(θ,D) ⊆ Vθ. Using P (ED|z /∈
Λ(θ,D)) ≤ 1, it follows that

P (ED) ≤ min
θ

{P (EML,z ∈ Vθ) + P (z /∈ Λ(θ,D))}

≤ P (EML,z ∈ Vφ) + P (z /∈ {Vφ ∩ ΩD}). (13)

The last inequality is due to the observation thatφ does not necessarily minimize (13). By de

Morgan’s law,{Vφ ∩ ΩD}c = {ΩD}c ∪ {{Vφ}c ∩ ΩD}, {.}c is the complement of{.}.

We consider two cases;

Case A: The sphereΩD lies totally inside the coneVφ. (See Fig. 1).This case is equivalent

to the eventA
∆
= {D ≤ Dφ}, where

Dφ =
√

nc sin(φ), (14)
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and will be called the critical decoding radius. It follows thatP ({z /∈ Vφ} ∩ {z ∈ ΩD}|A) = 0,

which could be substituted in Lem. 2. Furthermore, sinceΛ(θ,D) = ΩD, it follows from (12)

that a tighter upper bound is

P (ED|A) ≤ P (EML,z ∈ ΩD) + P (z /∈ ΩD). (15)

The joint probability of the added noise falling inside a sphere of Euclidean radiusD and an

ML error could be expressed as

P (EML,z ∈ ΩD) =
∑

0<
δb
2

<D

Gb

∫ D

δb
2

N (zo)Γr

(

nd − 1

2
,
D2 − z2

o

2σ2

)

dzo. (16)

Let ϕ be the half angle at which the coneVϕ is tangential to the sphereΩD, ϕ = sin−1(D/
√

n)

(see Fig. 1), then another tight upper bound is

P (ED|A) ≤ P (EML,z ∈ Vϕ) + P (z /∈ ΩD). (17)

Theoretically, it is clear that the bound of (15) is tighter than that of (17), but numerically

they are almost equivalent, since the integration over the region{Ωc
D

⋂

Vϕ} is negligible. Note

that P (EML,z ∈ Vϕ) is easily calculated using equation (11) wheretan(ϕ) =
√

rϕ/nc and

rz1
(ϕ) =

√
rϕ

(

1 − z1√
nc

)

. �

Case B: The sphereΩD intersects the coneVφ. (see Fig. 2).We have two cases depending on

the position of the apex of the cone. The first is when the apex of the cone does not lie in the

sphere,
√

nc sin(φ) < D <
√

nc (see Fig. 2a) and the second is when the apex lies in the sphere,

D ≥ √
nc (see Fig. 2b). In both cases the following analysis holds. Let the origin,O, of thend-

dimensional space be at the transmitted codeword which is also the center ofΩD. Since the cone

and the sphere are symmetrical around the central axis, we project on a two dimensional plane

as in Fig. 2. The radial component of the noise (along the axisof the cone) isz1. The altitudes

ya(φ) andyb(φ) at which the (double) cone intersects the sphere are found bysubstituting the line

equationP = P1+U(P2−P1), whereP = (x, y), P1 = (0,
√

nc) andP2 = (2
√

nc tan(φ),−√
nc)

into the quadratic equation of the sphere. It follows thatya,b(φ) =
√

nc(1− 2Ua,b(φ,D)), where

Ua,b(θ,D) =
4nc ±

√

16nc
2 − 16nc sec2(θ)(nc − D2)

8nc sec2(θ)
.

It is easy to check that atD =
√

nc, ub = 0 andyb is at the apex ofVφ. If D >
√

nc then the

intersection atyb is in the lower nappe of the cone. It is also observed thatVφ andΩD do not
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intersect (ΩD ⊂ Vφ) if 16n2
c < 16nc sec2(φ)(nc − D2) or equivalentlyD <

√
nc sin(φ) which is

Case A.

DefineB to be the eventB
∆
=

{

D >
√

nc sin(φ)
}

, fn−1(t) to be the PDF ofχn−1 =
∑n

i=2 z2
i ,

andω2
z1

= D2 − z2
1 (see Fig. 2). From Lem. 3, the error probability is upper bounded by

P (ED|B) ≤ P (EML,z ∈ Vφ) + P (z /∈ ΩD) + P ({z /∈ Vφ} ∩ {z ∈ ΩD}|B) , (18)

where by Fig. 2

P ({z /∈ Vφ} ∩ {z ∈ ΩD}|B) =

∫ yb(φ)

ya(φ)

N (z1)

∫ ω2
z1

r2
z1

(φ)

fnd−1(t)dtdz1. (19)

�

The tight upper bound is summarized in this theorem,

Theorem 4:The performance of soft decision sphere decoding with an Euclidean decoding

radiusD of a linear code with (Euclidean) weight spectrumGb on an AWGN channel with noise

varianceσ2 and (binary or M-ary) PSK modulation is upper bounded by:

P (ED) ≤











































∑

0<
δb
2

<D
Gb

∫ D
δb
2

e−z2
o/2σ2

√
2πσ2

Γr

(

nd−1
2

, D2−z2
o

2σ2

)

dzo

+1 − Γr(nd/2, D
2/2σ2), D ≤ √

nc sin(φ);
∫ ∞
−∞N (z1)

[

∑

δb>0 G′
b(rφ)

∫ rz1 (φ)

βz1 (b) N (z2)Γr

(

nd−2
2

,
r2
z1

(φ)−z2

2

2σ2

)

dz2

]

dz1

+1 − Γr(nd/2, D
2/2σ2)

+
∫ yb(φ)

ya(φ)

(

Γr

(

nd−1
2

,
ω2

z1

2σ2

)

− Γr

(

nd−1
2

,
r2
z1

(φ)

2σ2

))

N (z1)dz1 D >
√

nc sin(φ),

whereφ is the half angle of the coneVφ and is given by (9). ♦
Following the proof of Lemma 3, the error plus failure probability of SSD(D) is upper bounded

by

P (ED) ≤ P (ED,z ∈ Λ(φ,D)) + P (z /∈ Λ(φ,D)). (20)

From the previous arguments inCases AandB, the following theorem provides a slightly tighter

upper bound than that of the previous theorem.

Theorem 5:The performance of SSD(D) for BPSK or MPSK modulation is upper bounded

by

P (ED) ≤



















P (EML,z ∈ ΩD) + P (z /∈ ΩD), D ≤ √
nc sin(φ);

P (EML,z ∈ Λ(φ,D)) + P (z /∈ ΩD)+

P ({z /∈ Vφ} ∩ {z ∈ ΩD}) , D >
√

nc sin(φ)

.
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Observe that the difference from Theorem 4 is that the termP (EML,z ∈ Λ(φ,D)) was upper

bounded byP (EML,z ∈ V (φ)) in Theorem 4. Consider a codeword at a distanceδw, then the

half angle of the cone bisecting this distance isθw = sin−1(δw/2
√

nc) (c.f. Fig. 2). This cone will

intersect the sphereΩD at altitudesxa(w) andxb(w) given byxa,b(w) =
√

nc(1−2 Ua,b(θw, D)).

Now define the integrals

I(γ, w, z1)
∆
= N (z1)

∫ γ

βz1 (w)
N (z2)Γr

(

nd−2
2

,
γ2−z2

2

2σ2

)

dz2, (21)

I2(w) =
∫ ya(φ)

xa(w)
I(ωz1

, w, z1)dz1 +
∫ yb(φ)

ya(φ)
I(rz1

(φ), w, z1)dz1 +
∫ xb(w)

yb(φ)
I(ωz1

, w, z1)dz1. (22)

Taking the union over all codewords with non-zero Euclideanweights such thatθw < φ , it

follows that forD >
√

nc sin(φ),

P (EML,z ∈ Λ(φ,D)) =
∑

δb>0

G′
b(rφ)I2(w). (23)

D. A Note on Reed-Solomon Codes

Consider the case when the binary image of an Reed-Solomon (RS) code, defined overF2m,

is transmitted over an AWGN channel and the decoder is either aHD or SD sphere decoder.

Tight upper bounds on the performance of HD and SD maximum likelihood decoding of the

binary images of RS codes were developed by El-Khamy and McEliece [22] by averaging over

all possible binary representations of the RS code. We use thesame technique here to analyze

the performance of the sphere decoders, where the average binary weight enumerator of the RS

code (see [22]) is used as the weight spectrumGb of the binary linear code.

E. Numerical Results

In Fig. 3, we show how the bounds derived for M-ary modulated spherical codes are tight. The

simulation curves and the analytical bounds will be labeledby ‘sim’ and ‘bnd’ respectively. A

codeword in the(24, 12) Golay code is mapped into12 QPSK symbols and transmitted over an

AWGN channel. As observed, the simulated performance of the ML decoder and the SD sphere

decoder [13] are tightly bounded by the bounds given in this section. The critical decoding radius

in the 2 × 12 dimensional space isDφ = 2.667.

In Fig. 4, the performance of SD sphere decoding of the binaryimage of the(15, 11) RS code,

BPSK modulated over an AWGN channel, is investigated. The ML performance is simulated
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by means of the MAP decoder, and it is observed that the averaged ML bound is tight [22].

We simulated the performance of SD sphere decoding when the decoding radius was3 and

3.5 respectively. Our analytical bounds almost overlapped with the simulations. The critical

decoding radius isDφ = 4.588. A decoder with an Euclidean decoding radius of5 has a

near ML performance at an SNR of5 dB. For reference purposes, we plot the performance of

the hard-decision Berlekamp-Massey (BM) decoder and the algebraic soft decision decoder by

Koetter and Vardy [23]. It is worth noting that algebraic soft decoding can also achieve near

ML performance [24], [25].

III. SPHEREDECODING OFLATTICES

In this section, we consider the case of soft decision spheredecoding of a general lattice or

codeC. In contrast to the case of section II the code is not constrained to be a linear code and

the transmitted codewords are not constrained to have a fixedenergy . The channel symbols of

a transmitted codeword are also not required to have the sameenergy. DefineGw(i) to be the

number of mapped codewords with an Euclidean distanceδw from theith codeword. Given that

ci is transmitted, let the error probability of SSD(D) be upperbounded byPi(ED). By taking

the expectation over all codewords,

P (ED) ≤ 1

|C|
∑

ci∈C
Pi(ED). (24)

Now, if we assume thatPi(ED) is of the union bound form;Pi(ED) =
∑

w Gw(i)P
(w)
i (ED), where

P
(w)
i (ED) is the probability of a sphere decoder error due to incorrectly decoding a codeword

at a distanceδw when ci is transmitted. The error probability of SSD(D) can thus be upper

bounded byP (ED) ≤ ∑

δw>0 ḠwP (w)(ED), whereP (w)(ED) is the probability that the sphere

decoder erroneously decodes a codeword at a distanceδw from the transmitted codeword and

Ḡw =
1

|C|
∑

ci∈C
Gw(i), (25)

is the average number of codewords which are at an Euclidean distance δw from another

codeword. For an arbitrary finite code or latticeC, using arguments from the previous sections,

the error probability SSD(D) can be upper bounded by

P (ED) ≤ min
D′≤D

{P (EML,z ∈ ΩD′) + P (z /∈ ΩD′)} , (26)
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whereP (z /∈ ΩD) is given by (4) and

P (EML,z ∈ ΩD) =
∑

0< δw
2

<D

Ḡw

∫ D

δw
2

1√
2πσ2

e−z2/2σ2

Γr(
nd − 1

2
,
D2 − z2

2σ2
)dz. (27)

The Hughes upper bound on the ML error probability isP (EML) ≤ minD P (Ψ(D)) [26], where

Ψ(D)
∆
= P (EML,z ∈ ΩD) + P (z /∈ ΩD). (28)

The radiusDo that minimizes this error probability is the root of the equation [27]

∑

0< δw
2

<D

Ḡw

∫ θw,D

0

sin(θ)nd−2dθ =

√
πΓ

(

nd−1
2

)

Γ
(

nd

2

) , (29)

whereθw,d = cos−1(δw/2D). From (26), the upper bound on the sphere decoding error probability

is given by

P (ED) ≤







Ψ(D), D < Do;

Ψ(Do), D ≥ Do

.

Furthermore, the optimum radiusDo does not depend on the channel and can be the radius

of choice for near maximum likelihood decoding. The bound developed here is universal in the

sense that also applies for the case of a linear code with equal energy codewords. However, it

is to be noted that the Hughes bound on ML decoding is not tighter than the Poltyrev tangential

sphere bound [28].

For the case ofM -PSK modulation of a linear code, the constellation may not result in a

Hamming space ifM > 4. In such a case the ensemble average weight enumeratorḠw can be

used with the bounds of Sec. II to analyze the performance. (The same technique can also be

used with the results in next sections.)

Example 6:Assume an(15, 3) RS code overF16 and assume a one-to-one mapping from

the symbols ofF16 to the points of an16-QAM modulation [16], whose average energy per

symbol is10. The ensemble weight enumeratorḠw was numerically computed to evaluate the

bounds. The radius that minimizes the bound on the ML error probability is Do = 12.9. In Fig.

5, we confirm that the bounds on the sphere decoder error probability agree with the simulations

for the case ofD = 10. We also compare the simulated performance of ML error probability

P (EML,z ∈ ΩD) to that of the analytic performance in both cases. At low SNRs this probability

is low as the probability of the received word falling insidethe sphere is relatively low. As more

received words fall inside the sphere, the ML error probability increases as the SNR increases. At
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a certain SNR, the probability of the ML error starts decreasing due to the improved reliability

of the received word.

IV. PERFORMANCE OFSPHEREDECODING ONBINARY SYMMETRIC CHANNELS

In this section, an upper bound on the performance of the hard-decision sphere decoder, when

the code is transmitted over the BSC, is derived. Transmittinga binary codeword over a binary

input AWGN channel followed by hard decisions is equivalent to transmitting it on a BSC with

a cross over probabilityp = Q(
√

2Rγ) whereγ is the bit signal to noise ratio. In case of M-PSK

signaling with gray encoding,p ≈ pc

log
2
(M)

wherepc = 2Q
(√

2kγ sin π
M

)

[16].

Let y be the received word when the codewordc is transmitted over an BSC channel. The

HD sphere decoder with radiusm, HSD(m), finds the codeword̂c, if it exists, such that

ĉ = arg min
v∈C

d (y,v) (30)

subject to d(y,v) < m + 1,

where d (y,v) is the Hamming distance betweeny and v. Let ζ = d(y, c), then, from the

linearity of the code, the probability that the received word is outside a Hamming sphere (ball)

of radiusm − 1 centered around the transmitted codeword is

P (ζ ≥ m) =
n

∑

t=m

(

n

t

)

pt(1 − p)n−t. (31)

Poltyrev [20] derived a tight bound on the performance of theHD-ML decoder based on,

P (EML) ≤ min
m

{P (EML, ζ < m) + P (ζ ≥ m)} . (32)

The minimum of the above equation is atmo wheremo is the smallest integerm such that [20]

2m
∑

b=1

Gb

m
∑

r=⌈w
2
⌉

(

b

r

)(

n − b

m − r

)

≥
(

n

m

)

. (33)

We now turn our attention to the HD sphere decoder with an arbitrary decoding radius. Let

P (Σm), be the error plus failure probability of the hard decision sphere decoder, HSD(m − 1),

thenP (Σm) could be written as

P (Σm) = P (Σm, ζ < m) + P (Σm|ζ ≥ m)P (ζ ≥ m)

= P (EML, ζ < m) + P (ζ ≥ m), (34)
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where we used the fact thatP (Σm|ζ ≥ m) = 1 and the observation that given thatζ < m, the

conditional error probability of the HSD(m − 1) and the HD-ML decoders are the same. The

last term in the above equation is a lower bound on the failureprobability of the HSD(m − 1)

decoder. Similar to soft decision case, we have the following lemma,

Lemma 7:A lower bound on the performance of a hard decision sphere decoder, HSD(m−1),

over a BSC with parameterp is P (Σm) ≥ ∑n
t=m

(

n
t

)

pt(1 − p)n−t.

To develop a tight upper bound onP (Σm), we consider two cases:

Case I: The decoding radiusm ≥ mo. Equation (34) could be written as

P (Σm|m ≥ mo) = P (EML, ζ < mo) + P (EML,mo ≤ ζ < m) + P (ζ ≥ m).

It follows that P (Σm|m ≥ mo) ≤ P (EML, ζ < mo) + P (ζ ≥ mo). We observe that the upper

bound reduces to that of the HD-ML case (32). By recalling thatthe minimum of (32) is achieved

at mo, the bound of (34) is looser than (7) whenm > mo. The intuition behind this is that the

performance of a sphere decoder with a decoding radiusmo − 1 or greater approaches that of

the ML decoder.

Case II: The decoding radiusm < mo. Noticing that the sphere{ζ < m} ⊂ {ζ < mo},

P (Σm|m < mo) is indeed given by (34).

Thus, we have proved the following theorem,

Theorem 8:The performance of a hard-decision sphere decoder with a decoding radiusm−1

when used for decoding a linear code with a weight spectrumGb over an BSC channel with a

cross-over probabilityp is upper bounded by

P (Σm) ≤







P (EML, ζ < mo) + P (ζ ≥ mo), m ≥ mo;

P (EML, ζ < m) + P (ζ ≥ m), m < mo,
(35)

wheremo is radius that minimizes (32) and is the solution of (33).P (ζ ≥ m) is given by (31) and

the joint probability of an HD-ML error andd(y, c) < m is upper bounded by the union bound

[20], P (EML, ζ < m) ≤ ∑2(m−1)
b=1 Gb

∑m−1
r=⌈w

2
⌉
[(

b
r

)

pr(1 − p)b−r
∑m−r−1

s=0

(

n−b
s

)

ps(1 − p)n−b−s
]

.

A. Numerical Examples

In this subsection, the bounds developed for SD and HD spheredecoding are evaluated and

compared with the performance of the corresponding sphere decoders, [13] and [14] respectively.

In Fig. 6, we compare the analytical bounds to simulations ofsphere decoding of an(15, 7)

BCH code BPSK modulated and transmitted over an AWGN channel. Theminimum distance
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of the BCH code is5. The critical decoding Euclidian radius of the soft decision decoder is

Dφ = 3.17 while the critical Hamming decoding radius of the hard decision decoder ismo = 3.

We observe that the simulated performance is tightly upper bounded by the analytical bounds

of theorems 4 and 8 for soft and hard decision sphere decodingrespectively. The larger the

decoding radius the nearer the performance is to maximum likelihood decoding.

V. PERFORMANCE OFSPHEREDECODING ONQ-ARY SYMMETRIC CHANNELS

Now consider an(n, k, d) RS code and a hard-decision sphere decoder which can correctτ

symbol errors, where the symbols are inFq. The Berlekamp-Massey algorithm is a well known

polynomial time algorithm that can correctly decode words which are at a (symbol) Hamming

distance ofτBM = ⌊n−k
2
⌋ from the transmitted codeword. The error probability of bounded

distance decoding of RS codes is well studied (cf. [29]). Recently, Guruswami and Sudan [15]

developed a list decoding algorithm that can correct uptoτGS = ⌈n−
√

nk−1⌉ symbol errors. To

analyze this case, we first derive a bound on the performance of the corresponding ML decoder.

A. Bound on the Maximum Likelihood decdoding of linear blockcodes onq-ary symmetric

channels.

We will assume an(n, k, d) linear code overFq transmitted over aq-ary symmetric channel.

The probability that a symbol is correctly received will be denoted bys, while the probability

that it is received as another symbol will bep = (1− s)/(q− 1). Transmitting aq-ary code over

an AWGN channel followed by hard-decision can be modeled as transmitting it over aq-ary

symmetric channel. Assume thatq = 2m, the channel alphabet size is2b, b ≤ m, and eachq-ary

symbol is mapped tom/b channel symbols. Letpc be the probability that a channel symbol is

incorrectly decoded, thens = (1− pc)
m/b. For example, if the channel is a BPSK channel with

a bit signal to noise rationγ, q = 2m and the binary image of the RS code is transmitted, then

a q-ary symbol is correctly received if all them bits in its binary image are correctly received,

i.e. s =
(

1 − Q
(
√

2 k
n
γ
))m

.

Let ζ be the Hamming distance between the transmitted codeword and the receivedq-ary word.

Then, similar to the binary case, the ML error probability can be upper bounded as follows,

P (EML) ≤ min
m

{P (EML, ζ < m) + P (ζ ≥ m)} . (36)
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Assuming that the code is linear, the probability that the received q-ary word lies outside a

Hamming sphere (ball) of radiusm − 1 centered around the transmitted word is

P (ζ ≥ m) =
n

∑

α=m

(

n

α

)

(1 − s)αsn−α. (37)

The above equation will also provide a lower bound on the performance of the sphere decoder.

The first term in (36) is upper bounded in the following lemma.

Lemma 9:For an (n, k, d) linear code overFq, with a weight enumeratorGw, transmitted

over aq-ary symmetric channel with parameterss andp,

P (EML, ζ < m) ≤
2(m−1)
∑

w=d

Gw

m−1
∑

α=0

w−α
∑

η=⌈w−α
2

⌉

(

w!

η!α!(w − η − α)!
pη(1 − p − s)αsw−η−α (38)

m−1−η−α
∑

β=0

(

n − w

β

)

(1 − s)βsn−w−β

)

.

Proof: We will assume that the all-zero codeword is transmitted. Now consider a codeword

c with Hamming weightw and assume the received wordr has a Hamming weightm′ − 1.

Consider thew nonzero symbols inc and the corresponding coordinates inr. Let r andc have

the same symbols inη of these coordinates. Letα of thesew coordinates inr be neither zero

nor match those inc, andw − η − α of the remaining coordinates be zero. Since the Hamming

weight of r is m′ − 1, there must bem′ − 1− η − α non-zero symbols in the remainingn−w

coordinates and the remaining symbols will be zero. The probability of receiving such a word

is w!
η!α!(w−η−α)!

pη(1− p− s)αsw−η−α
(

n−w
m′−1−η−α

)

(1− s)m′−1−η−αsn−w−(m′−1−η−α). In such a case,

the Hamming distance betweenr and c is w + m′ − 1 − 2η − α. An ML error result if this

is less than the weight ofr, i.e., if η ≥ ⌈w−α
2

⌉. By summing over all possible combinations

of η and α and applying the union bound for all codewords that can be within a Hamming

distancem′ from r, the error probability is upper bounded by
∑2(m′−1)

w=d Gw

∑m′−1
α=0

∑w−α
η=⌈w−α

2
⌉

(

w!
η!α!(w−η−α)!

pη(1 − p − s)αsw−η−α
(

n−w
m′−1−η−α

)

(1 − s)βsn−w−(m′−1−η−α)
)

. Applying the union

bound for all received words with Hamming weights less thanm, m′ ≤ m, the result follows.

We are now ready to prove the following theorem,

Theorem 10:The ML error probability of an(n, k, d) q-ary linear code on aq-ary symmetric
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channel is upper bounded by

P (EML) ≤
2(mo−1)

∑

w=d

Gw

mo−1
∑

α=0

w−α
∑

η=⌈w−α
2

⌉

(

w!

η!α!(w − η − α)!
pη(1 − p − s)αsw−η−α

mo−1−η−α
∑

β=0

(

n − w

β

)

(1 − s)βsn−w−β

)

+
n

∑

α=mo

(

n

α

)

(1 − s)αsn−α,

wheremo is the smallest integerm such that
2m
∑

w=d

Gw

m
∑

α=0

(

q − 2

q − 1

)α w−α
∑

η=⌈w−α
2

⌉

(

1

q − 1

)η
w!

η!α!(w − η − α)!

(

n − w

m − η − α

)

≥
(

n

m

)

. (39)

Proof: The upper bound follows by substituting (38) and (37) in (36). Observe that the

first term in (39) is increasing inm while the second is decreasing inm. Optimizing over the

radiusm, the minimum is achieved at the first integerm such that
∑2(m)

w=d Gw

∑m
α=0

∑w−α
η=⌈w−α

2
⌉

(

w!
η!α!(w−η−α)!

pη(1 − p − s)αsw−η−α
(

n−w
m−η−α

)

(1 − s)m−η−α

sn−w−m+η+α) ≥
(

n
m

)

(1 − s)msn−m. This reduces to the condition of (39).

It is worth noting that the optimum radiusmo which minimizes the bound on the ML error

probability only depends on the weight enumerator of the code and the size of its finite field.

Since the optimum radius does not depend on the SNR, it is validfor q-ary symmetric channels

at any SNR. Similar to the binary case [20], we establish belowa connection betweenmo and

the covering radius of the code.

Lemma 11:The covering radius of a linear code onFq is lower bounded bymo − 1 , where

mo is given by Th. 10.

Proof: DefineL(m) to be the left hand side term in (39) andco to be the all zero codeword.

Similar to the proof of Lem. 9, one can show that(q − 1)mL(m) = |{r ∈ F n
q : d(r, co) =

m & d(r, ci) ≤ m; ci ∈ C \ co}|. Also, (q − 1)m
(

n
m

)

= |{r ∈ F n
q : d(r, co) = m}|.

Since(q − 1)mo−1L(mo − 1) < (q − 1)mo−1
(

n
mo−1

)

, it follows that there exit wordsr ∈ F n
q such

that minc∈C d(r, c) = mo − 1 and this minimum is achieved whenc is the all zero codeword

co. By recalling that the covering radius is [30]Rc = maxr∈F n
q

minc∈C d(r, c), it follows that

Rc ≥ mo − 1.

B. Hard Decision Sphere decdoding of linear block codes onq-ary symmetric channels.

Here, we consider the case when the decoder is aq-ary hard decision sphere decoder. As for

the binary case, the HSD(m−1) can correctly decode a codeword if the number ofq-ary symbol
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errors ism − 1 or less. Thus Th. 8 will give the bound on the error plus failure probability of

the sphere decoder. However, in this case,P (ζ ≥ m), P (EML, ζ < m) and mo are given by

(37), (38) and (39) respectively.

C. Numerical Examples

In Fig. 7, we show bounds on the performance of HD decoding of the near half rate(31, 15)

RS code overF32 when its binary image is transmitted over an AWGN channel followed by

hard-decisions. The optimum binary decoding radius is18. Thus the closer the decoding radius is

to 18, the better the performance of the sphere decoder. The HD-MLdecoder has more than2 dB

coding gain over the Berlekamp Massey (BM) decoder, which can correct8 symbol errors. It is

observed that the average performance of an HD sphere decoder, with a (binary Hamming) radius

8, closely upper bounds that of the HD-BM decoder that can correct 8 symbol errors. The HD-GS

decoder can correct one more symbol error than the BM decoder.The performance of the GS

algorithm is analyzed by modeling it as16-ary HD sphere decoder of radius9. Consequently, one

can observe that a hard-decision sphere decoder with a binary decoding radius of10 outperforms

the symbol based GS decoder.

In Fig. 8, the binary image of the(15, 3) RS code is BPSK modulated over an AWGN channel.

For 16-ary hard decisions, the channel is modeled as an QSC. The performance bound of the

hard ML (H-ML) decoder is shown ( Th. 10) and is the same as an HSD of radius 9. The

bounds of (37) and (38) are also shown and labeled asF (9) andE(9) respectively. As seen, the

three bounds (‘bnd’) are in close agreement with the simulation (‘sim’), for such a hypothetical

sphere decoder. The error probability of the GS decoder withradius8 is simulated and agrees

with the bound of Th. 8. For reference proposes, we show the average error probability of the

soft decision bit level ML (S-ML) decoder (cf [22]) which hasabout4 dB gain over the symbol

H-ML decoder.

VI. A NOTE ON COMPLEXITY

In Fig. 9, the empirical complexity exponents of SSD of the(24, 12) Golay code BPSK

modulated over an AWGN channel are shown. It is clear that for alarger decoding radius there

is a price paid in terms of the complexity. We also show the complexity of the SSD whose radius

changes such that with a probability of0.9 the transmitted word is inside the sphere centered
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around the received one. At a slighter increase in average complexity one can achieve ML

decoding, by gradually increasing the decoding radius until a word is found. The corresponding

complexity is shown as ’r20.90 + cumulative’. The variation of the radius versus the SNR is

shown in Fig. 10. The expected complexity of sphere decodingwas thoroughly analyzed in [31].

VII. C ONCLUSIONS

Bounds on the error plus failure probability of hard-decision and soft-decision sphere decoding

of block codes were derived. By comparing with the simulations of the corresponding decoders,

we demonstrate that our bounds are tight. The ML performanceof codes onq-ary symmetric

channels is analyzed. The performance of sphere decoding ofReed Solomon codes and their

binary images was analyzed. Moreover, the bounds are extremely useful in predicting the per-

formance of the sphere decoders at the tail of error probability when simulations are prohibitive.

The bounds allows one to pick the radius of the sphere decoderthat best fits the performance,

throughput and complexity requirements of the system.
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Fig. 1. Case A:The sphereΩD lies totally inside the ConeVφ (D ≤
√

nc sin(φ))
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Fig. 2. Case B:The sphereΩD intersects the coneVφ; the apex of the coneVφ lies outside the sphereΩD (
√

nc sin(φ) <

D <
√

nc). In caseD ≥
√

nc, the apex of the coneVφ lies inside the sphereΩD.
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Fig. 4. Bounds on the performance of SSD of a binary image of the(15, 11) Reed Solomon code BPSK modulated on an

AWGN channel.
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Fig. 5. The(15, 3) RS code is 16-QAM modulated and transmitted over an AWGN channel. The sphere decoder is a soft

decision sphere decoder with an Euclidean radius10.The bounds are compared to simulations for a sphere decoding ML error

and the error plus failure probability.
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Fig. 6. Bounds on the codeword error rate of soft-decision and hard-decision sphere decoding of the(15, 7) BCH code BPSK

modulated over an AWGN channel. The simulations (labeled by ‘sim’) are tightly upper bounded by the analytic bounds (labeled

by ‘bnd’) .
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Fig. 7. Bounds on the performance of hard-decision sphere decoding of the (31, 15) RS code BPSK on an AWGN channel.
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Fig. 8. The(15, 3) RS code is BPSK modulated and transmitted over an AWGN channel. For the16-ary hard-decision decoder,

the channel is an QSC. The bounds are compared to simulations for a sphere decoding ML error, sphere decoding failure, and

their sum (error plus failure probability) The optimum radius for the ML bound is 9. The GS radius is8.
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Fig. 9. Complexity exponent for SSD of the(24, 12) Golay code.
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Fig. 10. Statistical Decoding Radius vs Fixed Decoding Radius for the(24, 12) Golay code.


