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Abstract

In this paper, an average binary weight enumerator of Reed Solomon (RS)
codes is derived assuming a binomial distribution of the bits in a non-zero symbol.
Lower bounds on the average binary minimum distance are shown. The averaged
binary image of the RS code is shown to be asymptotically good for sufficiently
high rates. These results are used to bound the maximum likelihood performance
of RS codes, whose binary image is modulated using binary phase shift keying on
AWGN channels, for both hard and soft decision decoding.

1 Introduction

Reed Solomon (RS) codes are one of the most important codes due to their wide va-
riety of applications ranging from data storage to satellite communications. Decoding
of RS codes has received wide attention lately (c.f. [1–5]). The optimum hard decision
decoder is the maximum likelihood (ML) decoder. However, it has been shown in [6] that
ML decoding of a general linear code is NP (nondeterministic polynomial time) hard.
Recently, this was also shown specifically for RS codes in [7]. Thus, it is important to
compare the performance of polynomial-time decoding algorithms with the performance
of the optimum ML decoder. For both soft and hard decision decoding algorithms, the
corresponding ML decoder provides a benchmark to compare the performance of other
suboptimum algorithms. In this paper we focus on bounding the performance of opti-
mum ML decoding when the binary image of the RS code is modulated using binary
phase shift keying (BPSK) [8] and transmitted over an additive white Gaussian noise
(AWGN) channel. Let x = M(u) = 1 − 2u be the BPSK modulation of the binary
image u ∈ C of an (n, k) codeword, then the received vector is y = x + z, where z is
an AWGN vector. Since the considered codes are linear, it is safe to assume that the
all zero codeword (in fact its binary image) is transmitted. The analysis will depend on
the number of codewords within a certain Hamming distance from the all zero codeword.
Thus, the bounds depend mainly on the binary weight enumerator (BWE) of the used
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code, which in turn depends on the basis used to represent the symbols in GF(q) as bits .
Bounds on the performance of binary block codes transmitted over AWGN channels were
studied in the literature [8–10]. The problem of applying them to bound the performance
of RS codes is actually the problem of finding the BWE of the RS code. For particular
realizations of RS codes, the BWE as well as enumerating the codewords by the number
of symbols of each kind in each codeword were studied (see for example [11, 12]). The
average BWE of Generalized Reed Solomon (GRS) codes, derived from an original RS
code either by using a different basis to expand each column in the RS generator matrix
into a binary representation or by multiplying each column in the RS generator matrix
by some non-zero element in GF(2m), was studied in [13]. Since the BWE of the RS code
is not unique, we approximate the BWE of an RS code with an averaged BWE. (This
technique could also be applied to other codes.) This is shown in Sec. 2 and we also
justify this approximation. The performance of the code at large signal to noise ratios is
determined by its minimum distance.

Although the symbol minimum distance of an (n, k, d) RS code is d = n − k + 1,
the binary minimum distance is not known. The binary minimum distance of an RS
code depends on how the q-ary symbols are represented as bits. Thus, we derive lower
bounds on the averaged binary minimum distance in Sec. 3. We give a bound on the
minimum rate at which the average binary minimum distance is equal to the symbol
minimum distance and show that for higher rates the averaged binary image of an RS
code asymptotically satisfies the Gilbert-Varsharmov (GV) bound. Using the averaged
BWE, the performance of RS codes, whose binary image is BPSK modulated over an
AWGN channel, is analyzed in Sec. 4 for both hard and soft decision ML decoders.

2 Average Binary Weight Enumerator of RS Code

The symbol weight enumerator function of an (n, k, d) code C over GF(2m) is defined to
be A(x) =

∑n
i=0Aix

i, where Ai is the number of codewords with symbol Hamming weight
i. The binary image of the code is obtained by representing each symbol in GF(2m) by
an m-dimensional binary vector in terms of a basis of the field [14]. Assuming that the
distribution of ones and zeros in the m-dimensional binary image of a non-zero symbol
follows a binomial distribution, the probability of having i ones in a non-zero symbol is

1
2m−1

(

m
i

)

. The generating function of the average BWE of a non-zero symbol is

Gs(x) =
m

∑

i=1

1

2m − 1

(

m

i

)

xi =
(1 + x)m − 1

2m − 1
, (1)

where the power of x denotes the binary weight and the all zero symbol is excluded since
the binary weight is at least one. Suppose a codeword has w non-zero symbols, and the
distribution of the ones and zeros in each symbol is independent from other symbols, then
the possible binary weight, b, of this codeword ranges from w to mw. Since there are Aw

codewords with symbol Hamming weight w, then the average binary weight enumerator
function is

G(x) = A(y)|y=Gs(x) =
n

∑

w=0

Aw(Gs(x))
w =

nm
∑

b=0

Gbx
b, (2)

where

Gb =
n

∑

w=d

Aw

(2m − 1)w

w
∑

j=0

(−1)w−j

(

w

j

)(

jm

b

)

; b ≥ d. (3)
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Figure 1: True BWE versus the averaged BWE for the (7,5) RS code

The symbol weight enumerator of an (n, k, d) RS code over GF(q) is [15, Th. 25.7]

Aj =

(

n

j

)

(q − 1)

j−d
∑

i=0

(−1)i

(

j − 1

i

)

qj−i−d; j ≥ d. (4)

(The results in this paper apply to any q-ary maximum distance separable (MDS) code,
where q = 2m and not necessarily an RS code.) Widely used RS (MDS) codes have a
code length n = 2m − 1. In that case the BWE derived in (3) agrees with the average
BWE of a class of GRS codes [13]. It is easy to see that Go = 1 and that Gb = 0 for
0 < b < d. By substituting for Aw, for b ≥ d,

Gb =
n

∑

w=d

(q−1)

(

q

q − 1

)w (

n

w

) w−d
∑

v=0

(−1)v

(

w − 1

v

)





w
∑

j=⌈b/m⌉

(−1)w−j

(

w

j

)(

jm

b

)

q−(d+v)



 .

(5)
However, the term

(

jm
b

)

may diverge numerically for large j. Using the Stirling approxi-

mation for
(

jm
b

)

[16], the function Gb could be approximated as

Gb ≈
n

∑

w=d

(q − 1)

(

q

q − 1

)w (

n

w

) w−d
∑

v=0

(−1)v

(

w − 1

v

) w
∑

j=⌈b/m⌉

F(j), (6)

where

F(j) =







(−1)w−j
(

w
j

)

2λ(j); j > b/m

(−1)w−j
(

w
j

)

2−m(d+v); j = b/m
, (7)

and λ(j) = m(jH(ψb,j) − d− v) − 1
2
log2 (2πjmψb,j(1 − ψb,j)) for ψb,j = b/jm and q =

2m. This approximation could be further simplified by using the fact that 1 ≤
(

q
q−1

)w

≤ e

and substituting in (6).



In Fig(1), the averaged BWE and the true BWE for a specific basis representation
(found by computer search in [17]) are plotted for the (7, 5) RS code over GF (8). The
approximation of (6) is labeled ‘Apprx. Average’. It is observed that the average BWE
closely approximated the true BWE for this basis representation. The average BWE is
found to be very close to a binomial enumerator, normalized such that the cardinality of
C = qk, Ĝb = q−(n−k)

(

mn
b

)

. (This could be justified by the central limit theorem.)

3 Lower Bounds on the Average BMD of RS Codes

The error correcting capability of a code relies a lot on the minimum distance of the
code. The actual average minimum distance of the binary image of the RS code could
be defined as the smallest weight b whose average BWE Gb is greater than or equal to
one (note that Gb is a real number). The binary minimum distance (BMD) is at least as
large as the symbol minimum distance d. Let db be the average BMD, then

db = inf
b≥d

{b : Gb ≥ 1}. (8)

The number db could be found exactly by computer search. However it will be useful to
find a lower bound (LB) on db. ( A trivial lower bound is db ≥ d. )

An upper bound on the symbol weight enumerator Aj is [18, Eq. 12]

Aj ≤
(

n

j

)

(q − 1)j−d+1; j ≥ d. (9)

Substituting in (3) it follows that,

Gb ≤ (q − 1)k−n

n
∑

w=d

(

n

w

)





w
∑

j=⌈b/m⌉

(−1)w−j

(

w

j

)(

jm

b

)



 . (10)

The term
(

jm
b

)

is upper bounded as
(

jm
b

)

≤ jbmb

b!
. If b is relatively small compared to

jm, or asymptotically as jm→ ∞, we have
(

jm
b

)

∼ jbmb

b!
. The approximation is valid for

sufficiently high rates, R, where d = n(1−R+ 1/n) is relatively small, and consequently
b = db is also small. Gb is approximately upper bounded by

mb

b!
(q − 1)k−n

n
∑

w=d

(

n

w

)

[

w
∑

j=0

(−1)w−j

(

w

j

)

jb

]

= (11)

mb

b!
(q − 1)k−n

n
∑

w=d

(

n

w

)

S(b, w)w!, (12)

where S(b, w) is the Stirling number of the second kind [15] and satisfies the recurrence
relation S(n, k) = kS(n− 1, k) + S(n− 1, k − 1) with S(0, 0) = 1.

By rearranging and the definition of Gb, it follows that an approximate lower bound
on db is

inf
b≥d

{

b :
mb

b!

n
∑

w=d

(

n

w

)

S(b, w)w! ≥ (q − 1)d−1

}

. (13)

The LB of (13) could be solved numerically and it does not require evaluating the
symbol weight enumerator for all possible weights as evaluating Gb does. This bound
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Figure 2: Relative average BMD for codes of different length versus the code rate.

could also be simplified by starting the summation in (12) over w from 0 instead of d and
splitting it into two summations, it follows that Gb is (approximately) upper bounded by

mb(q − 1)1−d

b!

[

b
∑

w=0

(

n

w

)

S(b, w)w! +
n

∑

w=b+1

(

n

w

)

S(b, w)w!

]

. (14)

Since S(n, k) is the number of partitions of an n-element set into k non-empty sets, then
S(n, k) = 0 if k > n. This implies that the second summation is zero. From the definition
of the Stirling’s number [15, Th. 13.5], it follows that nb =

∑b
w=0

(

n
w

)

S(b, w)w!. Thus the

upper bound (14) is equivalent to mbnb

b!
(q − 1)1−d. Using Gdb

≥ 1, an approximate lower
bound on db is given by

inf
b≥d

{

b :
(mn)b

b!
≥ (q − 1)d−1

}

. (15)

By taking only the term corresponding to j = w in the alternating sign summation
in (10), if follows that

Gb ≤ (q − 1)k−n

n
∑

w=d

(

n

w

)(

wm

b

)

≤ (q − 1)k−n

(

n

⌊n/2⌋

) mn
∑

h=b

(

h

b

)

. (16)

An exact lower bound is thus given in the following lemma.

Lemma 1 A lower bound on db is

db ≥ inf
b≥d

{

b :

(

mn+ 1

b+ 1

)

≥ (q − 1)n−k

(

n
⌊n/2⌋

)

}

. (17)

It is interesting to determine the minimum rate R for a given code length at which
the average BMD is equal to the symbol minimum distance d which is linear in R. This
is stated in the following lemma.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Rate

d b/m
n

Average BMD versus Rate for Binary Images of RS Codes, n=15

RABMD
LB 1
LB 2
LB 3
GV Bound

Figure 3: Relative average binary minimum distance for n=15 and q=16.

Lemma 2 The average BMD is equal to the symbol minimum distance for all rates
greater than or equal to Ro = 1 − do−1

n
where do is the largest integer d such that

1

d
log2

(

(q − 1)

(

n

d

))

≥ log2(q − 1) − log2(log2(q)). (18)

Proof: The number of codewords in an MDS code with symbol weight d = n− k + 1
is Ad = (q− 1)

(

n
d

)

. The binary image could be of binary weight d only if the codeword is
of symbol weight d and the binary representation of each non-zero symbol has only one

non-zero bit. This happens with probability
(

m
2m−1

)d
, where m = log2(q). So the average

number of codewords with binary weight d is

Gd = Ad

(

m

2m − 1

)d

= (q − 1)

(

n

d

) (

log2(q)

q − 1

)d

. (19)

From the definition of the average BMD, the lemma follows. �

In [13], Retter showed that for sufficiently large code lengths, most GRS codes lie
close to the GV bound by showing that the number of codewords with weights lying
below the GV bound in all GRS codes of the same length and rate are less than half the
number of such GRS codes. The GV bound is defined by [14],

lim
n→∞

{R(δ) − (1 −H(δ))} ≥ 0 for 0 < δ <
1

2
, (20)

where δ = db/(mn) is the ratio of the binary minimum distance to the total length of
the code, H is the binary entropy function and R(δ) is the corresponding code rate. We
show a related result for a RS code with an averaged BWE Gb in the following lemma.

Lemma 3 The average binary image of the RS code asymptotically satisfies the GV
bound for all rates R ≥ Ro where Ro is defined in Lem.(2).
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Figure 4: Performance bounds of the (15, 11) RS code, q = 16, over AWGN channels.

Proof: For R ≥ Ro, db = d and Gd = (q − 1)
(

n
d

)

(

m
q−1

)d

≤ α
(

mn
d

)

(q − 1)1−d, where

the last inequality follows from
(

n
d

)

md ≤ ndmd

d!
≤ α

(

nm
d

)

, and α → 1 as mn → ∞. (For

k ∼ c
√
n,

(

n
k

)

∼ e−c2/2 nk

k!
with a fixed positive real c.) Asymptotically as n → ∞, and

δ = d/mn
1 ≤ Gd ≤ α2mn(H(δ))(q − 1)1−d ≤ 2mn(H(δ))αq1−de. (21)

Equivalently, R(δ) − (1 −H(δ)) ≥ − log
2
(α)+1.4426

mn
≥ −ǫ where ǫ→ 0 as mn→ ∞. �

Note that this is for the average binary image of the RS code and not for a specific
valid binary image. Asymptotically, it could be shown that Ro is the smallest rate such
that (H(1−Ro)/(1−Ro))− log(n) + log(log(n)) ≥ 0. This implies that Ro tends to one
as n tends to infinity. It is also possible to show that if a code’s binary minimum distance
is lower bounded by (13), then, in the limit of large n, it will asymptotically satisfy the
GV bound.

The lower bounds of (13), (15) and (17) are labelled ’LB1’, ’LB2’ and ’LB3’ re-
spectively. The GV bound, R(δ) = 1 − H(δ), is labelled ’GV’. The relative average
binary minimum distance (RABMD) δ = db/mn is plotted versus the rate of the code for
n = 15, 31 and 63 in Fig. 2. It is observed that they satisfy the GV bound. The lower
bounds as well as the RABMD and the GV bound are shown in Fig. 3 for n = 15. It is
noticed that for n = 15 and k ≥ 8, the average BMD is equal to the symbol minimum
distance, d. This is expected from Lem. 2. For lower rate codes, the average BMD
is greater than the symbol minimum distance. The bounds are tighter for high rates
(R ≥ 0.5) as expected. For larger n and high rates, the approximate lower bounds LB1
and LB2 coincide with the GV bound. The difference between LB1 and LB2 is negligible
for n ≥ 31. The lower bound LB3 is tight at high rates. Moreover, it is much easier to
evaluate the bounds than to actually search for the average binary minimum distance.



4 Performance of the Maximum Likelihood Decoders

Hard decision is done to the received bits to obtain the vector, ûi = 1−sign(yi)
2

and the
HD-ML decoder’s output is the codeword v

′ such that

v
′ = argv min

v∈C

dist(û,v) (22)

where dist(u,v) is the (binary) Hamming distance between u and v. This is equivalent
to transmitting the codeword u through a binary symmetric channel (BSC) with cross
over probability p = Q(

√
2Rγ) where γ is the bit signal to noise ratio. The HD-ML

performance could be upper bounded by using the averaged BWE of the RS code, and
the Poltyrev sphere bound (PSB) for linear codes over binary symmetric channels [9].

Optimum soft decision ML decoding of a code solves the following optimization prob-
lem,

v
′ = argv min

v∈C

‖y −M(v)‖2 (23)

where ‖x‖ is the Euclidean norm of x. Assuming that the all-zero codeword is BPSK
modulated and transmitted over a memoryless AWGN channel, the probability that a
certain codeword of binary weight b is chosen at the decoder instead of the transmitted
all-zero codeword is [8, Eq. 8.1-49] Pb = Q

(√
2γRb

)

, where γ is the signal to noise ratio
(SNR) per bit and R = k/n. Then a heuristic union lower bound (LB) on the ML error
probability (specifically true at high SNRs) is the probability that a codeword of weight
db is erroneously decoded, PML ≥ Gdb

Q
(√

2γRdb

)

. A union upper bound (UB) on the
codeword error probability is the sum of all possible errors,

PML ≤
∑

b≥db

GbQ
(

√

2γRb
)

. (24)

Using the average binary weight enumerator for the RS code, the union upper and
lower bounds on the error probability could be plotted to estimate the error probability
and will be denoted by ‘Union ML UB’ and ‘Union ML LB’ respectively. The union
bound is loose at low SNRs. Poltyrev described a tangential sphere bound (TSB) on the
error probability of binary block codes BPSK modulated in AWGN channels [9]. This is
a very tight upper bound on the ML error probability. We use it in conjunction with the
average binary weight enumerator to find a tight upper bound on the error probability
of ML decoding of RS codes. Divsalar also introduced in [10] a simple tight bound (that
involves no integrations) on the error probability of binary block codes, as well as a
comparison of other existing bounds.

We evaluate the average performance of RS codes when its binary image is BPSK
modulated and transmitted over an AWGN channel. We plotted the (averaged) TSB for
ML decoding for the (15,11) and the (31,15) RS codes and compared them with the union
upper and lower bounds in figures 4 and 5 respectively. For the (15,11) RS code, the
TSB closely upper bounds the actual ML simulation. ML decoding was simulated using
the BCJR algorithm on the trellis associated with the binary image of the RS code [19].
It is clear that at low SNRs the (averaged) TSB give a close approximation of the ML
error probability. At high SNRs, the TSB coincides with the union UB. The analytic
performance of the hard decision Berlekamp-Massey decoder and the HD Guruswami-
Sudan list decoder are also shown and denoted by ‘HD-BM’ and ‘HD-GS’ respectively.
These are in turn compared to the HD ML bound labeled ‘HD-ML PSB’. For the (15, 11)
code, which is of relatively high rate, over the BPSK AWGN channel, the GS decoder



does not improve over the BM decoder. However, their performance is very close to the
averaged HD-ML UB. For the (31, 15) code, the HD-ML UB has more than 2 dB gain
over the BM decoder, whereas the GS decoder offers about 0.3 dB coding gain. ML soft
decision decoding has about 4 dB gain over BM and 2 dB gain over HD-ML decoding.

5 Conclusion

An averaged binary weight enumerator for RS codes is derived and shown to closely
estimate an exact one for a specific basis representation. Bounds on the average binary
minimum distance were derived. For high rates, the RS averaged binary image asymp-
totically satisfies the GV bound. The optimum ML performance of RS codes BPSK
modulated over an AWGN channel is analyzed for both soft and hard decision decoding.
By comparison with actual simulations for the (15, 11) RS code, the bound based on the
TSB is tight. It is useful to compare the performance of existing suboptimum hard and
soft decision decoding algorithms with their corresponding ML decoders.
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