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Abstract—Product Reed-Solomon codes are widely used in for them [2], [3]. Maximum likelihood performance analysis of
data storage, optical and satellite communication systems. Reed-Reed-Solomon product codes for both hard decision and soft
Solomon product codes can be regarded as evaluation of a bivari- decision decoding show the potential of devising improved

ate polynomial with constraints on its X and Y-degrees. In this | ial ti lqorith for d dina th 1
work, we propose polynomial time algorithms to decode Reed- polynomial time algorithms for decoding them [4].

Solomon product codes beyond half the minimum distance. The ~ Recently, there have been a lot of progress in the area
first algorithm is based on a generalization of the Guruswami- of list decoding of algebraic codes. Algorithms such as Su-
Sudan type decoders. We are able to show that if fraction of dan [5], Guruswami-Sudan [6], Parvaresh-Vardy [7], [8], and

number of errors is smaller than 1— {/4R;, where R, is the rate  ,ryuswami-Rudra [9], show that we can basically decode

of the product code, then the algorithm can efficiently recover . .
the transmitted codeword. The other algorithm is based on the above the half the minimum distance of the code for some

fact that Reed-Solomon product codes can be viewed as subfield-Specific codes. In this work, we investigate the generalization
subcode of a generalized Reed-Solomon code. So, the decodingf Guruswami-Sudan algorithm for RS product code. We

algorithms for Reed-Solomon codes are inherited to decoding of will that see this generalization results in algorithms that can
RS product codes. By using this fact, we prove that if fraction of - ya:5de more than half the minimum distance for certain rates
number of errors is smaller than 1 — {/4R, then the algorithm faRS duct cod
is able to recover the transmitted codeword.! ofa . pro u.c co e: . .
This paper is organized as follows. In Section Il, we intro-
|. INTRODUCTION duce some notation and show that a Reed-Solomon product

Prod q introduced by Elias 111 who al can be represented as an evaluation of a bivariate polynomial.
roduct codes were introduced by Elias [1], who also P'% Section 111, we investigate two different algorithms for de-

posed decodlng. them by |terat|vc_aly decoding the compqne&)tding of Reed-Solomon product codes. The first one is based
codes. Conventional bounded. Q|stance_ decoding algorlthg}.?a generalization of the Guruswami-Sudan algorithm [6]. In
can correct up to half the minimum dlstanpe of the COdﬁ1e second one, we use the property that the RS product code
Assume thatR and C are linear codes with parametersy o <ubcode of a-ary Reed-Muller code (and a subfield-
(v, k., dr) and (ne, ke, dc). The product code” = R x P subcode of a generalized RS code over an extension field) so

s dﬁfined afs the set of.all two dimdensiogal arraysd SUChhtl?ﬁy decoding algorithm for Reed-Muller codes (and RS codes)
€ach row of any array P Is a codewor ofR an €3N can be applied for the decoding of RS product codes.
column is a codeword of. It is well known thatP is an

(np, kp,dp) = (nyne, krke, drd.) linear code. The rates &, Il. REED-SOLOMON ProDUCT CODES

¢ anplP are iy, K, and 1t = R, Re respectively. , To define the Reed-Solomon product codes, we first briefly

It is well known that the half the distance bound is NQtyiew the Reed-Solomon codes. K) =S d; X' bea
always attainable by iteratively decoding the component codgs;;, polynomial oveF,[X] 2. Then an(n, k) Rzggd-lSoIomon

. i . 4 . )

For example, if the decoding algorithms for t_he row a”E’ode is generated by evaluating the data polynorial) atn
column component codes are capable of corrediihg-1)/2  yitinct elements of the field forming a set called th@port
and (d. — 1)/2 errors respectively, and an error rgctangul%ret of the codes = {ap, a1, ...,an_1} C F,. The generated
block of ((d, —1)/2 4+ 1) x ((d. — 1)/2 + 1) occurs, iterative .4eword isd(S) = (d(ao), d(a1),. .., d(an_1)) [10].
decoding fails although the number of errors is less than OfNext. we show how a product of two RS codes can be

equal to(d,d. —1)/2 if dyd. > d +d. + 3. generated by polynomial evaluation of a bivariate polynomial.
Reed-Solomon (RS) product codes are product codes where

th_e compongnt codes are Reed-SoI_omon codes. They Pheorem 1 Let the data polynomial be represented as
widely used in data storage and satellite broadcast systems. A
number of soft iterative decoding techniques have been devised

Uy Ve

D(X,Y) =) di; XY/,
Lindependent work by D. Augot and M. Stepanov has been done on decod- =0 j=0

ing of Reed-Solomon product codes and it is submitted to ISITO6. We are
planning to merge the papers in the final submission. 2We replace the ubiquitous — 1 with v.



where d;;'s are the data symbols. Also denote the supportThis definition can also be extended for multivariate poly-

set of the row and column RS codeg, andC, by S, = nomials.

{010,041, ...,Oén,,,,l} C EI andS. = {ﬁo,ﬁl, ...,ﬁncfl} C Fq

respectively. Then a codewordin the RS product cod® = Theorem 3. The number of zeros (counting with multiplicities)
R xCisp = [p,; ;| wherep,; ; = D(c, 3;) fori =0,..,n.—1  of the nonzero bivariate polynomid)(X,Y") evaluated over
andj =0,...,n. — 1. S, x S., where|S.| = n, and|S.| = n., is at most

) o wdeg,, , D(X,Y).
Proof: Since the cardinality of the code generated by me

bivariate polynomial evaluation described above gi%*-, Proof: Let v, = degy D(X,Y) andv, = degxD(X,Y).
which is equal to cardinality ok x C, then it is sufficient For anya € F,, D(a,Y) is either the all zero polynomial or
to show that the generated cofeis a subcode of the producty polynomial inY” with maximum degree... DefineG = {~:
codeR xC. Consider a codeworg € P. Therth row is equal (X —+)|D(X,Y)}. Assuming that for each; € G, m; is the
to p,.. = {D(ao, ), D(@1, Br), -, D(@n, -1, 5r) } Where  |apgest integer thatX — ;)™ dividesQ(X,Y) then we can

vy v rewrite D(X,Y") as follows
D(ae,Br) = .Y dij(oe)'(8:) €Y ,
i=0 j=0 D(X)Y) = <H(X—%)m> D'(X.Y)
[ Ve i=1
— - J i
- ZO Zod” (Br)" | (ae)” whereD’(a,Y") is a non zero polynomial for any € S, and
1= Jj=

degy D'(X,Y) = ve.
Define v,, = Z})F‘:o ds;(6,)) and the univariate poly- For anya ¢ G, D(a,Y) is nonzero so it has at most
nomial D.(X) = Y. 4.,X". It is then easy to seeMany zeros. For any = ~; € G, let assume thab’(v;,Y)
that p,, can be generated by evaluating the modifiel§ Zero at{1, 5, ..., Bu} with multiplicity {ry,rs,...,7ru},
data polynomial D’.(X) at the support setS,; p,, = respectively. Then the number of zerosof~;,Y) counting
{D'(ag), D'(1), s D' (ctn, 1)} This proves thap, , € R. With multiplicity over S, x S is

Similarly, any columnc can be generated by evaluating u
the modified data polynomiaD”(X) = >~ ;4. ;X7 at the Z(mi + 7))+ (ne —w)m; < um; +ve + (ne —u)m;
support setSc; p, . = {D"(Bo),D"(b1), ..., D" (Bn.—1)}, j=1
whered.,; = 37i" di;j(ac)". Thus each column is a codewordry,, o, (n. — u)m; is the contribution of the points that

inC. . . .
D'(~;, ) is not zero. Also notice tha} . r; < v.. So, in
. . . it c ’
Since each row is a codeword R and each column is total for all a € G we have

codeword inC, thenP is a subcode oRR x C.

In summary, an RS product code is defined as !

Z(vc + nem;) < ue + nevy
'P(ST,SC,’UT,’UC,(]) :{D(ai»ﬁj) :DGFq[XvY]a =1
a; € Sy, Bj € Se, degx D < v, +1anddegy D < v.+ 1} many zeros. Here we have used the facts thatn; < v,.

) i o ] . Thus, total number of the zeros is upper bounded(y —
It is easy to confirm that the minimum distance Bfis 0)ve + fv. +nev, Which is equal tar,v, +v.n, and it is equal

indeed d,.d... Fr/om the abgve proczf we have', eagh row ig, wdeg . . D(X,Y). i
generated byD/ (X) = > .7 v-:X". Since this univariate
polynomial has at most, zeros, it will evaluate to at least I1l. ERRORCORRECTIONALGORITHMS

n, — v, hon-zero values if it is non-zero. This means that at We know that half the distance bound for the RS product
leastn, — v, columns are nonzero. Each of these columr}:sode RS is given by

are evaluated by the polynomi@”(X). Thus each of these

nonzero columns have at least—u,. non-zero positions. Thus Yody (1= R)(1—R;)

if p is nonzero the number of the nonzero elementp ia at Np 2

least(n, —v,.)(n. —v.) which isd,d.. 1—(R.+ R, — R.R,)
N 2

Corollary 2. The number of distinct zeros of the bivariate
polynomial D(X,Y) = 70" >0 d;; X'Y7 is at most

—vVRc.+ R, — R.R,
NyrUc + NcVr — VcUp if Up < Ny and'Uc < 7.

VR
_ o < - - VAR, 1 Y2, @)
The (w,,w,) weighted degree oD(X,Y") is given by 2 2

def where the inequalities follow from the arithmetic and geomet-
wdeg, o, D(X,Y) = o ric mean inequality. We use this later for comparing the results
max{iw, + jwy : D(X,Y) =32, d; X'Y7 d; ; # 0}. of different decoding algorithms.

VAN
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A. Generalizing the Guruswami-Sudan Algorithm

Using the observation in Theorem 1, we devise an algorithm
for decoding Reed-Solomon product codes by generalizing
the Guruswami-Sudan [6] algorithm. Assume that the Reed-
Solomon product cod® = R x C is defined as in Theorem 1.
The received word iy = [y;,], for i = 1,2,...n, and
j=1,2,...n., given that the codeworgd € P is transmitted.
The Hamming distance betwegnand p will be denoted by
5(y, p).

In order to decode, we first find a trivariate interpolation
polynomial Q(X,Y, Z) € F,[X,Y,Z] that passes through _ ' ' _
al the (a0, y.) with mulilicity m. The interpolation £ & The fumbe o menomil of pesmum veighed degielover
polynomial can be found efficiently using the generalized form
of the algorithm given in [11] or [7]. Assume that

A

HX,Y) & Q(X,Y,D(X.Y)). the points(a, 3;,y:,;) with multiplicity m if

m(m+ 1)(m+2)

N(A) > nn,
Lemma 4. Let 7, = 40(y,p). If m(nne — ) > (4) > nyn 6
wdeg, ., H(X,Y), then (Z - D(X,)Y)) diides where N(A) is the number of trivariate monomials with
Q(X,Y, Z). weighted degree at mogt. N(A) can be lower bounded by

, the volume of the pyramid ifR3, shown in Fig. 1. Thus,
Proof: For anyy; ; = p; ;, we know H (o, ;) is zero

with multiplicity m, so H(X,Y) has at leastn(n,n. — 7,) N(A) > 1 A®
many zeros onS, x S.. From Theorem 3, if the number of 6 nyne(nev, + npve)
zeros of H(X,Y) becomes larger thagydeg,, ,, H, then
H(X,Y) is equivalent to zero.

There are many efficient algorithms that can be usedwdeg,, . .. v, 40,0, QX Y;Z) <
for finding factors of the form(Z — f(X,Y)) out of

ol DT o

Lemma 5. The (n.,n,)-weighted degree of (X,Y) is less

than or equal to thén,, n,., n.v, + n,.v.) weighted degree of and the theorem follows. _
Q(X.Y, 2). From Lemmas 4, 5 and 6, one can show the following

theorem.
Proof: Assume that X‘Y7Z¢ is a monomial of
Q(X,Y,Z). When Z is substituted byD(X,Y), for this Theorem 7. Assume we transmit a codeworgh €
monomial we have P(S;, Se,vr,ve, q) With row and column component code rates
R, andR, respectively. Leyy = [y; ;] be the received word. If
m is the interpolation multiplicity, thep can be efficiently list

This implies the following condition

wdeg,, , X'Y/(D(X,Y))" <

wdeg,_, XY (XY"e)* decoded fromy if the Hamming distance betweapn andp,
< nei + npj + (nevr + nrve)l Tm = 0(y, c), is bounded by
=wdeg, n nv im0, X YIZE <

Therefore, the lemma is true for a general polynomial. | {n . <1 _ i/(R’ +R,) (1 n 1) (1 n 2) ) _ 1J(5)
] " m m m

Lemma 6. There exist a nonzero trivariate polynomial
Q(X,Y,2) € F,[X,Y, Z] such that)(X,Y, Z) passes through Corollary 8. For an interpolation multiplicitym, the error
all the(a;, B;,v: ;) fori = 1,2,...,n., j =1,2,...,n, with ~correction radius, is upper bounded by

multiplicity m andwdeg,, .. 5. 0. 4n,0, QX Y, Z) < dny
where

I = {m(nmc)i/(RmLRc) (1+2) (1+2) W @ {n <1_ Jﬁ\/(u;) (“i)) —;J ®)

whereR, andn,, are the rate and length of the product code,
Proof: Following [7], [15], there exists a nonzero poly-respectively. The upper bound on the decoding radius is maxi-
nomial of weighted degree at moAt that passes through all mized whenR,. is equal toR..

Tm <
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Fig. 3. 1—+/R¢:+ R, and the half-the-distance bound

Fig. 2. 1 — /R. + R, and the half-the-distance bound.
1

Proof: From the arithmetic and geometric mean inequal- e
ity, R, + R. > 2v/ R, R. with equality if R, = R. = \/R,. ' subcode RM decoder
0.6 . . .
straighforward interpolation

It thus follows that the relativasymptotic decoding radius
0.4 Rc+Rr = 0.22

of the proposed algorithm is

T —tm ™ < 1-¥YR.+ R,

np m— 00 np
0.2 0.4 0.6 0.8 1
< 1- /4R, (") Re
Remark. Whenm is large, the interpolation algorithm isrig. 4. Rate region that the decoders are better than the half-the-distance

correcting any pattern of errors of cardinality greater than thizgund
of half the minimum distance decoder whén + R, < 0.22.

It is worth noting that the list size of the Guruswami-Sudan

cf. Fig 4.

The following theorem shows that the number of candidate _ : N
on the decoding list of our proposed algorithms does ngfgonthm is bounded by [16] ( A smaller list size is preferred.)
increase with the code length,, or the alphabet size.

0 P LGS ~ <m—|— ;) %. )

Theorem 9. For interpolating with a fixed multiplicityn, and ) ) _ _
for any received worg) € F,”, the candidate list size is upper |W9_ r\]’\”" now give a formulation of our generalized GS
algorithm:
Algorithm 1: Decoding of Product Reed-Solomon Codes.

Let y € F,”” be the received word when the codewagrds

1 1 2
L, l— 11+ — 14+ — 1. 8 . .
s 4R, ( + m) ( + m) * ® P(Sy, Se, vy, Ve, q) IS transmitted.
« Interpolate a trivariate polynomi&(X,Y, Z) such that:

bounded by

Proof: The total number of candidate words on the list, i
counting plausible and implausible words, is upper bounded ~ — @(X,Y;Z) passes through the points.;, 5;, yi,;)
by the number of factors af(X, Y, Z) which are of the form with multiplicity . _

— The (n.,n,,n.. + nev.) weighted degree of

Z — D(X,Y). This is upper bounded by thg-degree of the )
polynomial Q(X, Y, Z). From Fig. 1 and (4), we can see this Q(X,Y, Z) is less thani,, (Lemma 6).
« Factorize Q(X,Y, Z) into irreducible factors. If(Z —

can be upper bounded by
A D(X,Y))|Q(X,Y, Z), thenc = [D(«w, B;)], wherea; €
L, < NV + NV, S, andB; € S, is added to the list of candidates if
A > — degy D(X,Y) < v, anddegy D(X,Y) < v,
< mi Ny T 14 N n 2 — (e, p) < T (Theorem 7).
NeVp + Ny Ve m m
5 B. Subcode of a Reed-Muller code
~ mi (1) (1+ 1) (1+ 2) Let the set of polynomialsPrs be the set of bivariate
Re + R, m m polynomials withX -degree smaller than or equaldpandY -
1 1 2 degree smaller than or equaltg. Evaluation of polynomials
< m iR (1 + m) (1 + m), in Prs on the elements of? gives the RS product code.
P Now assume thaPr,,; is the set of bivariate polynomials

where the last inequality follows fromy,(R. + R,) > /R, with total degree smaller than or equal#p+ v.. Evaluation
with equality if R, is equal toR,,. of polynomials of Pry; over ]Fq2 gives a Reed-Muller code,



RMy(ve + v, 2). It is simple to see thaPrs C Pra OF

the RS product code is the subset of the Reed-Muller code.
Therefore, any algorithm for decoding of the RM code can
be used for decoding of RS product code. From [17], [18]
we know that theRM, (v. + v, 2) is a subfield-subcode of a
generalized Reed-Solomon code ofgs. Thus, by decoding
the generalized Reed-Solomon code using the Guruswami-
Sudan algorithm [6] basically we can decode the RS product
code.

Theorem 10 [17] Assume thatl is the minimum distance of
q-ary Reed-Muller cod®&M,(v. + v,, 2) of lengthn, then we
can efficiently decode the Reed-Muller code if number of errors
is smaller than

d

1-— =
n

t<n|l-— (10)

Fig. 5.

Re

1 —+/Rc + Rr — Ry R and the half-the-distance bound
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Corollary 11. Assume that the RS product code is defined over
F,. If nc = n, = ¢ andR. + R, < 1 then the decoding radius [
of the algorithm is equal to

T<q2(1—\/1m>.

Proof: WhenR.+ R, < 1 then the minimum distance of
RM,(ve+vy,2) is equal tod = (¢ — v. — v,-)g and its length
is ¢2. Then (11) follow form (10).

The RS product cod®(S,., S, v.., v, q) with |S,.| = n,. [5]
and|S.| = n. is a subcode of a (punctured) GRS of length
n,.n. and minimum distancel (g — ve — vp)g. This 8]
implies that it can be decoded using bivariate interpolation and
factorization such that the asymptotic relative error capabilityz]
is given by

(2]

(112) a

(8]

T (1o 1o dazve ) (12)
Ny NypNe ]
2
~ |1—|LR+LRr - L +1]. (13) po
T Ne NeNy

[11]
In general one can say, that using bivariate interpolation, the
asymptotic relative decoding radius is bounded by (12]

T <1- IR,

Np

(14) 3

Recall that half th? minimum distance of the product code
is upper bounded by% < Yy, —VRe+ R, — R.R,.. This
implies that an algorithlr]n with an asymptotic relative decoding
radius 1 — /R. + R, — R, R, will always decode beyond [1°!
half the minimum distance of the code for any pattern of
errors and rates?,. and R, (cf. Fig. 5). One can see that[16]
such an algorithm exists if it is true that the RS product code
P(Sr, Se,vr,ve, q) IS a subfield-subcode of the a GRS codg 7]
over[F, with the same minimum distance of the product code,
(n, —v,)(ne—v.), lengthn,., n, and dimensiom,.v,+ncv, — 18l
vve + 1. Existence of such a GRS and efficiently finding it
remains open.
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