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Abstract— In this paper, we design families of rate-compatible
structured LDPC codes suitable for hybrid ARQ applications
with high throughput. We devise a systematic technique of low
complexity for the design of structured low-rate LDPC codes
from higher rate ones. These codes have a good performance
on the AWGN channel and are robust against erasures and
puncturing. The codes designed here are protograph-based codes
and have fast encoding and decoding structures. These low rate
codes are used as the parent codes of rate-compatible families.
Then, we propose a number of algorithms for puncturing the
codes in a rate compatible manner to construct codes of higher
rates. The two most promising ones are the random puncturing
search technique and progressive node puncturing. We show that
using the techniques in this paper one could construct a high
throughput rate compatible family with codes whose rates are in
the range from 0.1 to 0.9 and which are within 1 dB from the
channel capacity and have good error floors.

I. I NTRODUCTION

In this paper, we design rate-compatible (RC) families of
LDPC codes for incremental redundancy hybrid automatic
repeat request (H-ARQ) applications [1]. Our codes are struc-
tured (protograph-based) codes [2], [3]. We first design low
rate structured LDPC codes which have low thresholds on the
AWGN channel as well as a good performance on the erasure
channel. Other approaches to design low rate protograph codes
were previously considered [4]. These codes have the property
that the punctured (hidden) variable nodes have a very high
degree and thus are not expected to perform well under
further puncturing. Rate-compatible structured LDPC codes
were considered [5], [6]. In these families, the information
block size is not constant which makes them not suitable for H-
ARQ applications. Puncturing of LDPC codes was investigated
by a number of researchers. The puncturing fraction of each
set of variable nodes with a certain degree, in the parent code,
has been optimized based on asymptotic analysis [7]. This
approach is not directly applicable to the codes consideredhere
since it is often the case that all the nodes to be punctured are
of the same degree (degree2). By modeling punctured nodes
as erasures, it was recently shown that there exists a cutoff
rate, Rc, which depends on the degree distributions and the
rate of the parent code such that one could not find a code
with a rateR > Rc, through puncturing the parent code, that
performs well under density evolution [8]. Motivated by this
discussion and taking also into account that our parent code
already has punctured (hidden) variable nodes, we propose a
number of algorithms for puncturing the structured code to get
an H-ARQ RC family. Moreover, both puncturing (for higher

rates) and extending [9] or information shortening [10] (for
lower rates) are essential to get good codes over all the desired
rate range. In a related work (not the focus of this paper), we
can obtain lower rate (rateless) codes through extending the
low rate codes designed here by concatenating them with inner
low density generator matrix (LDGM) codes, as suggested in
[11], which is similar to Raptor codes [12].

II. D ESIGN OFLOW RATE CODES

Starting from a protograph with a relatively high rate, we
devise a systematic technique for constructing protographs of
lower rates. These codes should have good performance on
both AWGN and erasure channels. A code of the desired
length is constructed from the protograph by the progressive
edge growth (PEG) algorithm [13] or the ACE-PEG algorithm
[14] or other variations such as circulant-PEG [4]. We use a
version of the PEG algorithm adapted for protograph codes.
We assume that the base protograph,B, hasN variable nodes
andC check nodes. We assume thatE of the variable nodes
are punctured (hidden). The number of systematic input nodes
is denoted byK = N − C. The rate of the protograph is
RB = K

N−E
. The following algorithm gives a systematic

technique for deriving a protographL of rate RL < RB

starting from the protographB.
Algorithm 1: Construction of low rate protographs

1) Copy the base graph,B, α times.
2) Construct another protographBα from theα copies of

B using the PEG algorithm (or its variants) to maximize
the girth of the protograph.

3) Construct the protographL from Bα by pruning

β = αK
RB − RL

RB(1 − RL)
(1)

systematic input nodes and the edges connected to them.
4) The choice of the pruned input nodes is optimized to

get good AWGN and erasure thresholds.
5) Further optimization can be done by a small number of

edge operations. �

The PEG algorithm, and its variants, often have some
randomness in them. In such a case, step 2 can be repeated
to a maximum number of iterations and the protograph with
the largest girth is chosen. SinceL is obtained fromBα by
pruning nodes and edges, thenL is a subgraph ofBα. This
implies that the girth ofL is at least as large as the girth ofBα.
Then maximizing the girth ofBα is equivalent to a constrained



Fig. 1. Construction of rate1/3 protograph.

maximization of the girth ofL. It is possible to construct the
lifted graph with a larger girth if the girth ofL is larger. This
is a favorable property as a larger girth often corresponds
to a low error floor at the high signal to noise ratio (SNR)
region. In step4, optimization can be done by choosing the
pruned input nodes at random while using a gradient descent
or simulated annealing approach [3] to pick the graph with the
best threshold. One can also choose these nodes in a systematic
way. For example, ifβ = γK, thenγ copies of theK input
nodes are pruned fromBα. In most cases, the choice of the
copies that are pruned does not affect the performance due
to the symmetry in the protographBα across these copies.
If no such symmetry exists, it is feasible to try all possible
combinations of theγ copies and pick the combination that
will give the lowest threshold. This is due to the small size of
the protograph, which makes the search of the threshold for the
protograph using density evolution (DE) [15] a fast process. As
suggested in step5, additional optimization of the protograph
can be done by adding, removing and swapping edges inL.
As we will demonstrate by example, carefully adding a very
small number of edges is enough to get protographs with a
better threshold. This step can be done by hand. However, it
can also be automated in a simulated annealing setting.

Here we consider a popular instance of the algorithm, when
the base protograph is a half rate code,RB = 1/2, and the
target rateRL = 1/T , whereT is an integer greater than2.
In this case the parameters are as follows:

α = T − 1 & β = (T − 2)K. (2)

It is straightforward to confirm that

RL =
K(T − 1) − K(T − 2)

(T − 1)(N − E) − K(T − 2)
=

1

T
. (3)

A. Construction Examples

The base code of choice is the rate1/2 ARCA code, shown
in Fig. 1.a, designed by Divsalaret. al [5]. In the figures
accompanying the following examples, the AWGN and erasure
thresholds are labeled byA and E respectively. Check and

Fig. 2. Construction of rate1/4 protograph.

Fig. 3. Construction of rate1/5 protograph.

variable nodes will be represented by squares and circles
respectively. Transmitted variable nodes are gray in color
while punctured (non-transmitted) variable nodes are white.
For asymptotic analysis (in the length of the code), we used
DE to determine the AWGN and erasure thresholds [15].

The construction steps for a rate1/3 protograph are shown
in Fig. 1. The protograph in Fig. 1.b is the PEG-lifted graph
of two copies of the ARCA code in Fig. 1.a. The rate1/3
protograph in Fig. 1.c results by systematically pruning one
copy of the input nodes and its AWGN threshold is only0.26
dB away from the capacity. By simply adding one edge in Fig.
1.d, between C0 and V6 (C and V stand for check and variable
respectively) the gap to capacity is reduced to only0.14 dB.
It is to be noted that both codes have a good performance
on the erasure channel. However, the better threshold on
the AWGN channel (d) comes at a slight degradation of
the performance on the erasure channel (0.019 difference in
erasure thresholds). Similar observations can be seen in the
designed protographs shown in Fig. 2 and Fig. 3 for rates of
1/4 and1/5 respectively. We compared our codes with the RC
3GPP turbo codes for a payload of4K in Fig. 4, (T and HIT
denote the AWGN threshold and the number of half iterations
respectively). The codes were constructed using PEG. It is
expected that the ACE-PEG algorithm will result in lower error
floors. In general, our codes have about 0.3 dB gain over turbo
codes at a FER of10−2 (which is our comparison criterion
for such applications). We can also show that the speed gains
in terms of throughput are about200%.
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Fig. 4. Comparison with 3GPP turbo codes.

III. PUNCTURING ALGORITHMS

In this section, we will focus on devising schemes for
puncturing the codes designed in the previous section to obtain
higher rate codes in a RC family.

Structured (regular) puncturing can be achieved by punc-
turing on the protograph level. This will have the advantage
of low storage requirements. However, this approach has two
major drawbacks. The first drawback is that the set of feasible
rates obtained by puncturing is very small. Consider the ARCA
code in Fig. 1.a. There are two redundancy symbols in the
protograph. In this case the feasible rates are only2/3 (punc-
turing any of the two redundancy nodes) and unity (puncturing
both redundancy nodes). The second major problem is that
these structured protographs already have punctured nodes,
which are treated as erasures by the belief propagation (BP)
algorithm. As seen in Fig. 5, puncturing any redundancy node
will result in at least two edges connected to any check being
connected to erased variables. BP cannot start as the set of
punctured nodes will form astopping set.

A. Regular Irregular Puncturing

We can see that for such codes irregular puncturing on
the lifted graph will yield better results. This also gives the
flexibility of choosing any family of required rates. In our
proposed scheme, the puncturing pattern will be as regular
as possible with respect to the preceding codes in the family.
For the higher rates it becomes more irregular and random-
like with respect to the parent code. LetC(Rm) denote the
code in the rate-compatible family with rateRm. We will
assume that̃N andC̃ are respectively the number of variable
nodes and check nodes in the Tanner graph of the lifted code.
The regular-irregular puncturing algorithm is formulated as
follows:

Algorithm 2: Regular-Irregular Puncturing

1) Start with a parent codeC(R0), with rateR0.
2) For each rateRm ∈ {R1, R2, .., Rp}, Rm > Rm−1

a) Find the set,Ψm of non-punctured redundancy
nodes inC(Rm−1). The cardinality ofΨm is Ñ −
Ẽm−1, where Ẽm−1 is the number of punctured
variable nodes in the Tanner graph ofC(Rm−1).

Fig. 5. Puncturing on the protograph level.

TABLE I

1K PAYLOAD RC FAMILY WITH REGULAR-IRREGULAR PUNCTURING

b) Calculate the numberPm of nodes to be punctured
to go from rateRm−1 to rateRm

Pm =

⌊

Ñ −
Ñ − C̃

Rm

− Ẽm−1

⌋

.

c) Calculateα andβ such that puncturing pattern on
the non-punctured set is as regular as possible:α =

⌊ Ñ−Ẽm−1−Pm

Pm−1 ⌋ & β = Ñ − Ẽm−1−α(Pm −1)−
Pm.

d) The puncturing pattern onΨm is as follows
{x1 ...

︸︷︷︸

α

x2 ...
︸︷︷︸

α

, ..., xPm
, ...
︸︷︷︸

β

} , wherexi denotes

the position of theith punctured node. �

We have to emphasize, that the set of designed rates has to be
carefully chosen to have a good performance. An RC family
within 0.5 dB from the capacity and a parent rate1/2 was
obtained for a payload of1K as shown in Table I.

B. Random Puncturing

Regular and irregular puncturing patterns may not result ina
good family of codes. We construct an RC family by searching
for the best random puncturing pattern on the lifted graph in
a fast way. The algorithm is stated as follows

Algorithm 3: Random Puncturing Search Algorithm

1) Start with a parent codeC(R0), with rateR0.
2) For each rateRm ∈ {R1, R2, .., Rp}, Rm > Rm−1

a) Initialize the winning SNR,Sw = ∞.
b) Find the setΨm ( 2.a Alg. 2).
c) CalculatePm (2.b Alg. 2).
d) Obtain a codeC′ by randomly puncturingPm

redundancy nodes inΨm.
e) By density evolution, test if the code has negligible

error probability at an SNRSw;

• Yes:

– Search for the new thresholdSn of this code
in the range{−∞ to Sw}.

– SetSw = Sn.
– Set the winner codeC(Rm) to beC′.

• No: Skip

f) Repeat random search till a maximum number of
iterations. (Go to2.d.) �



TABLE II

1K AND 4K PAYLOAD RC FAMILIES WITH RANDOM (R) AND

PROGRESSIVE(P) PUNCTURING. PARENT RATE IS 0.5.

In step 2.e, searching for the threshold can be done by
iteratively bisecting the range to select a test SNR and see if
this test SNR achieves zero error. The process is repeated till
a desired accuracy in the SNR. Therandom search algorithm
is a greedy algorithm which searches for the best code at each
design rate.

C. Progressive Node Puncturing

We devise a systematic algorithm that progressively chooses
the puncturing pattern that (i) maximizes the number of checks
in the graph which are connected to only one punctured vari-
able while (ii) minimizing the average number of punctured
variable nodes connected to each check and (iii) maximizing
the connectivity between the checks, connected to only one
punctured variable node, and the other punctured nodes.

The reasoning behind condition (i) is that a check (of degree
> 1) with only one punctured variable node connected to it
will transmit non-zero information to the punctured node and
the single punctured node could recover. However, maximizing
the number of checks with only one punctured node connected
could result in some other checks having a large number of
punctured nodes connected to them. A check with more than
one punctured node connected will transmit zero information
to all the punctured nodes unless all but one of these punctured
nodes are recovered by message passing from other checks.
Thus, it is crucial to minimize the maximum number of
punctured nodes connected to any check, which implies (ii).
This also implies that checks with no or only one punctured
variables should have a high connectivity to the other checks
with more than one punctured node, which is condition (iii).

Algorithm 4: Progressive Node Puncturing-I
For each rateRm, obtainC(Rm) from C(Rm−1) by progres-

sively puncturingPm nodes from the setΨm (Alg. 2.2a,b);

1) For each checkc ∈ N (v) such thatv ∈ Ψm, calculate1

F (c) = |v : v ∈ N (c) & v is punctured|
2) For eachv ∈ Ψm, calculate

a) G(v) = |c : c ∈ N (v) & F (c) = 1|
b) H(v) =

∑

c∈N (v) F (c)

3) While p < Pm (puncture a nodevp)

a) Γ = {vr : vr ∈ Ψm & G(vr) = minv∈Ψm
G(v)}.

b) If |Γ = 1|; vp = Γ;

1N (x) denotes the set of neighbors of the nodex.

c) Else

i) Ω = {vr : vr ∈ Γ & H(vr) = minv∈Γ H(v)}.
ii) If |Ω| = 1, vp = Ω.
iii) Else, choosevp at random fromΩ.

d) Puncturevp and updateΨm = Ψm \ vp.
e) ∀ c ∈ N (vp): F (c) := F (c) + 1 and ∀ v ∈

N (c)
⋂

Ψm updateH(v) andG(v).
f) Incrementp, p := p + 1. �

The previous algorithm implements conditions (i) and (ii).
To implement condition (iii), we define the puncturing scoreof
a checkc to be the cardinality of the set of punctured variables
connected to the checks reached by a two level expansion of
the support tree of checkc,

S(c)
∆
=

∑

c′:c′∈N (v) & v∈N (c)

F (c′). (4)

The puncturing score of the graphG is defined by

SG
∆
=

∑

c∈G & F (c)=1

S(c). (5)

The puncturing score is an approximate and an efficient way
to measure how well the checks, with one punctured node,
are connected to the other checks with punctured nodes. The
progressive node puncturing (PNP) algorithm is modified as
follows to incorporate condition (iii);

Algorithm 5: Progressive Node Puncturing-II

1) Initialize SG = 0 & t = 1.
2) While t < tmax

a) Change the random seed
b) Obtain the codeCt(Rm) from C(Rm−1) by Alg.

4.
c) Calculate the puncturing score of the Tanner graph

of Ct(Rm), SG(t).
d) If SG(t) > SG, set C(Rm) to be Ct(Rm) and

SG = SG(t). (Choose the puncturing pattern with
the largest puncturing score.)

e) t = t + 1. �

D. Numerical Results

Table II shows the gap from the AWGN channel capacity
compared for our RC families constructed from the ARCA
code of rate0.5 for payloads of1K and 4K. Random punc-
turing (R) and PNP (P) result in families within0.5 dB and
0.8 dB from the channel capacity respectively. Fig. 6 shows
the FER of these RC families on an AWGN channel for a
payload of 1K. The codes constructed by random puncturing
outperform those by PNP at low SNRs due to their lower
thresholds. However, PNP results in codes with lower error
floors especially for high rates. Using the techniques in Sec.
II , we designed two codes of rate1/6, C1 which has AWGN
and erasure thresholds of−0.54 dB and 0.82 respectively,
andC2 which has AWGN and erasure thresholds of−0.7 dB
and 0.814 respectively. The thresholds of the RC families,
designed withC1, as the parent code are shown in Table III. It
is worth noting that althoughC2 has a better AWGN threshold,
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Fig. 6. FER of1K Payload RC Families with PNP and Random Puncturing.

TABLE III

1K PAYLOAD RC FAMILIES WITH RANDOM (R) AND PROGRESSIVE(P)

PUNCTURING. PARENT RATE IS 1/6.

its family has a poorer performance as it has a worse erasure
threshold. As we can see from Fig. 7, for a payload of1K,
the PNP RC family has a good BER and FER performance on
the AWGN channel and has a good error floor performance.

IV. CONCLUSIONS

Designing H-ARQ RC LDPC families is three fold:
First: We devised low complexity systematic techniques for

designing low rate structured LDPC codes from higher rate
ones. The designed codes should have a good performance on
both the erasure and AWGN channels. These codes are also
suitable for high throughput applications.

Second: Puncturing algorithms were devised to obtain
higher rate codes, in the RC family. from such low rate codes.
We point out here some general observations on the punc-
turing algorithms;Structured puncturing (puncturing on the
protograph level) will not in general work.Regular-Irregular
puncturing on the lifted graph is of low complexity and will
often result in codes with good thresholds. However, one has
to cautiously choose the set of designed of rates of the RC
family. TheRandom Puncturing Search greedily finds the best
(random) puncturing pattern for each code in the family based
on the lower rate codes. The low rate codes in the family will
have good thresholds.Progressive Node Puncturing carefully
assigns the puncturing pattern such that further puncturing
would result in good higher rate codes. The designed codes
will have good thresholds over the whole family range as well
as good error floors.
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Third: Obtaining lower rate codes from the parent codes by
extending or concatenating them with LDGM codes.
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