Division Algebras: A Tool for Space-Time Coding

Frédérique Oggier
frederique@systems.caltech.edu

California Institute of Technology

UCSD, CWC Seminar, February 17th 2006
Space-Time Coding
Space-Time Coding

\[h_{11}x_1 + h_{12}x_3 + n_1 \]

\[h_{21}x_1 + h_{22}x_3 + n_2 \]
Space-Time Coding

\[h_{11}x_2 + h_{12}x_4 + n_3 \]
\[h_{11}x_1 + h_{12}x_3 + n_1 \]
\[h_{21}x_2 + h_{22}x_4 + n_4 \]
\[h_{21}x_1 + h_{22}x_3 + n_2 \]
Space-Time Coding: The model

\[\mathbf{Y} = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix} \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} + \mathbf{W}, \mathbf{W}, \mathbf{H} \text{ complex Gaussian} \]

time \(T = 1 \)

\[h_{11}x_1 + h_{12}x_3 + n_1 \]

\[h_{11}x_2 + h_{12}x_4 + n_3 \]

time \(T = 2 \)

\[h_{21}x_1 + h_{22}x_3 + n_2 \]

\[h_{11}x_2 + h_{12}x_4 + n_4 \]
The code design

The goal is the design of the codebook \mathcal{C}:

$$
\mathcal{C} = \left\{ \mathbf{x} = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} | x_1, x_2, x_3, x_4 \in \mathbb{C} \right\}
$$

the x_i are functions of the information symbols.

- The pairwise probability of error of sending \mathbf{x} and decoding $\hat{\mathbf{x}} \neq \mathbf{x}$ is upper bounded by

$$
P(\mathbf{x} \rightarrow \hat{\mathbf{x}}) \leq \frac{\text{const}}{|\det(\mathbf{x} - \hat{\mathbf{x}})|^{2M}}.
$$

- We assume the receiver knows the channel (called the coherent case).
The code design

The goal is the design of the codebook \(C \):

\[
C = \left\{ \mathbf{X} = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \mid x_1, x_2, x_3, x_4 \in \mathbb{C} \right\}
\]

the \(x_i \) are functions of the information symbols.

- The \textit{pairwise probability of error} of sending \(\mathbf{X} \) and decoding \(\hat{\mathbf{X}} \neq \mathbf{X} \) is upper bounded by

\[
P(\mathbf{X} \rightarrow \hat{\mathbf{X}}) \leq \frac{\text{const}}{|\det(\mathbf{X} - \hat{\mathbf{X}})|^{2M}}.
\]

- We assume the receiver knows the channel (called the \textit{coherent case}).
A simplified problem

- Find a family C of $M \times M$ matrices such that
 $$\det(X_i - X_j) \neq 0, \quad X_i \neq X_j \in C.$$
- Such a family C is said **fully-diverse**.
- Encoding, decoding
A simplified problem

- Find a family C of $M \times M$ matrices such that
 \[
 \det(X_i - X_j) \neq 0, \quad X_i \neq X_j \in C.
 \]

- Such a family C is said \textit{fully-diverse}.

- Encoding, decoding
Outline

Division Algebras
- The idea behind Division Algebras
- How to build Division Algebras

The Golden Code
- Cyclic Division Algebras
- A 2×2 Space-Time Code

Other applications
- Differential Space-Time Coding
- Wireless Relay Networks
The first ingredient: linearity

- The difficulty in building \mathcal{C} such that

$$\det(X_i - X_j) \neq 0, \ X_i \neq X_j \in \mathcal{C},$$

comes from the *non-linearity* of the determinant.

- An algebra of matrices is *linear*, so that

$$\det(X_i - X_j) = \det(X_k),$$

X_k a matrix in the algebra.
The first ingredient: linearity

- The difficulty in building \mathcal{C} such that
 \[\det(X_i - X_j) \neq 0, \quad X_i \neq X_j \in \mathcal{C}, \]
 comes from the \textit{non-linearity} of the determinant.
- An algebra of matrices is \textit{linear}, so that
 \[\det(X_i - X_j) = \det(X_k), \]
 X_k a matrix in the algebra.
The second ingredient: invertibility

- The problem is now to build a family C of matrices such that
 \[\det(X) \neq 0, \quad 0 \neq X \in C. \]
 or equivalently, such that each $0 \neq X \in C$ is invertible.
- By definition, a field is a set such that every (nonzero) element in it is invertible.
- Take C inside an algebra of matrices which is also a field.
The second ingredient: invertibility

- The problem is now to build a family \mathcal{C} of matrices such that

$$\det(\mathbf{X}) \neq 0, \quad \mathbf{0} \neq \mathbf{X} \in \mathcal{C}.$$

or equivalently, such that each $\mathbf{0} \neq \mathbf{X} \in \mathcal{C}$ is invertible.

- By definition, a field is a set such that every (nonzero) element in it is invertible.

- Take \mathcal{C} inside an algebra of matrices which is also a field.
The second ingredient: invertibility

- The problem is now to build a family \mathcal{C} of matrices such that
 \[\det(X) \neq 0, \ 0 \neq X \in \mathcal{C}. \]
 or equivalently, such that each $0 \neq X \in \mathcal{C}$ is invertible.
- By definition, a *field* is a set such that every (nonzero) element in it is invertible.
- Take \mathcal{C} inside an algebra of matrices which is also a field.
A division algebra is a non-commutative field.
The Hamiltonian Quaternions: the definition

- Let \(\{1, i, j, k\} \) be a basis for a vector space of dimension 4 over \(\mathbb{R} \).
- We have the rule that \(i^2 = -1, j^2 = -1, \) and \(ij = -ji \).
- The Hamiltonian Quaternions is the set \(\mathbb{H} \) defined by
 \[
 \mathbb{H} = \{ x + yi + zj + wk \mid x, y, z, w \in \mathbb{R} \}.
 \]
Hamiltonian Quaternions are a division algebra

Define the conjugate of a quaternion $q = x + yi + wk$:

$$\bar{q} = x - yi - zj - wk.$$

Compute that

$$q\bar{q} = x^2 + y^2 + z^2 + w^2, \ x, y, z, w \in \mathbb{R}.$$

The inverse of the quaternion q is given by

$$q^{-1} = \frac{\bar{q}}{q\bar{q}}.$$
Hamiltonian Quaternions are a division algebra

» Define the *conjugate* of a quaternion $q = x + yi + wk$:

$$\bar{q} = x - yi - zj - wk.$$

» Compute that

$$q\bar{q} = x^2 + y^2 + z^2 + w^2, \; x, y, z, w \in \mathbb{R}.$$

» The inverse of the quaternion q is given by

$$q^{-1} = \frac{\bar{q}}{q\bar{q}}.$$
Hamiltonian Quaternions are a division algebra

- Define the *conjugate* of a quaternion $q = x + yi + wk$:

 $$\bar{q} = x - yi - zj - wk.$$

- Compute that

 $$q\bar{q} = x^2 + y^2 + z^2 + w^2, \quad x, y, z, w \in \mathbb{R}.$$

- The inverse of the quaternion q is given by

 $$q^{-1} = \frac{\bar{q}}{q\bar{q}}.$$
The Hamiltonian Quaternions: how to get matrices

- Any quaternion $q = x + yi + zj + wk$ can be written as
 $$(x + yi) + j(z - wi) = \alpha + j\beta, \quad \alpha, \beta \in \mathbb{C}.$$

- Now compute the multiplication by q:
 $$\underbrace{(\alpha + j\beta)(\gamma + j\delta)}_q = \alpha\gamma + j\bar{\alpha}\delta + j\beta\gamma + j^2\bar{\beta}\delta$$
 $$= (\alpha\gamma - \bar{\beta}\delta) + j(\bar{\alpha}\delta + \beta\gamma)$$

- Write this equality in the basis $\{1, j\}$:
 $$\begin{pmatrix} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{pmatrix} \begin{pmatrix} \gamma \\ \delta \end{pmatrix} = \begin{pmatrix} \alpha\gamma - \bar{\beta}\delta \\ \bar{\alpha}\delta + \beta\gamma \end{pmatrix}$$
The Hamiltonian Quaternions: how to get matrices

- Any quaternion $q = x + yi + zj + wk$ can be written as
 $$(x + yi) + j(z - wi) = \alpha + j\beta, \quad \alpha, \beta \in \mathbb{C}.$$

- Now compute the multiplication by q:
 $$\begin{aligned}
 (\alpha + j\beta)(\gamma + j\delta) &= \alpha\gamma + j\bar{\alpha}\delta + j\beta\gamma + j^2\bar{\beta}\delta \\
 &= (\alpha\gamma - \bar{\beta}\delta) + j(\bar{\alpha}\delta + \beta\gamma)
 \end{aligned}$$

- Write this equality in the basis $\{1, j\}$:
 $$\begin{pmatrix} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{pmatrix} \begin{pmatrix} \gamma \\ \delta \end{pmatrix} = \begin{pmatrix} \alpha\gamma - \bar{\beta}\delta \\ \bar{\alpha}\delta + \beta\gamma \end{pmatrix}$$
How to build Division Algebras

The Hamiltonian Quaternions: how to get matrices

- Any quaternion $q = x + yi + zj + wk$ can be written as
 $$(x + yi) + j(z - wi) = \alpha + j\beta, \; \alpha, \beta \in \mathbb{C}.$$

- Now compute the multiplication by q:
 $$\underbrace{(\alpha + j\beta)(\gamma + j\delta)}_q = \alpha\gamma + j\bar{\alpha}\delta + j\beta\gamma + j^2\bar{\beta}\delta$$
 $$= (\alpha\gamma - \bar{\beta}\delta) + j(\bar{\alpha}\delta + \beta\gamma)$$

- Write this equality in the basis $\{1, j\}$:
 $$\begin{pmatrix} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{pmatrix} \begin{pmatrix} \gamma \\ \delta \end{pmatrix} = \begin{pmatrix} \alpha\gamma - \bar{\beta}\delta \\ \bar{\alpha}\delta + \beta\gamma \end{pmatrix}$$
The Hamiltonian Quaternions: the Alamouti Code

$q = \alpha + j\beta$, $\alpha, \beta \in \mathbb{C} \iff \begin{pmatrix} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{pmatrix}$
Division Algebras

The idea behind Division Algebras
How to build Division Algebras

The Golden Code

Cyclic Division Algebras
A 2×2 Space-Time Code

Other applications

Differential Space-Time Coding
Wireless Relay Networks
Joint work with
Prof. Jean-Claude Belfiore, Ghaya Rekaya, ENST Paris, France.
Prof. Emanuele Viterbo, Politecnico di Torino, Italy.
Cyclic algebras: definition

Let $L = \mathbb{Q}(i, \sqrt{d}) = \{u + \sqrt{d}v, \ u, v \in \mathbb{Q}(i)\}$. A cyclic algebra A is defined as follows:

$$A = L \oplus eL$$

with $e^2 = \gamma$ and

$$\lambda e = e\sigma(\lambda) \text{ where } \sigma(u + \sqrt{d}v) = u - \sqrt{d}v.$$

Recall that $(\mathbb{C} = \mathbb{R} \oplus i\mathbb{R})$

$$\mathbb{H} = \mathbb{C} \oplus j\mathbb{C}$$

with

$$j^2 = -1 \text{ and } ij = -ji.$$
Cyclic algebras: definition

Let $L = \mathbb{Q}(i, \sqrt{d}) = \{u + \sqrt{d}v, \ u, v \in \mathbb{Q}(i)\}$. A cyclic algebra A is defined as follows

$$A = L \oplus eL$$

with $e^2 = \gamma$ and

$$\lambda e = e\sigma(\lambda) \text{ where } \sigma(u + \sqrt{d}v) = u - \sqrt{d}v.$$
Cyclic algebras: definition

Let $L = \mathbb{Q}(i, \sqrt{d}) = \{u + \sqrt{d}v, \ u, v \in \mathbb{Q}(i)\}$. A cyclic algebra A is defined as follows

$$A = L \oplus eL$$

with $e^2 = \gamma$ and

$$\lambda e = e\sigma(\lambda) \text{ where } \sigma(u + \sqrt{d}v) = u - \sqrt{d}v.$$

Recall that $(\mathbb{C} = \mathbb{R} \oplus i\mathbb{R})$

$$\mathbb{H} = \mathbb{C} \oplus j\mathbb{C}$$

with $j^2 = -1$ and $ij = -ji$.
Cyclic algebras: definition

- Let $L = \mathbb{Q}(i, \sqrt{d}) = \{u + \sqrt{d}v, \ u, v \in \mathbb{Q}(i)\}$. A cyclic algebra A is defined as follows

$$A = L \oplus eL$$

with $e^2 = \gamma$ and

$$\lambda e = e\sigma(\lambda) \text{ where } \sigma(u + \sqrt{d}v) = u - \sqrt{d}v.$$

- Recall that $(\mathbb{C} = \mathbb{R} \oplus i\mathbb{R})$

$$\mathbb{H} = \mathbb{C} \oplus j\mathbb{C}$$

with

$$j^2 = -1 \text{ and } ij = -ji$$
Cyclic algebras: matrix formulation

- We associate to an element its *multiplication matrix*:

\[
x = x_0 + ex_1 \in \mathcal{A} \leftrightarrow \begin{pmatrix} x_0 & \gamma \sigma(x_1) \\ x_1 & \sigma(x_0) \end{pmatrix}
\]

- As we did for the Hamiltonian Quaternions:

\[
q = \alpha + j\beta \in \mathbb{H} \leftrightarrow \begin{pmatrix} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{pmatrix}
\]
Cyclic algebras: matrix formulation

- We associate to an element its *multiplication matrix*

\[x = x_0 + ex_1 \in \mathcal{A} \leftrightarrow \begin{pmatrix} x_0 & \gamma \sigma(x_1) \\ x_1 & \sigma(x_0) \end{pmatrix} \]

- as we did for the Hamiltonian Quaternions.

\[q = \alpha + j\beta \in \mathbb{H} \leftrightarrow \begin{pmatrix} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{pmatrix} \]
The Golden Code: a 2×2 Space-Time Code

- The Golden code is related to the *Golden number* $\theta = \frac{1+\sqrt{5}}{2}$, a root of $x^2 - x - 1 = 0$ ($\sigma(\theta) = \bar{\theta} = \frac{1-\sqrt{5}}{2}$ is the other).

- We define the code C as

$$C = \left\{ \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} = \begin{bmatrix} a + b\theta & c + d\theta \\ i(c + d\bar{\theta}) & a + b\bar{\theta} \end{bmatrix} : a, b, c, d \in \mathbb{Z}[i] \right\}$$

- This code has been built from the *cyclic algebra* A, given by

$$A = \{ y = (u + v\theta) + e(w + z\theta) \mid e^2 = i, \ u, v, w, z \in \mathbb{Q}(i) \}.$$
The Golden Code: a 2×2 Space-Time Code

The Golden code is related to the Golden number\ $\theta = \frac{1+\sqrt{5}}{2}$, a root of $x^2 - x - 1 = 0$ ($\sigma(\theta) = \overline{\theta} = \frac{1-\sqrt{5}}{2}$ is the other).

We define the code \mathcal{C} as

$$\mathcal{C} = \left\{ \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} = \begin{bmatrix} a + b\theta \\ i(c + d\overline{\theta}) \end{bmatrix} : a, b, c, d \in \mathbb{Z}[i] \right\}$$

This code has been built from the cyclic algebra \mathcal{A}, given by

$$\mathcal{A} = \{ y = (u + v\theta) + e(w + z\theta) \mid e^2 = i, \ u, v, w, z \in \mathbb{Q}(i) \}.$$
The Golden Code: a 2×2 Space-Time Code

- The Golden code is related to the **Golden number** $\theta = \frac{1+\sqrt{5}}{2}$, a root of $x^2 - x - 1 = 0$ ($\sigma(\theta) = \bar{\theta} = \frac{1-\sqrt{5}}{2}$ is the other).

- We define the code \mathcal{C} as

$$\mathcal{C} = \left\{ \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} = \begin{bmatrix} a + b\theta & c + d\theta \\ i(c + d\bar{\theta}) & a + b\bar{\theta} \end{bmatrix} : a, b, c, d \in \mathbb{Z}[i] \right\}$$

- This code has been built from the **cyclic algebra** \mathcal{A}, given by

$$\mathcal{A} = \{ y = (u + \nu \theta) + e(w + z\theta) \mid e^2 = i, \ u, \nu, w, z \in \mathbb{Q}(i) \}.$$
The Golden code: minimum determinant

We have the code C as

$$C = \left\{ \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} = \begin{bmatrix} a + b\theta & c + d\theta \\ i(c + d\theta) & a + b\bar{\theta} \end{bmatrix} : a, b, c, d \in \mathbb{Z}[i] \right\}$$

C is a linear code, i.e., $X_1 + X_2 \in C$ for all $X_1, X_2 \in C$.

The minimum determinant of C is given by

$$\delta_{\text{min}}(C) = \min_{X_1 \neq X_2 \in C} |\det(X_1 - X_2)|^2 = \min_{0 \neq X \in C} |\det(X)|^2 \neq 0$$

by choice of \mathcal{A}, a division algebra.
The Golden code: minimum determinant

We have the code C as

$$C = \left\{ \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} = \begin{bmatrix} a + b\theta & c + d\bar{\theta} \\ i(c + d\bar{\theta}) & a + b\bar{\theta} \end{bmatrix} : a, b, c, d \in \mathbb{Z}[i] \right\}$$

C is a linear code, i.e., $X_1 + X_2 \in C$ for all $X_1, X_2 \in C$.

The minimum determinant of C is given by

$$\delta_{\text{min}}(C) = \min_{X_1 \neq X_2 \in C} |\det(X_1 - X_2)|^2 = \min_{0 \neq X \in C} |\det(X)|^2 \neq 0$$

by choice of \mathcal{A}, a division algebra.
The Golden code: minimum determinant

- We have the code \mathcal{C} as

$$\mathcal{C} = \left\{ \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} \right\} = \left[\begin{array}{cc} a + b\theta & c + d\theta \\ i(c + d\bar{\theta}) & a + b\bar{\theta} \end{array} \right] : a, b, c, d \in \mathbb{Z}[i] \right\}$$

- \mathcal{C} is a linear code, i.e., $\mathbf{X}_1 + \mathbf{X}_2 \in \mathcal{C}$ for all $\mathbf{X}_1, \mathbf{X}_2 \in \mathcal{C}$.
- The minimum determinant of \mathcal{C} is given by

$$\delta_{\text{min}}(\mathcal{C}) = \min_{\mathbf{X}_1 \neq \mathbf{X}_2 \in \mathcal{C}} |\det(\mathbf{X}_1 - \mathbf{X}_2)|^2 = \min_{0 \neq \mathbf{X} \in \mathcal{C}} |\det(\mathbf{X})|^2 \neq 0$$

by choice of \mathcal{A}, a division algebra.
The Golden code: minimum determinant

- We have the code C as

$$C = \left\{ \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} = \begin{bmatrix} a + b\theta & c + d\theta \\ i(c + d\overline{\theta}) & a + b\overline{\theta} \end{bmatrix} : a, b, c, d \in \mathbb{Z}[i] \right\}$$

- C is a linear code, i.e., $X_1 + X_2 \in C$ for all $X_1, X_2 \in C$.

- The minimum determinant of C is given by

$$\delta_{\text{min}}(C) = \min_{X_1 \neq X_2 \in C} |\det(X_1 - X_2)|^2 = \min_{0 \neq X \in C} |\det(X)|^2 \neq 0$$

by choice of A, a division algebra.
The non-vanishing determinant property

Let $X \in \mathbb{C}$, then

$$
\det(X) = \det \begin{pmatrix}
 a + b\theta & c + d\theta \\
 i(c + d\bar{\theta}) & a + b\bar{\theta}
\end{pmatrix}
$$

$$
= (a + b\theta)(a + b\bar{\theta}) - i(c + d\theta)(c + d\bar{\theta})
$$

$$
= a^2 + ab(\bar{\theta} + \theta) - b^2 - i[c^2 + cd(\theta + \bar{\theta}) - d^2]
$$

$$
= a^2 + ab - b^2 + i(c^2 + cd - d^2),
$$

$a, b, c, d \in \mathbb{Z}[i]$.

Thus

$$
\det(X) \in \mathbb{Z}[i] \Rightarrow \delta_{\text{min}}(\mathbb{C}) = |\det(X)|^2 \geq 1.
$$

Does not depend on the cardinality of \mathbb{C}.
The non-vanishing determinant property

Let \(X \in \mathcal{C} \), then

\[
\det(X) = \det\left(\begin{pmatrix} a + b\theta & c + d\theta \\ i(c + d\bar{\theta}) & a + b\bar{\theta} \end{pmatrix} \right)
= (a + b\theta)(a + b\bar{\theta}) - i(c + d\theta)(c + d\bar{\theta})
= a^2 + ab(\bar{\theta} + \theta) - b^2 - i[c^2 + cd(\theta + \bar{\theta}) - d^2]
= a^2 + ab - b^2 + i(c^2 + cd - d^2),
\]

\(a, b, c, d \in \mathbb{Z}[i] \).

Thus

\[
\det(X) \in \mathbb{Z}[i] \Rightarrow \delta_{min}(\mathcal{C}) = |\det(X)|^2 \geq 1.
\]

Does not depend on the cardinality of \(\mathcal{C} \).
The non-vanishing determinant property

Let \(X \in \mathcal{C} \), then

\[
\det(X) = \det \left(\begin{array}{cc} a + b\theta & c + d\theta \\
 i(c + d\bar{\theta}) & a + b\bar{\theta} \end{array} \right)
\]

\[
= (a + b\theta)(a + b\bar{\theta}) - i(c + d\theta)(c + d\bar{\theta})
\]

\[
= a^2 + ab(\bar{\theta} + \theta) - b^2 - i[c^2 + cd(\theta + \bar{\theta}) - d^2]
\]

\[
= a^2 + ab - b^2 + i(c^2 + cd - d^2),
\]

\(a, b, c, d \in \mathbb{Z}[i] \).

Thus

\[
\det(X) \in \mathbb{Z}[i] \Rightarrow \delta_{min}(\mathcal{C}) = |\det(X)|^2 \geq 1.
\]

Does not depend on the cardinality of \(\mathcal{C} \).
The non-vanishing determinant property

Let $X \in C$, then

$$\det(X) = \det\begin{pmatrix} a + b\theta & c + d\theta \\ i(c + d\bar{\theta}) & a + b\bar{\theta} \end{pmatrix}$$

$$= (a + b\theta)(a + b\bar{\theta}) - i(c + d\theta)(c + d\bar{\theta})$$

$$= a^2 + ab(\bar{\theta} + \theta) - b^2 - i[c^2 + cd(\theta + \bar{\theta}) - d^2]$$

$$= a^2 + ab - b^2 + i(c^2 + cd - d^2),$$

$a, b, c, d \in \mathbb{Z}[i]$.

Thus

$$\det(X) \in \mathbb{Z}[i] \Rightarrow \delta_{min}(C) = |\det(X)|^2 \geq 1.$$

Does not depend on the cardinality of C.
The non-vanishing determinant property

Let $X \in \mathcal{C}$, then

$$
\begin{align*}
\det(X) &= \det \begin{pmatrix} a + b\theta & c + d\theta \\ i(c + d\bar{\theta}) & a + b\bar{\theta} \end{pmatrix} \\
&= (a + b\theta)(a + b\bar{\theta}) - i(c + d\theta)(c + d\bar{\theta}) \\
&= a^2 + ab(\bar{\theta} + \theta) - b^2 - i[c^2 + cd(\theta + \bar{\theta}) - d^2] \\
&= a^2 + ab - b^2 + i(c^2 + cd - d^2),
\end{align*}
$$

$a, b, c, d \in \mathbb{Z}[i]$.

Thus

$$
\det(X) \in \mathbb{Z}[i] \Rightarrow \delta_{\min}(\mathcal{C}) = |\det(X)|^2 \geq 1.
$$

Does not depend on the cardinality of \mathcal{C}.
The non-vanishing determinant property

Let $X \in C$, then

$$
\det(X) = \det \begin{pmatrix} a + b\theta & c + d\theta \\ i(c + d\bar{\theta}) & a + b\bar{\theta} \end{pmatrix} \\
= (a + b\theta)(a + b\bar{\theta}) - i(c + d\theta)(c + d\bar{\theta}) \\
= a^2 + ab(\bar{\theta} + \theta) - b^2 - i[c^2 + cd(\theta + \bar{\theta}) - d^2] \\
= a^2 + ab - b^2 + i(c^2 + cd - d^2),
$$

$a, b, c, d \in \mathbb{Z}[i]$.

Thus

$$
\det(X) \in \mathbb{Z}[i] \Rightarrow \delta_{min}(C) = |\det(X)|^2 \geq 1.
$$

Does not depend on the cardinality of C.
The Golden code: encoding and rate

We have the code C as

$$C = \left\{ \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} = \begin{bmatrix} a + b\theta \\ i(c + d\theta) \\ c + d\theta \\ a + b\bar{\theta} \end{bmatrix} : a, b, c, d \in \mathbb{Z}[i] \right\}$$

The finite code C is obtained by limiting the information symbols to $a, b, c, d \in S \subset \mathbb{Z}[i]$ (QAM signal constellation).

The code C is full rate.
The Golden code: encoding and rate

- We have the code \mathcal{C} as

$$\mathcal{C} = \left\{ \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} = \begin{bmatrix} a + b\theta & c + d\theta \\ i(c + d\bar{\theta}) & a + b\bar{\theta} \end{bmatrix} : a, b, c, d \in \mathbb{Z}[i] \right\}$$

- The finite code \mathcal{C} is obtained by limiting the information symbols to $a, b, c, d \in S \subset \mathbb{Z}[i]$ (QAM signal constellation).

- The code \mathcal{C} is full rate.
The Golden code: encoding and rate

- We have the code C as

$$C = \left\{ \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} = \begin{pmatrix} a + b\theta \\ i(c + d\theta) \end{pmatrix} \begin{pmatrix} c + d\theta \\ a + b\theta \end{pmatrix} : a, b, c, d \in \mathbb{Z}[i] \right\}$$

- The finite code C is obtained by limiting the information symbols to $a, b, c, d \in S \subset \mathbb{Z}[i]$ (QAM signal constellation).
- The code C is full rate.
Golden Code: summary of the properties

The Golden Code is a 2×2 code for the coherent MIMO channel that satisfies

- full rate
- minimum non zero determinant
- furthermore non-vanishing determinant
- same average energy is transmitted from each antenna at each channel use.
Decoding and Performance of the Golden Code
Codes in higher dimensions

- Isomorphic versions of the Golden code were independently derived by [Yao, Wornell, 2003] and by [Dayal, Varanasi, 2003] by analytic optimization.

- Cyclic division algebras enable to generalize to larger $n \times n$ systems.
Codes in higher dimensions

- Isomorphic versions of the Golden code were independently derived by [Yao, Wornell, 2003] and by [Dayal, Varanasi, 2003] by analytic optimization.

- Cyclic division algebras enable to generalize to larger $n \times n$ systems.
Division Algebras
The idea behind Division Algebras
How to build Division Algebras

The Golden Code
Cyclic Division Algebras
A 2×2 Space-Time Code

Other applications
Differential Space-Time Coding
Wireless Relay Networks
The differential noncoherent MIMO channel

Consider a channel with M transmit antennas and N receive antennas, with *unknown channel information*.

How to do decoding?

We use *differential unitary space-time modulation*. That is (assuming $S_0 = I$)

$$S_t = X_{z_t} S_{t-1}, \quad t = 1, 2, \ldots,$$

where $z_t \in \{0, \ldots, L - 1\}$ is the data to be transmitted, and $C = \{X_0, \ldots, X_{L-1}\}$ the constellation to be designed.

The matrices X have to be *unitary*.
The differential noncoherent MIMO channel

- Consider a channel with M transmit antennas and N receive antennas, with *unknown channel information*.

- How to do decoding?
 - We use *differential unitary space-time modulation*. That is (assuming $S_0 = I$)
 \[S_t = X_{z_t} S_{t-1}, \quad t = 1, 2, \ldots, \]
 where $z_t \in \{0, \ldots, L - 1\}$ is the data to be transmitted, and $C = \{X_0, \ldots, X_{L-1}\}$ the constellation to be designed.

- The matrices X have to be *unitary*.
The differential noncoherent MIMO channel

- Consider a channel with M transmit antennas and N receive antennas, with \textit{unknown channel information}.
- How to do decoding?
- We use \textit{differential unitary space-time modulation}. that is (assuming $S_0 = I$)

$$S_t = X_{z_t}S_{t-1}, \quad t = 1, 2, \ldots,$$

where $z_t \in \{0, \ldots, L - 1\}$ is the data to be transmitted, and $C = \{X_0, \ldots, X_{L-1}\}$ the constellation to be designed.
- The matrices X have to be \textit{unitary}.
Consider a channel with M transmit antennas and N receive antennas, with *unknown channel information*.

How to do decoding?

We use *differential unitary space-time modulation*. that is (assuming $S_0 = I$)

$$S_t = X_{z_t} S_{t-1}, \quad t = 1, 2, \ldots,$$

where $z_t \in \{0, \ldots, L-1\}$ is the data to be transmitted, and $C = \{X_0, \ldots, X_{L-1}\}$ the constellation to be designed.

The matrices X have to be *unitary*.
The decoding

If we assume the channel is roughly constant, we have

\[Y_t = S_t H + W_t \]
\[= X_{zt} S_{t-1} H + W_t \]
\[= X_{zt} (Y_{t-1} - W_{t-1}) + W_t \]
\[= X_{zt} Y_{t-1} + W'_t. \]

The matrix \(H \) does not appear in the last equation.

The decoder is thus given by

\[\hat{z}_t = \arg \min_{l=0, \ldots, |C|-1} \| Y_t - X_l Y_{t-1} \|. \]
The decoding

- If we assume the channel is roughly constant, we have

\[
Y_t = S_t H + W_t \\
= X_{zt} S_{t-1} H + W_t \\
= X_{zt} (Y_{t-1} - W_{t-1}) + W_t \\
= X_{zt} Y_{t-1} + W'_t.
\]

- The matrix \(H \) does not appear in the last equation.

- The decoder is thus given by

\[
\hat{z}_t = \arg \min_{l=0,\ldots,|\mathcal{C}|-1} \| Y_t - X_l Y_{t-1} \|.
\]
The decoding

- If we assume the channel is roughly constant, we have

\[
Y_t = S_t H + W_t \\
= X_{zt} S_{t-1} H + W_t \\
= X_{zt} (Y_{t-1} - W_{t-1}) + W_t \\
= X_{zt} Y_{t-1} + W'.
\]

- The matrix \(H \) does not appear in the last equation.

- The decoder is thus given by

\[
\hat{z}_t = \arg \min_{l=0,\ldots,|C|-1} \| Y_t - X_l Y_{t-1} \|.
\]
Probability of error

- At high SNR, the pairwise probability of error P_e has the upper bound

 $$ P_e \leq \left(\frac{1}{2} \right) \left(\frac{8}{\rho} \right)^{MN} \frac{1}{|\det(X_i - X_j)|^{2N}} $$

- The quality of the code is measured by the diversity product

 $$ \zeta_C = \frac{1}{2} \min_{X_i \neq X_j} |\det(X_i - X_j)|^{1/M} \quad \forall X_i \neq X_j \in C $$
Problem statement

Find a set C of *unitary* matrices ($XX^\dagger = I$) such that

$$\det(X_i - X_j) \neq 0 \quad \forall \ X_i \neq X_j \in C$$
Natural unitary matrices

- Recall that a matrix X in the algebra has the form

$$
\begin{pmatrix}
x_0 & x_1 \\
\gamma \sigma(x_1) & \sigma(x_0)
\end{pmatrix}.
$$

- There are natural unitary matrices:

$$
E = \begin{pmatrix} 0 & 1 \\ \gamma & 0 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} x & 0 \\ 0 & \sigma(x) \end{pmatrix}, \ x \in L.
$$

- If γ satisfies $\gamma \bar{\gamma} = 1$, then E^k, $k = 0, 1$, is unitary.
- If x satisfies $x \bar{x} = 1$, D and its powers will be unitary.
- Yields the constructions given by fixed point free groups.
Natural unitary matrices

- Recall that a matrix X in the algebra has the form

$$
\begin{pmatrix}
 x_0 & x_1 \\
 \gamma \sigma(x_1) & \sigma(x_0)
\end{pmatrix}.
$$

- There are natural unitary matrices:

$$
E = \begin{pmatrix}
0 & 1 \\
\gamma & 0
\end{pmatrix}
\quad \text{and} \quad
D = \begin{pmatrix}
x & 0 \\
0 & \sigma(x)
\end{pmatrix}, \; x \in L.
$$

- If γ satisfies $\gamma \bar{\gamma} = 1$, then E^k, $k = 0, 1$, is unitary.
- If x satisfies $x \bar{x} = 1$, D and its powers will be unitary.
- Yields the constructions given by fixed point free groups.
Natural unitary matrices

- Recall that a matrix X in the algebra has the form

$$
\begin{pmatrix}
 x_0 & x_1 \\
 \gamma \sigma(x_1) & \sigma(x_0)
\end{pmatrix}.
$$

- There are *natural* unitary matrices:

$$
E = \begin{pmatrix} 0 & 1 \\ \gamma & 0 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} x & 0 \\ 0 & \sigma(x) \end{pmatrix}, \quad x \in L.
$$

- If γ satisfies $\gamma \bar{\gamma} = 1$, then E^k, $k = 0, 1$, is unitary.
- If x satisfies $x \bar{x} = 1$, D and its powers will be unitary.

- Yields the constructions given by fixed point free groups.
Natural unitary matrices

Recall that a matrix X in the algebra has the form

$$
\begin{pmatrix}
x_0 & x_1 \\
\gamma \sigma(x_1) & \sigma(x_0)
\end{pmatrix}.
$$

There are natural unitary matrices:

$$
E = \begin{pmatrix} 0 & 1 \\ \gamma & 0 \end{pmatrix} \text{ and } D = \begin{pmatrix} x & 0 \\ 0 & \sigma(x) \end{pmatrix}, \ x \in L.
$$

If γ satisfies $\gamma \bar{\gamma} = 1$, then E^k, $k = 0, 1$, is unitary.

If x satisfies $x \bar{x} = 1$, D and its powers will be unitary.

Yields the constructions given by fixed point free groups.
Applications to Wireless Relay Networks

- Distributed Space-Time Codes
 Each relay encodes a column of the Space-Time code.

- MIMO Amplify-and-Forward Cooperative Channel
 Each terminal is equipped with *multiple antennas*.

The diversity criterion holds.
Applications to Wireless Relay Networks

- Distributed Space-Time Codes
 Each relay encodes a column of the Space-Time code.

- MIMO Amplify-and-Forward Cooperative Channel
 Each terminal is equipped with *multiple antennas*.

The diversity criterion holds.
Thank you for your attention!